llvm-project/llvm/lib/Target/X86/X86InstrFMA.td

396 lines
19 KiB
TableGen
Raw Normal View History

//===-- X86InstrFMA.td - FMA Instruction Set ---------------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes FMA (Fused Multiply-Add) instructions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// FMA3 - Intel 3 operand Fused Multiply-Add instructions
//===----------------------------------------------------------------------===//
let Constraints = "$src1 = $dst" in {
multiclass fma3p_rm<bits<8> opc, string OpcodeStr,
PatFrag MemFrag128, PatFrag MemFrag256,
ValueType OpVT128, ValueType OpVT256,
bit IsRVariantCommutable = 0, bit IsMVariantCommutable = 0,
SDPatternOperator Op = null_frag> {
let usesCustomInserter = 1, isCommutable = IsRVariantCommutable in
def r : FMA3<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, VR128:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst, (OpVT128 (Op VR128:$src2,
VR128:$src1, VR128:$src3)))]>;
let mayLoad = 1, isCommutable = IsMVariantCommutable in
def m : FMA3<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, f128mem:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst, (OpVT128 (Op VR128:$src2, VR128:$src1,
(MemFrag128 addr:$src3))))]>;
let usesCustomInserter = 1, isCommutable = IsRVariantCommutable in
def rY : FMA3<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, VR256:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR256:$dst, (OpVT256 (Op VR256:$src2, VR256:$src1,
VR256:$src3)))]>, VEX_L;
let mayLoad = 1, isCommutable = IsMVariantCommutable in
def mY : FMA3<opc, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, f256mem:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR256:$dst,
(OpVT256 (Op VR256:$src2, VR256:$src1,
(MemFrag256 addr:$src3))))]>, VEX_L;
}
} // Constraints = "$src1 = $dst"
multiclass fma3p_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
string OpcodeStr, string PackTy,
PatFrag MemFrag128, PatFrag MemFrag256,
SDNode Op, ValueType OpTy128, ValueType OpTy256> {
// For 213, both the register and memory variant are commutable.
// Indeed, the commutable operands are 1 and 2 and both live in registers
// for both variants.
defm r213 : fma3p_rm<opc213,
!strconcat(OpcodeStr, "213", PackTy),
MemFrag128, MemFrag256, OpTy128, OpTy256,
/* IsRVariantCommutable */ 1,
/* IsMVariantCommutable */ 1,
Op>;
let hasSideEffects = 0 in {
defm r132 : fma3p_rm<opc132,
!strconcat(OpcodeStr, "132", PackTy),
MemFrag128, MemFrag256, OpTy128, OpTy256>;
// For 231, only the register variant is commutable.
// For the memory variant the folded operand must be in 3. Thus,
// in that case, it cannot be swapped with 2.
defm r231 : fma3p_rm<opc231,
!strconcat(OpcodeStr, "231", PackTy),
MemFrag128, MemFrag256, OpTy128, OpTy256,
/* IsRVariantCommutable */ 1,
/* IsMVariantCommutable */ 0>;
} // hasSideEffects = 0
}
// Fused Multiply-Add
let ExeDomain = SSEPackedSingle in {
defm VFMADDPS : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "ps", loadv4f32,
loadv8f32, X86Fmadd, v4f32, v8f32>;
defm VFMSUBPS : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "ps", loadv4f32,
loadv8f32, X86Fmsub, v4f32, v8f32>;
defm VFMADDSUBPS : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "ps",
loadv4f32, loadv8f32, X86Fmaddsub,
v4f32, v8f32>;
defm VFMSUBADDPS : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "ps",
loadv4f32, loadv8f32, X86Fmsubadd,
v4f32, v8f32>;
}
let ExeDomain = SSEPackedDouble in {
