llvm-project/llvm/lib/Analysis/DataStructure/DataStructure.cpp

986 lines
37 KiB
C++
Raw Normal View History

//===- DataStructure.cpp - Implement the core data structure analysis -----===//
//
// This file implements the core data structure functionality.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DSGraph.h"
#include "llvm/Function.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Target/TargetData.h"
#include "Support/STLExtras.h"
#include "Support/Statistic.h"
#include <algorithm>
#include <set>
using std::vector;
// TODO: FIXME
namespace DataStructureAnalysis {
// isPointerType - Return true if this first class type is big enough to hold
// a pointer.
//
bool isPointerType(const Type *Ty);
extern TargetData TD;
}
using namespace DataStructureAnalysis;
//===----------------------------------------------------------------------===//
// DSNode Implementation
//===----------------------------------------------------------------------===//
DSNode::DSNode(enum NodeTy NT, const Type *T) : NodeType(NT) {
// If this node is big enough to have pointer fields, add space for them now.
if (T != Type::VoidTy && !isa<FunctionType>(T)) { // Avoid TargetData assert's
MergeMap.resize(TD.getTypeSize(T));
// Assign unique values to all of the elements of MergeMap
if (MergeMap.size() < 128) {
// Handle the common case of reasonable size structures...
for (unsigned i = 0, e = MergeMap.size(); i != e; ++i)
MergeMap[i] = -1-i; // Assign -1, -2, -3, ...
} else {
// It's possible that we have something really big here. In this case,
// divide the object into chunks until it will fit into 128 elements.
unsigned Multiple = MergeMap.size()/128;
// It's probably an array, and probably some power of two in size.
// Because of this, find the biggest power of two that is bigger than
// multiple to use as our real Multiple.
unsigned RealMultiple = 2;
while (RealMultiple <= Multiple) RealMultiple <<= 1;
unsigned RealBound = MergeMap.size()/RealMultiple;
assert(RealBound <= 128 && "Math didn't work out right");
// Now go through and assign indexes that are between -1 and -128
// inclusive
//
for (unsigned i = 0, e = MergeMap.size(); i != e; ++i)
MergeMap[i] = -1-(i % RealBound); // Assign -1, -2, -3...
}
}
TypeEntries.push_back(std::make_pair(T, 0));
}
// DSNode copy constructor... do not copy over the referrers list!
DSNode::DSNode(const DSNode &N)
: Links(N.Links), MergeMap(N.MergeMap),
TypeEntries(N.TypeEntries), Globals(N.Globals), NodeType(N.NodeType) {
}
void DSNode::removeReferrer(DSNodeHandle *H) {
// Search backwards, because we depopulate the list from the back for
// efficiency (because it's a vector).
vector<DSNodeHandle*>::reverse_iterator I =
std::find(Referrers.rbegin(), Referrers.rend(), H);
assert(I != Referrers.rend() && "Referrer not pointing to node!");
Referrers.erase(I.base()-1);
}
// addGlobal - Add an entry for a global value to the Globals list. This also
// marks the node with the 'G' flag if it does not already have it.
//
void DSNode::addGlobal(GlobalValue *GV) {
// Keep the list sorted.
vector<GlobalValue*>::iterator I =
std::lower_bound(Globals.begin(), Globals.end(), GV);
if (I == Globals.end() || *I != GV) {
//assert(GV->getType()->getElementType() == Ty);
Globals.insert(I, GV);
NodeType |= GlobalNode;
}
}
/// setLink - Set the link at the specified offset to the specified
/// NodeHandle, replacing what was there. It is uncommon to use this method,
/// instead one of the higher level methods should be used, below.
///
void DSNode::setLink(unsigned i, const DSNodeHandle &NH) {
// Create a new entry in the Links vector to hold a new element for offset.
if (!hasLink(i)) {
signed char NewIdx = Links.size();
// Check to see if we allocate more than 128 distinct links for this node.
// If so, just merge with the last one. This really shouldn't ever happen,
// but it should work regardless of whether it does or not.
//
if (NewIdx >= 0) {
Links.push_back(NH); // Allocate space: common case
} else { // Wrap around? Too many links?
