llvm-project/llvm/lib/CodeGen/RegAllocBasic.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

344 lines
12 KiB
C++
Raw Normal View History

//===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the RABasic function pass, which provides a minimal
// implementation of the basic register allocator.
//
//===----------------------------------------------------------------------===//
#include "AllocationOrder.h"
#include "LiveDebugVariables.h"
#include "RegAllocBase.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/LiveRegMatrix.h"
#include "llvm/CodeGen/LiveStacks.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/Spiller.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdlib>
#include <queue>
using namespace llvm;
#define DEBUG_TYPE "regalloc"
static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
createBasicRegisterAllocator);
namespace {
struct CompSpillWeight {
bool operator()(LiveInterval *A, LiveInterval *B) const {
return A->weight() < B->weight();
}
};
}
2010-11-26 00:42:51 +08:00
namespace {
/// RABasic provides a minimal implementation of the basic register allocation
/// algorithm. It prioritizes live virtual registers by spill weight and spills
/// whenever a register is unavailable. This is not practical in production but
/// provides a useful baseline both for measuring other allocators and comparing
/// the speed of the basic algorithm against other styles of allocators.
class RABasic : public MachineFunctionPass,
public RegAllocBase,
private LiveRangeEdit::Delegate {
// context
MachineFunction *MF;
// state
std::unique_ptr<Spiller> SpillerInstance;
std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
CompSpillWeight> Queue;
// Scratch space. Allocated here to avoid repeated malloc calls in
// selectOrSplit().
BitVector UsableRegs;
bool LRE_CanEraseVirtReg(Register) override;
void LRE_WillShrinkVirtReg(Register) override;
public:
RegAlloc: Allow targets to split register allocation AMDGPU normally spills SGPRs to VGPRs. Previously, since all register classes are handled at the same time, this was problematic. We don't know ahead of time how many registers will be needed to be reserved to handle the spilling. If no VGPRs were left for spilling, we would have to try to spill to memory. If the spilled SGPRs were required for exec mask manipulation, it is highly problematic because the lanes active at the point of spill are not necessarily the same as at the restore point. Avoid this problem by fully allocating SGPRs in a separate regalloc run from VGPRs. This way we know the exact number of VGPRs needed, and can reserve them for a second run. This fixes the most serious issues, but it is still possible using inline asm to make all VGPRs unavailable. Start erroring in the case where we ever would require memory for an SGPR spill. This is implemented by giving each regalloc pass a callback which reports if a register class should be handled or not. A few passes need some small changes to deal with leftover virtual registers. In the AMDGPU implementation, a new pass is introduced to take the place of PrologEpilogInserter for SGPR spills emitted during the first run. One disadvantage of this is currently StackSlotColoring is no longer used for SGPR spills. It would need to be run again, which will require more work. Error if the standard -regalloc option is used. Introduce new separate -sgpr-regalloc and -vgpr-regalloc flags, so the two runs can be controlled individually. PBQB is not currently supported, so this also prevents using the unhandled allocator.
2018-09-27 07:36:28 +08:00
RABasic(const RegClassFilterFunc F = allocateAllRegClasses);
/// Return the pass name.
StringRef getPassName() const override { return "Basic Register Allocator"; }
/// RABasic analysis usage.
void getAnalysisUsage(AnalysisUsage &AU) const override;
void releaseMemory() override;
Spiller &spiller() override { return *SpillerInstance; }
RegAlloc: Allow targets to split register allocation AMDGPU normally spills SGPRs to VGPRs. Previously, since all register classes are handled at the same time, this was problematic. We don't know ahead of time how many registers will be needed to be reserved to handle the spilling. If no VGPRs were left for spilling, we would have to try to spill to memory. If the spilled SGPRs were required for exec mask manipulation, it is highly problematic because the lanes active at the point of spill are not necessarily the same as at the restore point. Avoid this problem by fully allocating SGPRs in a separate regalloc run from VGPRs. This way we know the exact number of VGPRs needed, and can reserve them for a second run. This fixes the most serious issues, but it is still possible using inline asm to make all VGPRs unavailable. Start erroring in the case where we ever would require memory for an SGPR spill. This is implemented by giving each regalloc pass a callback which reports if a register class should be handled or not. A few passes need some small changes to deal with leftover virtual registers. In the AMDGPU implementation, a new pass is introduced to take the place of PrologEpilogInserter for SGPR spills emitted during the first run. One disadvantage of this is currently StackSlotColoring is no longer used for SGPR spills. It would need to be run again, which will require more work. Error if the standard -regalloc option is used. Introduce new separate -sgpr-regalloc and -vgpr-regalloc flags, so the two runs can be controlled individually. PBQB is not currently supported, so this also prevents using the unhandled allocator.
