llvm-project/llvm/lib/IR/ConstantsContext.h

603 lines
21 KiB
C
Raw Normal View History

//===-- ConstantsContext.h - Constants-related Context Interals -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various helper methods and classes used by
// LLVMContextImpl for creating and managing constants.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_IR_CONSTANTSCONTEXT_H
#define LLVM_LIB_IR_CONSTANTSCONTEXT_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
2009-08-23 12:44:11 +08:00
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <tuple>
[Modules] Make Support/Debug.h modular. This requires it to not change behavior based on other files defining DEBUG_TYPE, which means it cannot define DEBUG_TYPE at all. This is actually better IMO as it forces folks to define relevant DEBUG_TYPEs for their files. However, it requires all files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't already. I've updated all such files in LLVM and will do the same for other upstream projects. This still leaves one important change in how LLVM uses the DEBUG_TYPE macro going forward: we need to only define the macro *after* header files have been #include-ed. Previously, this wasn't possible because Debug.h required the macro to be pre-defined. This commit removes that. By defining DEBUG_TYPE after the includes two things are fixed: - Header files that need to provide a DEBUG_TYPE for some inline code can do so by defining the macro before their inline code and undef-ing it afterward so the macro does not escape. - We no longer have rampant ODR violations due to including headers with different DEBUG_TYPE definitions. This may be mostly an academic violation today, but with modules these types of violations are easy to check for and potentially very relevant. Where necessary to suppor headers with DEBUG_TYPE, I have moved the definitions below the includes in this commit. I plan to move the rest of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big enough. The comments in Debug.h, which were hilariously out of date already, have been updated to reflect the recommended practice going forward. llvm-svn: 206822
2014-04-22 06:55:11 +08:00
#define DEBUG_TYPE "ir"
namespace llvm {
/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement unary constant exprs.
class UnaryConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 1);
}
UnaryConstantExpr(unsigned Opcode, Constant *C, Type *Ty)
: ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
Op<0>() = C;
}
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement binary constant exprs.
class BinaryConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
unsigned Flags)
: ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
Op<0>() = C1;
Op<1>() = C2;
SubclassOptionalData = Flags;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// SelectConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement select constant exprs.
class SelectConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly three operands
void *operator new(size_t s) {
return User::operator new(s, 3);
}
SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
Op<0>() = C1;
Op<1>() = C2;
Op<2>() = C3;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// ExtractElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// extractelement constant exprs.
class ExtractElementConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
ExtractElementConstantExpr(Constant *C1, Constant *C2)
: ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
Instruction::ExtractElement, &Op<0>(), 2) {
Op<0>() = C1;
Op<1>() = C2;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// InsertElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// insertelement constant exprs.
class InsertElementConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly three operands
void *operator new(size_t s) {
return User::operator new(s, 3);
}
InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(C1->getType(), Instruction::InsertElement,
&Op<0>(), 3) {
Op<0>() = C1;
Op<1>() = C2;
Op<2>() = C3;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// ShuffleVectorConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// shufflevector constant exprs.
class ShuffleVectorConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly three operands
void *operator new(size_t s) {
return User::operator new(s, 3);
}
ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(VectorType::get(
cast<VectorType>(C1->getType())->getElementType(),
cast<VectorType>(C3->getType())->getNumElements()),
Instruction::ShuffleVector,
&Op<0>(), 3) {
Op<0>() = C1;
Op<1>() = C2;
Op<2>() = C3;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// ExtractValueConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// extractvalue constant exprs.
class ExtractValueConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 1);
}
ExtractValueConstantExpr(Constant *Agg, ArrayRef<unsigned> IdxList,
Type *DestTy)
: ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
Indices(IdxList.begin(), IdxList.end()) {
Op<0>() = Agg;
}
/// Indices - These identify which value to extract.
const SmallVector<unsigned, 4> Indices;
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// InsertValueConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// insertvalue constant exprs.
class InsertValueConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 2);
}
InsertValueConstantExpr(Constant *Agg, Constant *Val,
ArrayRef<unsigned> IdxList, Type *DestTy)
: ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
Indices(IdxList.begin(), IdxList.end()) {
Op<0>() = Agg;
Op<1>() = Val;
}
/// Indices - These identify the position for the insertion.