NewIdx--; // Merge with whatever happened last
assert(NewIdx > 0 && "Should wrap back around");
std::cerr << "\n*** DSNode found that requires more than 128 "
<< "active links at once!\n\n";
}
signed char OldIdx = MergeMap[i];
assert (OldIdx < 0 && "Shouldn't contain link!");
// Make sure that anything aliasing this field gets updated to point to the
// new link field.
rewriteMergeMap(OldIdx, NewIdx);
assert(MergeMap[i] == NewIdx && "Field not replaced!");
} else {
Links[MergeMap[i]] = NH;
}
}
// addEdgeTo - Add an edge from the current node to the specified node. This
// can cause merging of nodes in the graph.
//
void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
assert(Offset < getSize() && "Offset out of range!");
if (NH.getNode() == 0) return; // Nothing to do
if (DSNodeHandle *ExistingNH = getLink(Offset)) {
// Merge the two nodes...
ExistingNH->mergeWith(NH);
} else { // No merging to perform...
setLink(Offset, NH); // Just force a link in there...
}
}
/// mergeMappedValues - This is the higher level form of rewriteMergeMap. It is
/// fully capable of merging links together if neccesary as well as simply
/// rewriting the map entries.
///
void DSNode::mergeMappedValues(signed char V1, signed char V2) {
assert(V1 != V2 && "Cannot merge two identical mapped values!");
if (V1 < 0) { // If there is no outgoing link from V1, merge it with V2
if (V2 < 0 && V1 > V2)
// If both are not linked, merge to the field closer to 0
rewriteMergeMap(V2, V1);
else
rewriteMergeMap(V1, V2);
} else if (V2 < 0) { // Is V2 < 0 && V1 >= 0?
rewriteMergeMap(V2, V1); // Merge into the one with the link...
} else { // Otherwise, links exist at both locations
// Merge Links[V1] with Links[V2] so they point to the same place now...
Links[V1].mergeWith(Links[V2]);
// Merge the V2 link into V1 so that we reduce the overall value of the
// links are reduced...
//
if (V2 < V1) std::swap(V1, V2); // Ensure V1 < V2
rewriteMergeMap(V2, V1); // After this, V2 is "dead"
// Change the user of the last link to use V2 instead
if ((unsigned)V2 != Links.size()-1) {
rewriteMergeMap(Links.size()-1, V2); // Point to V2 instead of last el...
// Make sure V2 points the right DSNode
Links[V2] = Links.back();
}
// Reduce the number of distinct outgoing links...
Links.pop_back();
}
}
// MergeSortedVectors - Efficiently merge a vector into another vector where
// duplicates are not allowed and both are sorted. This assumes that 'T's are
// efficiently copyable and have sane comparison semantics.
//
template<typename T>
void MergeSortedVectors(vector<T> &Dest, const vector<T> &Src) {
// By far, the most common cases will be the simple ones. In these cases,
// avoid having to allocate a temporary vector...
//
if (Src.empty()) { // Nothing to merge in...
return;
} else if (Dest.empty()) { // Just copy the result in...
Dest = Src;
} else if (Src.size() == 1) { // Insert a single element...
const T &V = Src[0];
typename vector<T>::iterator I =
std::lower_bound(Dest.begin(), Dest.end(), V);
if (I == Dest.end() || *I != Src[0]) // If not already contained...
Dest.insert(I, Src[0]);
} else if (Dest.size() == 1) {
T Tmp = Dest[0]; // Save value in temporary...
Dest = Src; // Copy over list...
typename vector<T>::iterator I =
std::lower_bound(Dest.begin(), Dest.end(),Tmp);
if (I == Dest.end() || *I != Src[0]) // If not already contained...
Dest.insert(I, Src[0]);
} else {
// Make a copy to the side of Dest...
vector<T> Old(Dest);
// Make space for all of the type entries now...
Dest.resize(Dest.size()+Src.size());
// Merge the two sorted ranges together... into Dest.
std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());
// Now erase any duplicate entries that may have accumulated into the
// vectors (because they were in both of the input sets)
Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
}
}
// mergeWith - Merge this node and the specified node, moving all links to and
// from the argument node into the current node, deleting the node argument.
// Offset indicates what offset the specified node is to be merged into the
// current node.
//
// The specified node may be a null pointer (in which case, nothing happens).
//
void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
DSNode *N = NH.getNode();
if (N == 0 || (N == this && NH.getOffset() == Offset))
return; // Noop
assert(NH.getNode() != this &&
"Cannot merge two portions of the same node yet!");
// If both nodes are not at offset 0, make sure that we are merging the node
// at an later offset into the node with the zero offset.