2018-09-27 07:36:28 +08:00
void enqueueImpl(LiveInterval *LI) override {
Queue.push(LI);
}
LiveInterval *dequeue() override {
if (Queue.empty())
return nullptr;
LiveInterval *LI = Queue.top();
Queue.pop();
return LI;
}
MCRegister selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<Register> &SplitVRegs) override;
/// Perform register allocation.
bool runOnMachineFunction(MachineFunction &mf) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoPHIs);
}
MachineFunctionProperties getClearedProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::IsSSA);
}
// Helper for spilling all live virtual registers currently unified under preg
// that interfere with the most recently queried lvr. Return true if spilling
// was successful, and append any new spilled/split intervals to splitLVRs.
bool spillInterferences(LiveInterval &VirtReg, MCRegister PhysReg,
2020-06-30 23:57:24 +08:00
SmallVectorImpl<Register> &SplitVRegs);
static char ID;
};
char RABasic::ID = 0;
} // end anonymous namespace
char &llvm::RABasicID = RABasic::ID;
INITIALIZE_PASS_BEGIN(RABasic, "regallocbasic", "Basic Register Allocator",
false, false)
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
INITIALIZE_PASS_END(RABasic, "regallocbasic", "Basic Register Allocator", false,
false)
bool RABasic::LRE_CanEraseVirtReg(Register VirtReg) {
LiveInterval &LI = LIS->getInterval(VirtReg);
if (VRM->hasPhys(VirtReg)) {
Matrix->unassign(LI);
aboutToRemoveInterval(LI);
return true;
}
// Unassigned virtreg is probably in the priority queue.
// RegAllocBase will erase it after dequeueing.
// Nonetheless, clear the live-range so that the debug
// dump will show the right state for that VirtReg.
LI.clear();
return false;
}
void RABasic::LRE_WillShrinkVirtReg(Register VirtReg) {
if (!VRM->hasPhys(VirtReg))
return;
// Register is assigned, put it back on the queue for reassignment.
LiveInterval &LI = LIS->getInterval(VirtReg);
Matrix->unassign(LI);
enqueue(&LI);
}
RegAlloc: Allow targets to split register allocation AMDGPU normally spills SGPRs to VGPRs. Previously, since all register classes are handled at the same time, this was problematic. We don't know ahead of time how many registers will be needed to be reserved to handle the spilling. If no VGPRs were left for spilling, we would have to try to spill to memory. If the spilled SGPRs were required for exec mask manipulation, it is highly problematic because the lanes active at the point of spill are not necessarily the same as at the restore point. Avoid this problem by fully allocating SGPRs in a separate regalloc run from VGPRs. This way we know the exact number of VGPRs needed, and can reserve them for a second run. This fixes the most serious issues, but it is still possible using inline asm to make all VGPRs unavailable. Start erroring in the case where we ever would require memory for an SGPR spill. This is implemented by giving each regalloc pass a callback which reports if a register class should be handled or not. A few passes need some small changes to deal with leftover virtual registers. In the AMDGPU implementation, a new pass is introduced to take the place of PrologEpilogInserter for SGPR spills emitted during the first run. One disadvantage of this is currently StackSlotColoring is no longer used for SGPR spills. It would need to be run again, which will require more work. Error if the standard -regalloc option is used. Introduce new separate -sgpr-regalloc and -vgpr-regalloc flags, so the two runs can be controlled individually. PBQB is not currently supported, so this also prevents using the unhandled allocator.
2018-09-27 07:36:28 +08:00
RABasic::RABasic(RegClassFilterFunc F):
MachineFunctionPass(ID),
RegAllocBase(F) {
}
void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-10 01:55:00 +08:00
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<LiveDebugVariables>();
AU.addPreserved<LiveDebugVariables>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addPreserved<MachineBlockFrequencyInfo>();
AU.addRequiredID(MachineDominatorsID);
AU.addPreservedID(MachineDominatorsID);
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addRequired<VirtRegMap>();
AU.addPreserved<VirtRegMap>();
AU.addRequired<LiveRegMatrix>();
AU.addPreserved<LiveRegMatrix>();
MachineFunctionPass::getAnalysisUsage(AU);
}
void RABasic::releaseMemory() {
SpillerInstance.reset();
}
// Spill or split all live virtual registers currently unified under PhysReg
// that interfere with VirtReg. The newly spilled or split live intervals are
// returned by appending them to SplitVRegs.
bool RABasic::spillInterferences(LiveInterval &VirtReg, MCRegister PhysReg,
2020-06-30 23:57:24 +08:00
SmallVectorImpl<Register> &SplitVRegs) {
// Record each interference and determine if all are spillable before mutating
// either the union or live intervals.