const SmallVector<unsigned, 4> Indices;
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
/// used behind the scenes to implement getelementpr constant exprs.
class GetElementPtrConstantExpr : public ConstantExpr {
void anchor() override;
GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
Type *DestTy);
public:
static GetElementPtrConstantExpr *Create(Constant *C,
ArrayRef<Constant*> IdxList,
Type *DestTy,
unsigned Flags) {
GetElementPtrConstantExpr *Result =
new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
Result->SubclassOptionalData = Flags;
return Result;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
// CompareConstantExpr - This class is private to Constants.cpp, and is used
// behind the scenes to implement ICmp and FCmp constant expressions. This is
// needed in order to store the predicate value for these instructions.
class CompareConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
unsigned short predicate;
CompareConstantExpr(Type *ty, Instruction::OtherOps opc,
unsigned short pred, Constant* LHS, Constant* RHS)
: ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
Op<0>() = LHS;
Op<1>() = RHS;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
template <>
struct OperandTraits<UnaryConstantExpr> :
public FixedNumOperandTraits<UnaryConstantExpr, 1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
template <>
struct OperandTraits<BinaryConstantExpr> :
public FixedNumOperandTraits<BinaryConstantExpr, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
template <>
struct OperandTraits<SelectConstantExpr> :
public FixedNumOperandTraits<SelectConstantExpr, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
template <>
struct OperandTraits<ExtractElementConstantExpr> :
public FixedNumOperandTraits<ExtractElementConstantExpr, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
template <>
struct OperandTraits<InsertElementConstantExpr> :
public FixedNumOperandTraits<InsertElementConstantExpr, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
template <>
struct OperandTraits<ShuffleVectorConstantExpr> :
public FixedNumOperandTraits<ShuffleVectorConstantExpr, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
template <>
struct OperandTraits<ExtractValueConstantExpr> :
public FixedNumOperandTraits<ExtractValueConstantExpr, 1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
template <>
struct OperandTraits<InsertValueConstantExpr> :
public FixedNumOperandTraits<InsertValueConstantExpr, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
template <>
struct OperandTraits<GetElementPtrConstantExpr> :
public VariadicOperandTraits<GetElementPtrConstantExpr, 1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
template <>
struct OperandTraits<CompareConstantExpr> :
public FixedNumOperandTraits<CompareConstantExpr, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
template <class ConstantClass> struct ConstantAggrKeyType;
struct InlineAsmKeyType;
struct ConstantExprKeyType;
template <class ConstantClass> struct ConstantInfo;
template <> struct ConstantInfo<ConstantExpr> {
typedef ConstantExprKeyType ValType;
typedef Type TypeClass;
};
template <> struct ConstantInfo<InlineAsm> {
typedef InlineAsmKeyType ValType;
typedef PointerType TypeClass;
};
template <> struct ConstantInfo<ConstantArray> {
typedef ConstantAggrKeyType<ConstantArray> ValType;
typedef ArrayType TypeClass;
};
template <> struct ConstantInfo<ConstantStruct> {
typedef ConstantAggrKeyType<ConstantStruct> ValType;
typedef StructType TypeClass;
};
template <> struct ConstantInfo<ConstantVector> {
typedef ConstantAggrKeyType<ConstantVector> ValType;
typedef VectorType TypeClass;
};
template <class ConstantClass> struct ConstantAggrKeyType {
ArrayRef<Constant *> Operands;
ConstantAggrKeyType(ArrayRef<Constant *> Operands) : Operands(Operands) {}
ConstantAggrKeyType(const ConstantClass *C,
SmallVectorImpl<Constant *> &Storage) {