//
if (Offset > NH.getOffset()) {
N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
return;
}
#if 0
std::cerr << "\n\nMerging:\n";
N->print(std::cerr, 0);
std::cerr << " and:\n";
print(std::cerr, 0);
#endif
// Now we know that Offset <= NH.Offset, so convert it so our "Offset" (with
// respect to NH.Offset) is now zero.
//
unsigned NOffset = NH.getOffset()-Offset;
unsigned NSize = N->getSize();
assert(NSize+NOffset <= getSize() &&
"Don't know how to merge extend a merged nodes size yet!");
// Remove all edges pointing at N, causing them to point to 'this' instead.
// Make sure to adjust their offset, not just the node pointer.
//
while (!N->Referrers.empty()) {
DSNodeHandle &Ref = *N->Referrers.back();
Ref = DSNodeHandle(this, NOffset+Ref.getOffset());
}
// We must merge fields in this node due to nodes merged in the source node.
// In order to handle this we build a map that converts from the source node's
// MergeMap values to our MergeMap values. This map is indexed by the
// expression: MergeMap[SMM+SourceNodeSize] so we need to allocate at least
// 2*SourceNodeSize elements of space for the mapping. We can do this because
// we know that there are at most SourceNodeSize outgoing links in the node
// (thus that many positive values) and at most SourceNodeSize distinct fields
// (thus that many negative values).
//
std::vector<signed char> MergeMapMap(NSize*2, 127);
// Loop through the structures, merging them together...
for (unsigned i = 0, e = NSize; i != e; ++i) {
// Get what this byte of N maps to...
signed char NElement = N->MergeMap[i];
// Get what we map this byte to...
signed char Element = MergeMap[i+NOffset];
// We use 127 as a sentinal and don't check for it's existence yet...
assert(Element != 127 && "MergeMapMap doesn't permit 127 values yet!");
signed char CurMappedVal = MergeMapMap[NElement+NSize];
if (CurMappedVal == 127) { // Haven't seen this NElement yet?
MergeMapMap[NElement+NSize] = Element; // Map the two together...
} else if (CurMappedVal != Element) {
// If we are mapping two different fields together this means that we need
// to merge fields in the current node due to merging in the source node.
//
mergeMappedValues(CurMappedVal, Element);
MergeMapMap[NElement+NSize] = MergeMap[i+NOffset];
}
}
// Make all of the outgoing links of N now be outgoing links of this. This
// can cause recursive merging!
//
for (unsigned i = 0, e = NSize; i != e; ++i)
if (DSNodeHandle *Link = N->getLink(i)) {
addEdgeTo(i+NOffset, *Link);
N->MergeMap[i] = -1; // Kill outgoing edge
}
// Now that there are no outgoing edges, all of the Links are dead.
N->Links.clear();
// Merge the node types
NodeType |= N->NodeType;
N->NodeType = 0; // N is now a dead node.
// If this merging into node has more than just void nodes in it, merge!
assert(!N->TypeEntries.empty() && "TypeEntries is empty for a node?");
if (N->TypeEntries.size() != 1 || N->TypeEntries[0].first != Type::VoidTy) {
// If the current node just has a Void entry in it, remove it.
if (TypeEntries.size() == 1 && TypeEntries[0].first == Type::VoidTy)
TypeEntries.clear();
// Adjust all of the type entries we are merging in by the offset... and add
// them to the TypeEntries list.
//
if (NOffset != 0) { // This case is common enough to optimize for
// Offset all of the TypeEntries in N with their new offset
for (unsigned i = 0, e = N->TypeEntries.size(); i != e; ++i)
N->TypeEntries[i].second += NOffset;
}
MergeSortedVectors(TypeEntries, N->TypeEntries);
N->TypeEntries.clear();
}
// Merge the globals list...
if (!N->Globals.empty()) {
MergeSortedVectors(Globals, N->Globals);
// Delete the globals from the old node...
N->Globals.clear();
}
}
//===----------------------------------------------------------------------===//
// DSGraph Implementation
//===----------------------------------------------------------------------===//
DSGraph::DSGraph(const DSGraph &G) : Func(G.Func) {
std::map<const DSNode*, DSNode*> NodeMap;
RetNode = cloneInto(G, ValueMap, NodeMap);
}
DSGraph::~DSGraph() {
FunctionCalls.clear();
ValueMap.clear();
RetNode = 0;
#ifndef NDEBUG
// Drop all intra-node references, so that assertions don't fail...
std::for_each(Nodes.begin(), Nodes.end(),
std::mem_fun(&DSNode::dropAllReferences));
#endif
// Delete all of the nodes themselves...
std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>);
}
// dump - Allow inspection of graph in a debugger.
void DSGraph::dump() const { print(std::cerr); }
// Helper function used to clone a function list.