SmallVector<LiveInterval*, 8> Intfs;
// Collect interferences assigned to any alias of the physical register.
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
Q.collectInterferingVRegs();
for (unsigned i = Q.interferingVRegs().size(); i; --i) {
LiveInterval *Intf = Q.interferingVRegs()[i - 1];
if (!Intf->isSpillable() || Intf->weight() > VirtReg.weight())
return false;
Intfs.push_back(Intf);
}
}
LLVM_DEBUG(dbgs() << "spilling " << printReg(PhysReg, TRI)
<< " interferences with " << VirtReg << "\n");
assert(!Intfs.empty() && "expected interference");
// Spill each interfering vreg allocated to PhysReg or an alias.
for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
LiveInterval &Spill = *Intfs[i];
// Skip duplicates.
if (!VRM->hasPhys(Spill.reg()))
continue;
// Deallocate the interfering vreg by removing it from the union.
// A LiveInterval instance may not be in a union during modification!
Matrix->unassign(Spill);
// Spill the extracted interval.
LiveRangeEdit LRE(&Spill, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats);
spiller().spill(LRE);
}
return true;
}
// Driver for the register assignment and splitting heuristics.
// Manages iteration over the LiveIntervalUnions.
2010-11-20 10:43:55 +08:00
//
// This is a minimal implementation of register assignment and splitting that
// spills whenever we run out of registers.
//
// selectOrSplit can only be called once per live virtual register. We then do a
// single interference test for each register the correct class until we find an
// available register. So, the number of interference tests in the worst case is
// |vregs| * |machineregs|. And since the number of interference tests is
// minimal, there is no value in caching them outside the scope of
// selectOrSplit().
MCRegister RABasic::selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<Register> &SplitVRegs) {
// Populate a list of physical register spill candidates.
SmallVector<MCRegister, 8> PhysRegSpillCands;
2010-11-20 10:43:55 +08:00
// Check for an available register in this class.
auto Order =
AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
for (MCRegister PhysReg : Order) {
assert(PhysReg.isValid());
// Check for interference in PhysReg
switch (Matrix->checkInterference(VirtReg, PhysReg)) {
case LiveRegMatrix::IK_Free:
// PhysReg is available, allocate it.
return PhysReg;
case LiveRegMatrix::IK_VirtReg:
// Only virtual registers in the way, we may be able to spill them.
PhysRegSpillCands.push_back(PhysReg);
continue;
default:
// RegMask or RegUnit interference.
continue;
}
}
// Try to spill another interfering reg with less spill weight.
for (MCRegister &PhysReg : PhysRegSpillCands) {
if (!spillInterferences(VirtReg, PhysReg, SplitVRegs))
continue;
2010-11-20 10:43:55 +08:00
assert(!Matrix->checkInterference(VirtReg, PhysReg) &&
2010-12-08 02:51:27 +08:00
"Interference after spill.");
// Tell the caller to allocate to this newly freed physical register.
return PhysReg;
}
// No other spill candidates were found, so spill the current VirtReg.
LLVM_DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
if (!VirtReg.isSpillable())
return ~0u;
LiveRangeEdit LRE(&VirtReg, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats);
spiller().spill(LRE);
2010-11-20 10:43:55 +08:00
// The live virtual register requesting allocation was spilled, so tell
// the caller not to allocate anything during this round.
