llvm-project/llvm/lib/Target/Hexagon/HexagonOperands.td

550 lines
16 KiB
TableGen
Raw Normal View History

2012-11-22 00:56:33 +08:00
//===- HexagonOperands.td - Hexagon immediate processing -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illnois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
def s4_0ImmOperand : AsmOperandClass { let Name = "s4_0Imm"; }
def s4_1ImmOperand : AsmOperandClass { let Name = "s4_1Imm"; }
def s4_2ImmOperand : AsmOperandClass { let Name = "s4_2Imm"; }
def s4_3ImmOperand : AsmOperandClass { let Name = "s4_3Imm"; }
// Immediate operands.
let PrintMethod = "printImmOperand" in {
def s32Imm : Operand<i32>;
def s8Imm : Operand<i32>;
def s8Imm64 : Operand<i64>;
def s6Imm : Operand<i32>;
def s6_3Imm : Operand<i32>;
def s4Imm : Operand<i32>;
def s4_0Imm : Operand<i32> { let DecoderMethod = "s4_0ImmDecoder"; }
def s4_1Imm : Operand<i32> { let DecoderMethod = "s4_1ImmDecoder"; }
def s4_2Imm : Operand<i32> { let DecoderMethod = "s4_2ImmDecoder"; }
def s4_3Imm : Operand<i32> { let DecoderMethod = "s4_3ImmDecoder"; }
def u64Imm : Operand<i64>;
def u32Imm : Operand<i32>;
def u26_6Imm : Operand<i32>;
def u16Imm : Operand<i32>;
def u16_0Imm : Operand<i32>;
def u16_1Imm : Operand<i32>;
def u16_2Imm : Operand<i32>;
def u16_3Imm : Operand<i32>;
def u11_3Imm : Operand<i32>;
def u10Imm : Operand<i32>;
def u9Imm : Operand<i32>;
def u8Imm : Operand<i32>;
def u7Imm : Operand<i32>;
def u6Imm : Operand<i32>;
def u6_0Imm : Operand<i32>;
def u6_1Imm : Operand<i32>;
def u6_2Imm : Operand<i32>;
def u6_3Imm : Operand<i32>;
def u5Imm : Operand<i32>;
def u5_2Imm : Operand<i32>;
def u5_3Imm : Operand<i32>;
def u4Imm : Operand<i32>;
def u4_0Imm : Operand<i32>;
def u4_2Imm : Operand<i32>;
def u3Imm : Operand<i32>;
def u3_0Imm : Operand<i32>;
def u3_1Imm : Operand<i32>;
def u2Imm : Operand<i32>;
def u1Imm : Operand<i32>;
def n8Imm : Operand<i32>;
def m6Imm : Operand<i32>;
}
let PrintMethod = "printNOneImmOperand" in
def nOneImm : Operand<i32>;
//
// Immediate predicates
//
def s32ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isInt<32>(v);
}]>;
def s32_0ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isInt<32>(v);
}]>;
def s31_1ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<31,1>(v);
}]>;
def s30_2ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<31,1>(v);
}]>;
def s29_3ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<31,1>(v);
}]>;
def s22_10ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<22,10>(v);
}]>;
def s8_24ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<8,24>(v);
}]>;
def s16_16ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<16,16>(v);
}]>;
def s26_6ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<26,6>(v);
}]>;
def s16ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isInt<16>(v);
}]>;
def s13ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isInt<13>(v);
}]>;
def s12ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isInt<12>(v);
}]>;
def s11_0ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isInt<11>(v);
}]>;
def s11_1ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<11,1>(v);
}]>;
def s11_2ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<11,2>(v);
}]>;
def s11_3ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<11,3>(v);
}]>;
def s10ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isInt<10>(v);
}]>;
def s9ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isInt<9>(v);
}]>;
def m9ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isInt<9>(v) && (v != -256);
}]>;
def s8ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isInt<8>(v);
}]>;
def s8Imm64Pred : PatLeaf<(i64 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isInt<8>(v);
}]>;
def s6ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isInt<6>(v);
}]>;
def s4_0ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isInt<4>(v);
}]>;
def s4_1ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<4,1>(v);
}]>;
def s4_2ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<4,2>(v);
}]>;
def s4_3ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<4,3>(v);
}]>;
def u64ImmPred : PatLeaf<(i64 imm), [{
// Adding "N ||" to suppress gcc unused warning.
return (N || true);
}]>;
def u32ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<32>(v);
}]>;
def u32_0ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<32>(v);
}]>;
def u31_1ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<31,1>(v);
}]>;
def u30_2ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<30,2>(v);
}]>;
def u29_3ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<29,3>(v);
}]>;
def u26_6ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<26,6>(v);
}]>;
def u16ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<16>(v);
}]>;
def u16_s8ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<16,8>(v);
}]>;
def u16_0ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<16>(v);
}]>;
def u11_3ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<11,3>(v);
}]>;
def u9ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<9>(v);
}]>;
def u8ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<8>(v);
}]>;
def u7StrictPosImmPred : ImmLeaf<i32, [{
// u7StrictPosImmPred predicate - True if the immediate fits in an 7-bit
// unsigned field and is strictly greater than 0.