assert(Storage.empty() && "Expected empty storage");
for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
Storage.push_back(C->getOperand(I));
Operands = Storage;
}
bool operator==(const ConstantAggrKeyType &X) const {
return Operands == X.Operands;
}
bool operator==(const ConstantClass *C) const {
if (Operands.size() != C->getNumOperands())
return false;
for (unsigned I = 0, E = Operands.size(); I != E; ++I)
if (Operands[I] != C->getOperand(I))
return false;
return true;
}
unsigned getHash() const {
return hash_combine_range(Operands.begin(), Operands.end());
}
typedef typename ConstantInfo<ConstantClass>::TypeClass TypeClass;
ConstantClass *create(TypeClass *Ty) const {
return new (Operands.size()) ConstantClass(Ty, Operands);
}
};
struct InlineAsmKeyType {
StringRef AsmString;
StringRef Constraints;
bool HasSideEffects;
bool IsAlignStack;
InlineAsm::AsmDialect AsmDialect;
InlineAsmKeyType(StringRef AsmString, StringRef Constraints,
bool HasSideEffects, bool IsAlignStack,
InlineAsm::AsmDialect AsmDialect)
: AsmString(AsmString), Constraints(Constraints),
HasSideEffects(HasSideEffects), IsAlignStack(IsAlignStack),
AsmDialect(AsmDialect) {}
InlineAsmKeyType(const InlineAsm *Asm, SmallVectorImpl<Constant *> &)
: AsmString(Asm->getAsmString()), Constraints(Asm->getConstraintString()),
HasSideEffects(Asm->hasSideEffects()),
IsAlignStack(Asm->isAlignStack()), AsmDialect(Asm->getDialect()) {}
bool operator==(const InlineAsmKeyType &X) const {
return HasSideEffects == X.HasSideEffects &&
IsAlignStack == X.IsAlignStack && AsmDialect == X.AsmDialect &&
AsmString == X.AsmString && Constraints == X.Constraints;
}
bool operator==(const InlineAsm *Asm) const {
return HasSideEffects == Asm->hasSideEffects() &&
IsAlignStack == Asm->isAlignStack() &&
AsmDialect == Asm->getDialect() &&
AsmString == Asm->getAsmString() &&
Constraints == Asm->getConstraintString();
}
unsigned getHash() const {
return hash_combine(AsmString, Constraints, HasSideEffects, IsAlignStack,
AsmDialect);
}
typedef ConstantInfo<InlineAsm>::TypeClass TypeClass;
InlineAsm *create(TypeClass *Ty) const {
return new InlineAsm(Ty, AsmString, Constraints, HasSideEffects,
IsAlignStack, AsmDialect);
}
};
struct ConstantExprKeyType {
uint8_t Opcode;
uint8_t SubclassOptionalData;
uint16_t SubclassData;
ArrayRef<Constant *> Ops;
ArrayRef<unsigned> Indexes;
ConstantExprKeyType(unsigned Opcode, ArrayRef<Constant *> Ops,
unsigned short SubclassData = 0,
unsigned short SubclassOptionalData = 0,
ArrayRef<unsigned> Indexes = None)
: Opcode(Opcode), SubclassOptionalData(SubclassOptionalData),
SubclassData(SubclassData), Ops(Ops), Indexes(Indexes) {}
ConstantExprKeyType(const ConstantExpr *CE,
SmallVectorImpl<Constant *> &Storage)
: Opcode(CE->getOpcode()),
SubclassOptionalData(CE->getRawSubclassOptionalData()),
SubclassData(CE->isCompare() ? CE->getPredicate() : 0),
Indexes(CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()) {
assert(Storage.empty() && "Expected empty storage");
for (unsigned I = 0, E = CE->getNumOperands(); I != E; ++I)
Storage.push_back(CE->getOperand(I));
Ops = Storage;
}
bool operator==(const ConstantExprKeyType &X) const {
return Opcode == X.Opcode && SubclassData == X.SubclassData &&
SubclassOptionalData == X.SubclassOptionalData && Ops == X.Ops &&
Indexes == X.Indexes;
}
bool operator==(const ConstantExpr *CE) const {
if (Opcode != CE->getOpcode())
return false;
if (SubclassOptionalData != CE->getRawSubclassOptionalData())
return false;
if (Ops.size() != CE->getNumOperands())
return false;
if (SubclassData != (CE->isCompare() ? CE->getPredicate() : 0))
return false;
for (unsigned I = 0, E = Ops.size(); I != E; ++I)
if (Ops[I] != CE->getOperand(I))
return false;
if (Indexes != (CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()))
return false;
return true;
}
unsigned getHash() const {
return hash_combine(Opcode, SubclassOptionalData, SubclassData,