defm VFMADDPD : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "pd", loadv2f64,
loadv4f64, X86Fmadd, v2f64, v4f64>, VEX_W;
defm VFMSUBPD : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "pd", loadv2f64,
loadv4f64, X86Fmsub, v2f64, v4f64>, VEX_W;
defm VFMADDSUBPD : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "pd",
loadv2f64, loadv4f64, X86Fmaddsub,
v2f64, v4f64>, VEX_W;
defm VFMSUBADDPD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "pd",
loadv2f64, loadv4f64, X86Fmsubadd,
v2f64, v4f64>, VEX_W;
}
// Fused Negative Multiply-Add
let ExeDomain = SSEPackedSingle in {
defm VFNMADDPS : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "ps", loadv4f32,
loadv8f32, X86Fnmadd, v4f32, v8f32>;
defm VFNMSUBPS : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "ps", loadv4f32,
loadv8f32, X86Fnmsub, v4f32, v8f32>;
}
let ExeDomain = SSEPackedDouble in {
defm VFNMADDPD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "pd", loadv2f64,
loadv4f64, X86Fnmadd, v2f64, v4f64>, VEX_W;
defm VFNMSUBPD : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "pd",
loadv2f64, loadv4f64, X86Fnmsub, v2f64,
v4f64>, VEX_W;
}
let Constraints = "$src1 = $dst" in {
multiclass fma3s_rm<bits<8> opc, string OpcodeStr, X86MemOperand x86memop,
RegisterClass RC, ValueType OpVT, PatFrag mem_frag,
bit IsRVariantCommutable = 0, bit IsMVariantCommutable = 0,
SDPatternOperator OpNode = null_frag> {
let usesCustomInserter = 1, isCommutable = IsRVariantCommutable in
def r : FMA3<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set RC:$dst,
(OpVT (OpNode RC:$src2, RC:$src1, RC:$src3)))]>;
let mayLoad = 1, isCommutable = IsMVariantCommutable in
def m : FMA3<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, RC:$src2, x86memop:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set RC:$dst,
(OpVT (OpNode RC:$src2, RC:$src1,
(mem_frag addr:$src3))))]>;
}
} // Constraints = "$src1 = $dst"
multiclass fma3s_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
string OpStr, string PackTy, string PT2, Intrinsic Int,
SDNode OpNode, RegisterClass RC, ValueType OpVT,
X86MemOperand x86memop, Operand memop, PatFrag mem_frag,
ComplexPattern mem_cpat> {
let hasSideEffects = 0 in {
defm r132 : fma3s_rm<opc132, !strconcat(OpStr, "132", PackTy),
x86memop, RC, OpVT, mem_frag>;
// See the other defm of r231 for the explanation regarding the
// commutable flags.
defm r231 : fma3s_rm<opc231, !strconcat(OpStr, "231", PackTy),
x86memop, RC, OpVT, mem_frag,
/* IsRVariantCommutable */ 1,
/* IsMVariantCommutable */ 0>;
}
// See the other defm of r213 for the explanation regarding the
// commutable flags.
defm r213 : fma3s_rm<opc213, !strconcat(OpStr, "213", PackTy),
x86memop, RC, OpVT, mem_frag,
/* IsRVariantCommutable */ 1,
/* IsMVariantCommutable */ 1,
OpNode>;
}
multiclass fma3s<bits<8> opc132, bits<8> opc213, bits<8> opc231,
string OpStr, Intrinsic IntF32, Intrinsic IntF64,
SDNode OpNode> {
defm SS : fma3s_forms<opc132, opc213, opc231, OpStr, "ss", "SS", IntF32, OpNode,
FR32, f32, f32mem, ssmem, loadf32, sse_load_f32>;
defm SD : fma3s_forms<opc132, opc213, opc231, OpStr, "sd", "PD", IntF64, OpNode,
FR64, f64, f64mem, sdmem, loadf64, sse_load_f64>, VEX_W;
// These patterns use the 123 ordering, instead of 213, even though
// they match the intrinsic to the 213 version of the instruction.
// This is because src1 is tied to dest, and the scalar intrinsics
// require the pass-through values to come from the first source
// operand, not the second.