return isUInt<7>(Imm) && Imm > 0;
}]>;
def u7ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<7>(v);
}]>;
def u6ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<6>(v);
}]>;
def u6_0ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<6>(v);
}]>;
def u6_1ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<6,1>(v);
}]>;
def u6_2ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<6,2>(v);
}]>;
def u6_3ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<6,3>(v);
}]>;
def u5ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<5>(v);
}]>;
def u4ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<4>(v);
}]>;
def u3ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<3>(v);
}]>;
def u2ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<2>(v);
}]>;
def u1ImmPred : PatLeaf<(i1 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<1>(v);
}]>;
def m5BImmPred : PatLeaf<(i32 imm), [{
// m5BImmPred predicate - True if the (char) number is in range -1 .. -31
// and will fit in a 5 bit field when made positive, for use in memops.
// this is specific to the zero extending of a negative by CombineInstr
int8_t v = (int8_t)N->getSExtValue();
return (-31 <= v && v <= -1);
}]>;
def m5HImmPred : PatLeaf<(i32 imm), [{
// m5HImmPred predicate - True if the (short) number is in range -1 .. -31
// and will fit in a 5 bit field when made positive, for use in memops.
// this is specific to the zero extending of a negative by CombineInstr
int16_t v = (int16_t)N->getSExtValue();
return (-31 <= v && v <= -1);
}]>;
def m5ImmPred : PatLeaf<(i32 imm), [{
// m5ImmPred predicate - True if the number is in range -1 .. -31
// and will fit in a 5 bit field when made positive, for use in memops.
int64_t v = (int64_t)N->getSExtValue();
return (-31 <= v && v <= -1);
}]>;
//InN means negative integers in [-(2^N - 1), 0]
def n8ImmPred : PatLeaf<(i32 imm), [{
// n8ImmPred predicate - True if the immediate fits in a 8-bit signed
// field.
int64_t v = (int64_t)N->getSExtValue();
return (-255 <= v && v <= 0);
}]>;
def nOneImmPred : PatLeaf<(i32 imm), [{
// nOneImmPred predicate - True if the immediate is -1.
int64_t v = (int64_t)N->getSExtValue();
return (-1 == v);
}]>;
def Set5ImmPred : PatLeaf<(i32 imm), [{
// Set5ImmPred predicate - True if the number is in the series of values.
// [ 2^0, 2^1, ... 2^31 ]
// For use in setbit immediate.
uint32_t v = (int32_t)N->getSExtValue();
// Constrain to 32 bits, and then check for single bit.
return ImmIsSingleBit(v);
}]>;
def Clr5ImmPred : PatLeaf<(i32 imm), [{
// Clr5ImmPred predicate - True if the number is in the series of
// bit negated values.
// [ 2^0, 2^1, ... 2^31 ]
// For use in clrbit immediate.
// Note: we are bit NOTing the value.
uint32_t v = ~ (int32_t)N->getSExtValue();
// Constrain to 32 bits, and then check for single bit.
return ImmIsSingleBit(v);
}]>;
def SetClr5ImmPred : PatLeaf<(i32 imm), [{
// SetClr5ImmPred predicate - True if the immediate is in range 0..31.
int32_t v = (int32_t)N->getSExtValue();
return (v >= 0 && v <= 31);
}]>;
def Set4ImmPred : PatLeaf<(i32 imm), [{
// Set4ImmPred predicate - True if the number is in the series of values:
// [ 2^0, 2^1, ... 2^15 ].
// For use in setbit immediate.
uint16_t v = (int16_t)N->getSExtValue();
// Constrain to 16 bits, and then check for single bit.
return ImmIsSingleBit(v);
}]>;
def Clr4ImmPred : PatLeaf<(i32 imm), [{
// Clr4ImmPred predicate - True if the number is in the series of
// bit negated values:
// [ 2^0, 2^1, ... 2^15 ].
// For use in setbit and clrbit immediate.
uint16_t v = ~ (int16_t)N->getSExtValue();
// Constrain to 16 bits, and then check for single bit.
return ImmIsSingleBit(v);
}]>;
def SetClr4ImmPred : PatLeaf<(i32 imm), [{
// SetClr4ImmPred predicate - True if the immediate is in the range 0..15.
int16_t v = (int16_t)N->getSExtValue();
return (v >= 0 && v <= 15);
}]>;
def Set3ImmPred : PatLeaf<(i32 imm), [{
// Set3ImmPred predicate - True if the number is in the series of values:
// [ 2^0, 2^1, ... 2^7 ].