return 0;
}
bool RABasic::runOnMachineFunction(MachineFunction &mf) {
LLVM_DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
<< "********** Function: " << mf.getName() << '\n');
MF = &mf;
RegAllocBase::init(getAnalysis<VirtRegMap>(),
getAnalysis<LiveIntervals>(),
getAnalysis<LiveRegMatrix>());
VirtRegAuxInfo VRAI(*MF, *LIS, *VRM, getAnalysis<MachineLoopInfo>(),
getAnalysis<MachineBlockFrequencyInfo>());
VRAI.calculateSpillWeightsAndHints();
SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, VRAI));
2010-11-20 10:43:55 +08:00
allocatePhysRegs();
Recommit r265547, and r265610,r265639,r265657 on top of it, plus two fixes with one about error verify-regalloc reported, and another about live range update of phi after rematerialization. r265547: Replace analyzeSiblingValues with new algorithm to fix its compile time issue. The patch is to solve PR17409 and its duplicates. analyzeSiblingValues is a N x N complexity algorithm where N is the number of siblings generated by reg splitting. Although it causes siginificant compile time issue when N is large, it is also important for performance since it removes redundent spills and enables rematerialization. To solve the compile time issue, the patch removes analyzeSiblingValues and replaces it with lower cost alternatives containing two parts. The first part creates a new spill hoisting method in postOptimization of register allocation. It does spill hoisting at once after all the spills are generated instead of inside every instance of selectOrSplit. The second part queries the define expr of the original register for rematerializaiton and keep it always available during register allocation even if it is already dead. It deletes those dead instructions only in postOptimization. With the two parts in the patch, it can remove analyzeSiblingValues without sacrificing performance. Patches on top of r265547: r265610 "Fix the compare-clang diff error introduced by r265547." r265639 "Fix the sanitizer bootstrap error in r265547." r265657 "InlineSpiller.cpp: Escap \@ in r265547. [-Wdocumentation]" Differential Revision: http://reviews.llvm.org/D15302 Differential Revision: http://reviews.llvm.org/D18934 Differential Revision: http://reviews.llvm.org/D18935 Differential Revision: http://reviews.llvm.org/D18936 llvm-svn: 266162
2016-04-13 11:08:27 +08:00
postOptimization();
// Diagnostic output before rewriting
LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
releaseMemory();
return true;
}
RegAlloc: Allow targets to split register allocation AMDGPU normally spills SGPRs to VGPRs. Previously, since all register classes are handled at the same time, this was problematic. We don't know ahead of time how many registers will be needed to be reserved to handle the spilling. If no VGPRs were left for spilling, we would have to try to spill to memory. If the spilled SGPRs were required for exec mask manipulation, it is highly problematic because the lanes active at the point of spill are not necessarily the same as at the restore point. Avoid this problem by fully allocating SGPRs in a separate regalloc run from VGPRs. This way we know the exact number of VGPRs needed, and can reserve them for a second run. This fixes the most serious issues, but it is still possible using inline asm to make all VGPRs unavailable. Start erroring in the case where we ever would require memory for an SGPR spill. This is implemented by giving each regalloc pass a callback which reports if a register class should be handled or not. A few passes need some small changes to deal with leftover virtual registers. In the AMDGPU implementation, a new pass is introduced to take the place of PrologEpilogInserter for SGPR spills emitted during the first run. One disadvantage of this is currently StackSlotColoring is no longer used for SGPR spills. It would need to be run again, which will require more work. Error if the standard -regalloc option is used. Introduce new separate -sgpr-regalloc and -vgpr-regalloc flags, so the two runs can be controlled individually. PBQB is not currently supported, so this also prevents using the unhandled allocator.
2018-09-27 07:36:28 +08:00
FunctionPass* llvm::createBasicRegisterAllocator() {
return new RABasic();
}
RegAlloc: Allow targets to split register allocation AMDGPU normally spills SGPRs to VGPRs. Previously, since all register classes are handled at the same time, this was problematic. We don't know ahead of time how many registers will be needed to be reserved to handle the spilling. If no VGPRs were left for spilling, we would have to try to spill to memory. If the spilled SGPRs were required for exec mask manipulation, it is highly problematic because the lanes active at the point of spill are not necessarily the same as at the restore point. Avoid this problem by fully allocating SGPRs in a separate regalloc run from VGPRs. This way we know the exact number of VGPRs needed, and can reserve them for a second run. This fixes the most serious issues, but it is still possible using inline asm to make all VGPRs unavailable. Start erroring in the case where we ever would require memory for an SGPR spill. This is implemented by giving each regalloc pass a callback which reports if a register class should be handled or not. A few passes need some small changes to deal with leftover virtual registers. In the AMDGPU implementation, a new pass is introduced to take the place of PrologEpilogInserter for SGPR spills emitted during the first run. One disadvantage of this is currently StackSlotColoring is no longer used for SGPR spills. It would need to be run again, which will require more work. Error if the standard -regalloc option is used. Introduce new separate -sgpr-regalloc and -vgpr-regalloc flags, so the two runs can be controlled individually. PBQB is not currently supported, so this also prevents using the unhandled allocator.
2018-09-27 07:36:28 +08:00
FunctionPass* llvm::createBasicRegisterAllocator(RegClassFilterFunc F) {
return new RABasic(F);
}