//
static void CopyFunctionCallsList(const vector<vector<DSNodeHandle> >&fromCalls,
vector<vector<DSNodeHandle> > &toCalls,
std::map<const DSNode*, DSNode*> &NodeMap) {
unsigned FC = toCalls.size(); // FirstCall
toCalls.reserve(FC+fromCalls.size());
for (unsigned i = 0, ei = fromCalls.size(); i != ei; ++i) {
toCalls.push_back(vector<DSNodeHandle>());
const vector<DSNodeHandle> &CurCall = fromCalls[i];
toCalls.back().reserve(CurCall.size());
for (unsigned j = 0, ej = fromCalls[i].size(); j != ej; ++j)
toCalls[FC+i].push_back(DSNodeHandle(NodeMap[CurCall[j].getNode()],
CurCall[j].getOffset()));
}
}
/// remapLinks - Change all of the Links in the current node according to the
/// specified mapping.
void DSNode::remapLinks(std::map<const DSNode*, DSNode*> &OldNodeMap) {
for (unsigned i = 0, e = Links.size(); i != e; ++i)
Links[i].setNode(OldNodeMap[Links[i].getNode()]);
}
// cloneInto - Clone the specified DSGraph into the current graph, returning the
// Return node of the graph. The translated ValueMap for the old function is
// filled into the OldValMap member. If StripLocals is set to true, Scalar and
// Alloca markers are removed from the graph, as the graph is being cloned into
// a calling function's graph.
//
DSNodeHandle DSGraph::cloneInto(const DSGraph &G,
std::map<Value*, DSNodeHandle> &OldValMap,
std::map<const DSNode*, DSNode*> &OldNodeMap,
bool StripScalars, bool StripAllocas,
bool CopyCallers, bool CopyOrigCalls) {
assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!");
unsigned FN = Nodes.size(); // First new node...
// Duplicate all of the nodes, populating the node map...
Nodes.reserve(FN+G.Nodes.size());
for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) {
DSNode *Old = G.Nodes[i];
DSNode *New = new DSNode(*Old);
Nodes.push_back(New);
OldNodeMap[Old] = New;
}
// Rewrite the links in the new nodes to point into the current graph now.
for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
Nodes[i]->remapLinks(OldNodeMap);
// Remove local markers as specified
unsigned char StripBits = (StripScalars ? DSNode::ScalarNode : 0) |
(StripAllocas ? DSNode::AllocaNode : 0);
if (StripBits)
for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
Nodes[i]->NodeType &= ~StripBits;
// Copy the value map... and merge all of the global nodes...
for (std::map<Value*, DSNodeHandle>::const_iterator I = G.ValueMap.begin(),
E = G.ValueMap.end(); I != E; ++I) {
DSNodeHandle &H = OldValMap[I->first];
H = DSNodeHandle(OldNodeMap[I->second.getNode()], I->second.getOffset());
if (isa<GlobalValue>(I->first)) { // Is this a global?
std::map<Value*, DSNodeHandle>::iterator GVI = ValueMap.find(I->first);
if (GVI != ValueMap.end()) { // Is the global value in this fun already?
GVI->second.mergeWith(H);
} else {
ValueMap[I->first] = H; // Add global pointer to this graph
}
}
}
// Copy the function calls list...
CopyFunctionCallsList(G.FunctionCalls, FunctionCalls, OldNodeMap);
// Return the returned node pointer...
return DSNodeHandle(OldNodeMap[G.RetNode.getNode()], G.RetNode.getOffset());
}
#if 0
// cloneGlobalInto - Clone the given global node and all its target links
// (and all their llinks, recursively).
//
DSNode *DSGraph::cloneGlobalInto(const DSNode *GNode) {
if (GNode == 0 || GNode->getGlobals().size() == 0) return 0;
// If a clone has already been created for GNode, return it.
DSNodeHandle& ValMapEntry = ValueMap[GNode->getGlobals()[0]];
if (ValMapEntry != 0)
return ValMapEntry;
// Clone the node and update the ValMap.
DSNode* NewNode = new DSNode(*GNode);
ValMapEntry = NewNode; // j=0 case of loop below!