// For use in setbit immediate.
uint8_t v = (int8_t)N->getSExtValue();
// Constrain to 8 bits, and then check for single bit.
return ImmIsSingleBit(v);
}]>;
def Clr3ImmPred : PatLeaf<(i32 imm), [{
// Clr3ImmPred predicate - True if the number is in the series of
// bit negated values:
// [ 2^0, 2^1, ... 2^7 ].
// For use in setbit and clrbit immediate.
uint8_t v = ~ (int8_t)N->getSExtValue();
// Constrain to 8 bits, and then check for single bit.
return ImmIsSingleBit(v);
}]>;
def SetClr3ImmPred : PatLeaf<(i32 imm), [{
// SetClr3ImmPred predicate - True if the immediate is in the range 0..7.
int8_t v = (int8_t)N->getSExtValue();
return (v >= 0 && v <= 7);
}]>;
// Extendable immediate operands.
let PrintMethod = "printExtOperand" in {
def f32Ext : Operand<f32>;
def s16Ext : Operand<i32> { let DecoderMethod = "s16ImmDecoder"; }
def s12Ext : Operand<i32> { let DecoderMethod = "s12ImmDecoder"; }
def s11_0Ext : Operand<i32> { let DecoderMethod = "s11_0ImmDecoder"; }
def s11_1Ext : Operand<i32> { let DecoderMethod = "s11_1ImmDecoder"; }
def s11_2Ext : Operand<i32> { let DecoderMethod = "s11_2ImmDecoder"; }
def s11_3Ext : Operand<i32> { let DecoderMethod = "s11_3ImmDecoder"; }
def s10Ext : Operand<i32> { let DecoderMethod = "s10ImmDecoder"; }
def s9Ext : Operand<i32> { let DecoderMethod = "s90ImmDecoder"; }
def s8Ext : Operand<i32> { let DecoderMethod = "s8ImmDecoder"; }
def s7Ext : Operand<i32>;
def s6Ext : Operand<i32> { let DecoderMethod = "s6_0ImmDecoder"; }
def u6Ext : Operand<i32>;
def u7Ext : Operand<i32>;
def u8Ext : Operand<i32>;
def u9Ext : Operand<i32>;
def u10Ext : Operand<i32>;
def u6_0Ext : Operand<i32>;
def u6_1Ext : Operand<i32>;
def u6_2Ext : Operand<i32>;
def u6_3Ext : Operand<i32>;
}
def s10ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (isInt<10>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit signed field.
return isConstExtProfitable(Node) && isInt<32>(v);
}]>;
def s8ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (isInt<8>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit signed field.
return isConstExtProfitable(Node) && isInt<32>(v);
}]>;
def u8ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (isUInt<8>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit unsigned field.
return isConstExtProfitable(Node) && isUInt<32>(v);
}]>;
def u9ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (isUInt<9>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit unsigned field.
return isConstExtProfitable(Node) && isUInt<32>(v);
}]>;
// This complex pattern exists only to create a machine instruction operand
// of type "frame index". There doesn't seem to be a way to do that directly
// in the patterns.
def AddrFI : ComplexPattern<i32, 1, "SelectAddrFI", [frameindex], []>;
// These complex patterns are not strictly necessary, since global address
// folding will happen during DAG combining. For distinguishing between GA
// and GP, pat frags with HexagonCONST32 and HexagonCONST32_GP can be used.
def AddrGA : ComplexPattern<i32, 1, "SelectAddrGA", [], []>;
def AddrGP : ComplexPattern<i32, 1, "SelectAddrGP", [], []>;
// Address operands.
let PrintMethod = "printGlobalOperand" in {
def globaladdress : Operand<i32>;
def globaladdressExt : Operand<i32>;
}
let PrintMethod = "printJumpTable" in
def jumptablebase : Operand<i32>;
def brtarget : Operand<OtherVT>;
def brtargetExt : Operand<OtherVT> {
let PrintMethod = "printExtBrtarget";
}
def calltarget : Operand<i32>;
def bblabel : Operand<i32>;
def bbl : SDNode<"ISD::BasicBlock", SDTPtrLeaf , [], "BasicBlockSDNode">;
def symbolHi32 : Operand<i32> {
let PrintMethod = "printSymbolHi";
}
def symbolLo32 : Operand<i32> {
let PrintMethod = "printSymbolLo";
}
// Return true if for a 32 to 64-bit sign-extended load.
def is_sext_i32 : PatLeaf<(i64 DoubleRegs:$src1), [{
LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
if (!LD)
return false;
return LD->getExtensionType() == ISD::SEXTLOAD &&
LD->getMemoryVT().getScalarType() == MVT::i32;
}]>;