def : Pat<(IntF32 VR128:$src1, VR128:$src2, VR128:$src3),
(COPY_TO_REGCLASS
(!cast<Instruction>(NAME#"SSr213r")
(COPY_TO_REGCLASS $src1, FR32),
(COPY_TO_REGCLASS $src2, FR32),
(COPY_TO_REGCLASS $src3, FR32)),
VR128)>;
def : Pat<(IntF64 VR128:$src1, VR128:$src2, VR128:$src3),
(COPY_TO_REGCLASS
(!cast<Instruction>(NAME#"SDr213r")
(COPY_TO_REGCLASS $src1, FR64),
(COPY_TO_REGCLASS $src2, FR64),
(COPY_TO_REGCLASS $src3, FR64)),
VR128)>;
}
defm VFMADD : fma3s<0x99, 0xA9, 0xB9, "vfmadd", int_x86_fma_vfmadd_ss,
int_x86_fma_vfmadd_sd, X86Fmadd>, VEX_LIG;
defm VFMSUB : fma3s<0x9B, 0xAB, 0xBB, "vfmsub", int_x86_fma_vfmsub_ss,
int_x86_fma_vfmsub_sd, X86Fmsub>, VEX_LIG;
defm VFNMADD : fma3s<0x9D, 0xAD, 0xBD, "vfnmadd", int_x86_fma_vfnmadd_ss,
int_x86_fma_vfnmadd_sd, X86Fnmadd>, VEX_LIG;
defm VFNMSUB : fma3s<0x9F, 0xAF, 0xBF, "vfnmsub", int_x86_fma_vfnmsub_ss,
int_x86_fma_vfnmsub_sd, X86Fnmsub>, VEX_LIG;
//===----------------------------------------------------------------------===//
// FMA4 - AMD 4 operand Fused Multiply-Add instructions
//===----------------------------------------------------------------------===//
multiclass fma4s<bits<8> opc, string OpcodeStr, RegisterClass RC,
X86MemOperand x86memop, ValueType OpVT, SDNode OpNode,
PatFrag mem_frag> {
let isCommutable = 1 in
def rr : FMA4<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst,
(OpVT (OpNode RC:$src1, RC:$src2, RC:$src3)))]>, VEX_W, VEX_LIG, MemOp4;
def rm : FMA4<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, RC:$src2, x86memop:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst, (OpNode RC:$src1, RC:$src2,
(mem_frag addr:$src3)))]>, VEX_W, VEX_LIG, MemOp4;
def mr : FMA4<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst,
(OpNode RC:$src1, (mem_frag addr:$src2), RC:$src3))]>, VEX_LIG;
// For disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
def rr_REV : FMA4<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
VEX_LIG;
}
multiclass fma4s_int<bits<8> opc, string OpcodeStr, Operand memop,
ComplexPattern mem_cpat, Intrinsic Int> {
let isCodeGenOnly = 1 in {
let isCommutable = 1 in
def rr_Int : FMA4<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, VR128:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(Int VR128:$src1, VR128:$src2, VR128:$src3))]>, VEX_W, VEX_LIG, MemOp4;
def rm_Int : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, memop:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst, (Int VR128:$src1, VR128:$src2,
mem_cpat:$src3))]>, VEX_W, VEX_LIG, MemOp4;
def mr_Int : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, memop:$src2, VR128:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(Int VR128:$src1, mem_cpat:$src2, VR128:$src3))]>, VEX_LIG;
} // isCodeGenOnly = 1
}
multiclass fma4p<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT128, ValueType OpVT256,
PatFrag ld_frag128, PatFrag ld_frag256> {
let isCommutable = 1 in
def rr : FMA4<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, VR128:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(OpVT128 (OpNode VR128:$src1, VR128:$src2, VR128:$src3)))]>,
VEX_W, MemOp4;
def rm : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, f128mem:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst, (OpNode VR128:$src1, VR128:$src2,
(ld_frag128 addr:$src3)))]>, VEX_W, MemOp4;
def mr : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f128mem:$src2, VR128:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(OpNode VR128:$src1, (ld_frag128 addr:$src2), VR128:$src3))]>;