Nodes.push_back(NewNode);
for (unsigned j = 1, N = NewNode->getGlobals().size(); j < N; ++j)
ValueMap[NewNode->getGlobals()[j]] = NewNode;
// Rewrite the links in the new node to point into the current graph.
for (unsigned j = 0, e = GNode->getNumLinks(); j != e; ++j)
NewNode->setLink(j, cloneGlobalInto(GNode->getLink(j)));
return NewNode;
}
#endif
// markIncompleteNodes - Mark the specified node as having contents that are not
// known with the current analysis we have performed. Because a node makes all
// of the nodes it can reach imcomplete if the node itself is incomplete, we
// must recursively traverse the data structure graph, marking all reachable
// nodes as incomplete.
//
static void markIncompleteNode(DSNode *N) {
// Stop recursion if no node, or if node already marked...
if (N == 0 || (N->NodeType & DSNode::Incomplete)) return;
// Actually mark the node
N->NodeType |= DSNode::Incomplete;
// Recusively process children...
for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (DSNodeHandle *DSNH = N->getLink(i))
markIncompleteNode(DSNH->getNode());
}
// markIncompleteNodes - Traverse the graph, identifying nodes that may be
// modified by other functions that have not been resolved yet. This marks
// nodes that are reachable through three sources of "unknownness":
//
// Global Variables, Function Calls, and Incoming Arguments
//
// For any node that may have unknown components (because something outside the
// scope of current analysis may have modified it), the 'Incomplete' flag is
// added to the NodeType.
//
void DSGraph::markIncompleteNodes(bool markFormalArgs) {
// Mark any incoming arguments as incomplete...
if (markFormalArgs && Func)
for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I)
if (isPointerType(I->getType()) && ValueMap.find(I) != ValueMap.end()) {
DSNodeHandle &INH = ValueMap[I];
if (INH.getNode() && INH.hasLink(0))
markIncompleteNode(ValueMap[I].getLink(0)->getNode());
}
// Mark stuff passed into functions calls as being incomplete...
for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) {
vector<DSNodeHandle> &Args = FunctionCalls[i];
// Then the return value is certainly incomplete!
markIncompleteNode(Args[0].getNode());
// The call does not make the function argument incomplete...
// All arguments to the function call are incomplete though!
for (unsigned i = 2, e = Args.size(); i != e; ++i)
markIncompleteNode(Args[i].getNode());
}
// Mark all of the nodes pointed to by global or cast nodes as incomplete...
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
if (Nodes[i]->NodeType & DSNode::GlobalNode) {
DSNode *N = Nodes[i];
for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (DSNodeHandle *DSNH = N->getLink(i))
markIncompleteNode(DSNH->getNode());
}
}
// removeRefsToGlobal - Helper function that removes globals from the
// ValueMap so that the referrer count will go down to zero.
static void removeRefsToGlobal(DSNode* N,
std::map<Value*, DSNodeHandle> &ValueMap) {
while (!N->getGlobals().empty()) {
GlobalValue *GV = N->getGlobals().back();
N->getGlobals().pop_back();
ValueMap.erase(GV);
}
}
// isNodeDead - This method checks to see if a node is dead, and if it isn't, it
// checks to see if there are simple transformations that it can do to make it
// dead.
//
bool DSGraph::isNodeDead(DSNode *N) {
// Is it a trivially dead shadow node...
if (N->getReferrers().empty() && N->NodeType == 0)
return true;
// Is it a function node or some other trivially unused global?
if (N->NodeType != 0 &&
(N->NodeType & ~DSNode::GlobalNode) == 0 &&
N->getSize() == 0 &&
N->getReferrers().size() == N->getGlobals().size()) {
// Remove the globals from the ValueMap, so that the referrer count will go
// down to zero.
removeRefsToGlobal(N, ValueMap);
assert(N->getReferrers().empty() && "Referrers should all be gone now!");
return true;
}
return false;
}
static void removeIdenticalCalls(vector<vector<DSNodeHandle> > &Calls,
const std::string &where) {
// Remove trivially identical function calls
unsigned NumFns = Calls.size();
std::sort(Calls.begin(), Calls.end());
Calls.erase(std::unique(Calls.begin(), Calls.end()),
Calls.end());
DEBUG(if (NumFns != Calls.size())
std::cerr << "Merged " << (NumFns-Calls.size())
<< " call nodes in " << where << "\n";);
}
// removeTriviallyDeadNodes - After the graph has been constructed, this method
// removes all unreachable nodes that are created because they got merged with
// other nodes in the graph. These nodes will all be trivially unreachable, so
// we don't have to perform any non-trivial analysis here.