hash_combine_range(Ops.begin(), Ops.end()),
hash_combine_range(Indexes.begin(), Indexes.end()));
}
typedef ConstantInfo<ConstantExpr>::TypeClass TypeClass;
ConstantExpr *create(TypeClass *Ty) const {
switch (Opcode) {
default:
if (Instruction::isCast(Opcode))
return new UnaryConstantExpr(Opcode, Ops[0], Ty);
if ((Opcode >= Instruction::BinaryOpsBegin &&
Opcode < Instruction::BinaryOpsEnd))
return new BinaryConstantExpr(Opcode, Ops[0], Ops[1],
SubclassOptionalData);
llvm_unreachable("Invalid ConstantExpr!");
case Instruction::Select:
return new SelectConstantExpr(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return new ExtractElementConstantExpr(Ops[0], Ops[1]);
case Instruction::InsertElement:
return new InsertElementConstantExpr(Ops[0], Ops[1], Ops[2]);
case Instruction::ShuffleVector:
return new ShuffleVectorConstantExpr(Ops[0], Ops[1], Ops[2]);
case Instruction::InsertValue:
return new InsertValueConstantExpr(Ops[0], Ops[1], Indexes, Ty);
case Instruction::ExtractValue:
return new ExtractValueConstantExpr(Ops[0], Indexes, Ty);
case Instruction::GetElementPtr:
return GetElementPtrConstantExpr::Create(Ops[0], Ops.slice(1), Ty,
SubclassOptionalData);
case Instruction::ICmp:
return new CompareConstantExpr(Ty, Instruction::ICmp, SubclassData,
Ops[0], Ops[1]);
case Instruction::FCmp:
return new CompareConstantExpr(Ty, Instruction::FCmp, SubclassData,
Ops[0], Ops[1]);
}
}
};
template <class ConstantClass> class ConstantUniqueMap {
public:
typedef typename ConstantInfo<ConstantClass>::ValType ValType;
typedef typename ConstantInfo<ConstantClass>::TypeClass TypeClass;
typedef std::pair<TypeClass *, ValType> LookupKey;
private:
struct MapInfo {
typedef DenseMapInfo<ConstantClass *> ConstantClassInfo;
static inline ConstantClass *getEmptyKey() {
return ConstantClassInfo::getEmptyKey();
}
static inline ConstantClass *getTombstoneKey() {
return ConstantClassInfo::getTombstoneKey();
}
static unsigned getHashValue(const ConstantClass *CP) {
SmallVector<Constant *, 8> Storage;
return getHashValue(LookupKey(CP->getType(), ValType(CP, Storage)));
}
static bool isEqual(const ConstantClass *LHS, const ConstantClass *RHS) {
return LHS == RHS;
}
static unsigned getHashValue(const LookupKey &Val) {
return hash_combine(Val.first, Val.second.getHash());
}
static bool isEqual(const LookupKey &LHS, const ConstantClass *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
if (LHS.first != RHS->getType())
return false;
return LHS.second == RHS;
}
};
public:
typedef DenseMap<ConstantClass *, char, MapInfo> MapTy;
private:
MapTy Map;
public:
2009-08-11 14:31:57 +08:00
typename MapTy::iterator map_begin() { return Map.begin(); }
typename MapTy::iterator map_end() { return Map.end(); }
void freeConstants() {
for (auto &I : Map)
// Asserts that use_empty().
delete I.first;
}
private:
ConstantClass *create(TypeClass *Ty, ValType V) {
ConstantClass *Result = V.create(Ty);
assert(Result->getType() == Ty && "Type specified is not correct!");
insert(Result);
return Result;
}
public:
/// Return the specified constant from the map, creating it if necessary.
ConstantClass *getOrCreate(TypeClass *Ty, ValType V) {
LookupKey Lookup(Ty, V);
ConstantClass *Result = nullptr;
auto I = find(Lookup);
if (I == Map.end())
Result = create(Ty, V);
else
Result = I->first;
assert(Result && "Unexpected nullptr");
return Result;
}
/// Find the constant by lookup key.
typename MapTy::iterator find(LookupKey Lookup) {
return Map.find_as(Lookup);
}
/// Insert the constant into its proper slot.
void insert(ConstantClass *CP) { Map[CP] = '\0'; }
/// Remove this constant from the map
void remove(ConstantClass *CP) {
typename MapTy::iterator I = Map.find(CP);
assert(I != Map.end() && "Constant not found in constant table!");
assert(I->first == CP && "Didn't find correct element?");
Map.erase(I);
}
void dump() const { DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n"); }
};
} // end namespace llvm
#endif