let isCommutable = 1 in
def rrY : FMA4<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, VR256:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR256:$dst,
(OpVT256 (OpNode VR256:$src1, VR256:$src2, VR256:$src3)))]>,
VEX_W, MemOp4, VEX_L;
def rmY : FMA4<opc, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, f256mem:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR256:$dst, (OpNode VR256:$src1, VR256:$src2,
(ld_frag256 addr:$src3)))]>, VEX_W, MemOp4, VEX_L;
def mrY : FMA4<opc, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, f256mem:$src2, VR256:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR256:$dst, (OpNode VR256:$src1,
(ld_frag256 addr:$src2), VR256:$src3))]>, VEX_L;
// For disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
def rr_REV : FMA4<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, VR128:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>;
def rrY_REV : FMA4<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, VR256:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
VEX_L;
} // isCodeGenOnly = 1
}
defm VFMADDSS4 : fma4s<0x6A, "vfmaddss", FR32, f32mem, f32, X86Fmadd, loadf32>,
fma4s_int<0x6A, "vfmaddss", ssmem, sse_load_f32,
int_x86_fma_vfmadd_ss>;
defm VFMADDSD4 : fma4s<0x6B, "vfmaddsd", FR64, f64mem, f64, X86Fmadd, loadf64>,
fma4s_int<0x6B, "vfmaddsd", sdmem, sse_load_f64,
int_x86_fma_vfmadd_sd>;
defm VFMSUBSS4 : fma4s<0x6E, "vfmsubss", FR32, f32mem, f32, X86Fmsub, loadf32>,
fma4s_int<0x6E, "vfmsubss", ssmem, sse_load_f32,
int_x86_fma_vfmsub_ss>;
defm VFMSUBSD4 : fma4s<0x6F, "vfmsubsd", FR64, f64mem, f64, X86Fmsub, loadf64>,
fma4s_int<0x6F, "vfmsubsd", sdmem, sse_load_f64,
int_x86_fma_vfmsub_sd>;
defm VFNMADDSS4 : fma4s<0x7A, "vfnmaddss", FR32, f32mem, f32,
X86Fnmadd, loadf32>,
fma4s_int<0x7A, "vfnmaddss", ssmem, sse_load_f32,
int_x86_fma_vfnmadd_ss>;
defm VFNMADDSD4 : fma4s<0x7B, "vfnmaddsd", FR64, f64mem, f64,
X86Fnmadd, loadf64>,
fma4s_int<0x7B, "vfnmaddsd", sdmem, sse_load_f64,
int_x86_fma_vfnmadd_sd>;
defm VFNMSUBSS4 : fma4s<0x7E, "vfnmsubss", FR32, f32mem, f32,
X86Fnmsub, loadf32>,
fma4s_int<0x7E, "vfnmsubss", ssmem, sse_load_f32,
int_x86_fma_vfnmsub_ss>;
defm VFNMSUBSD4 : fma4s<0x7F, "vfnmsubsd", FR64, f64mem, f64,
X86Fnmsub, loadf64>,
fma4s_int<0x7F, "vfnmsubsd", sdmem, sse_load_f64,
int_x86_fma_vfnmsub_sd>;
let ExeDomain = SSEPackedSingle in {
defm VFMADDPS4 : fma4p<0x68, "vfmaddps", X86Fmadd, v4f32, v8f32,
loadv4f32, loadv8f32>;
defm VFMSUBPS4 : fma4p<0x6C, "vfmsubps", X86Fmsub, v4f32, v8f32,
loadv4f32, loadv8f32>;
defm VFNMADDPS4 : fma4p<0x78, "vfnmaddps", X86Fnmadd, v4f32, v8f32,
loadv4f32, loadv8f32>;
defm VFNMSUBPS4 : fma4p<0x7C, "vfnmsubps", X86Fnmsub, v4f32, v8f32,
loadv4f32, loadv8f32>;
defm VFMADDSUBPS4 : fma4p<0x5C, "vfmaddsubps", X86Fmaddsub, v4f32, v8f32,
loadv4f32, loadv8f32>;
defm VFMSUBADDPS4 : fma4p<0x5E, "vfmsubaddps", X86Fmsubadd, v4f32, v8f32,
loadv4f32, loadv8f32>;
}
let ExeDomain = SSEPackedDouble in {
defm VFMADDPD4 : fma4p<0x69, "vfmaddpd", X86Fmadd, v2f64, v4f64,
loadv2f64, loadv4f64>;
defm VFMSUBPD4 : fma4p<0x6D, "vfmsubpd", X86Fmsub, v2f64, v4f64,
loadv2f64, loadv4f64>;
defm VFNMADDPD4 : fma4p<0x79, "vfnmaddpd", X86Fnmadd, v2f64, v4f64,
loadv2f64, loadv4f64>;
defm VFNMSUBPD4 : fma4p<0x7D, "vfnmsubpd", X86Fnmsub, v2f64, v4f64,
loadv2f64, loadv4f64>;
defm VFMADDSUBPD4 : fma4p<0x5D, "vfmaddsubpd", X86Fmaddsub, v2f64, v4f64,
loadv2f64, loadv4f64>;
defm VFMSUBADDPD4 : fma4p<0x5F, "vfmsubaddpd", X86Fmsubadd, v2f64, v4f64,
loadv2f64, loadv4f64>;
}