//
void DSGraph::removeTriviallyDeadNodes(bool KeepAllGlobals) {
for (unsigned i = 0; i != Nodes.size(); ++i)
if (!KeepAllGlobals || !(Nodes[i]->NodeType & DSNode::GlobalNode))
if (isNodeDead(Nodes[i])) { // This node is dead!
delete Nodes[i]; // Free memory...
Nodes.erase(Nodes.begin()+i--); // Remove from node list...
}
removeIdenticalCalls(FunctionCalls, Func ? Func->getName() : "");
}
// markAlive - Simple graph walker that recursively traverses the graph, marking
// stuff to be alive.
//
static void markAlive(DSNode *N, std::set<DSNode*> &Alive) {
if (N == 0) return;
Alive.insert(N);
for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (DSNodeHandle *DSNH = N->getLink(i))
if (!Alive.count(DSNH->getNode()))
markAlive(DSNH->getNode(), Alive);
}
static bool checkGlobalAlive(DSNode *N, std::set<DSNode*> &Alive,
std::set<DSNode*> &Visiting) {
if (N == 0) return false;
if (Visiting.count(N)) return false; // terminate recursion on a cycle
Visiting.insert(N);
// If any immediate successor is alive, N is alive
for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (DSNodeHandle *DSNH = N->getLink(i))
if (Alive.count(DSNH->getNode())) {
Visiting.erase(N);
return true;
}
// Else if any successor reaches a live node, N is alive
for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (DSNodeHandle *DSNH = N->getLink(i))
if (checkGlobalAlive(DSNH->getNode(), Alive, Visiting)) {
Visiting.erase(N); return true;
}
Visiting.erase(N);
return false;
}
// markGlobalsIteration - Recursive helper function for markGlobalsAlive().
// This would be unnecessary if function calls were real nodes! In that case,
// the simple iterative loop in the first few lines below suffice.
//
static void markGlobalsIteration(std::set<DSNode*>& GlobalNodes,
vector<vector<DSNodeHandle> > &Calls,
std::set<DSNode*> &Alive,
bool FilterCalls) {
// Iterate, marking globals or cast nodes alive until no new live nodes
// are added to Alive
std::set<DSNode*> Visiting; // Used to identify cycles
std::set<DSNode*>::iterator I=GlobalNodes.begin(), E=GlobalNodes.end();
for (size_t liveCount = 0; liveCount < Alive.size(); ) {
liveCount = Alive.size();
for ( ; I != E; ++I)
if (Alive.count(*I) == 0) {
Visiting.clear();
if (checkGlobalAlive(*I, Alive, Visiting))
markAlive(*I, Alive);
}
}
// Find function calls with some dead and some live nodes.
// Since all call nodes must be live if any one is live, we have to mark
// all nodes of the call as live and continue the iteration (via recursion).
if (FilterCalls) {
bool recurse = false;
for (int i = 0, ei = Calls.size(); i < ei; ++i) {
bool CallIsDead = true, CallHasDeadArg = false;
for (unsigned j = 0, ej = Calls[i].size(); j != ej; ++j) {
bool argIsDead = Calls[i][j].getNode() == 0 ||
Alive.count(Calls[i][j].getNode()) == 0;
CallHasDeadArg |= (Calls[i][j].getNode() != 0 && argIsDead);
CallIsDead &= argIsDead;
}
if (!CallIsDead && CallHasDeadArg) {
// Some node in this call is live and another is dead.
// Mark all nodes of call as live and iterate once more.
recurse = true;
for (unsigned j = 0, ej = Calls[i].size(); j != ej; ++j)
markAlive(Calls[i][j].getNode(), Alive);
}
}
if (recurse)
markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls);
}
}
// markGlobalsAlive - Mark global nodes and cast nodes alive if they
// can reach any other live node. Since this can produce new live nodes,
// we use a simple iterative algorithm.
//
static void markGlobalsAlive(DSGraph &G, std::set<DSNode*> &Alive,
bool FilterCalls) {
// Add global and cast nodes to a set so we don't walk all nodes every time
std::set<DSNode*> GlobalNodes;
for (unsigned i = 0, e = G.getNodes().size(); i != e; ++i)
if (G.getNodes()[i]->NodeType & DSNode::GlobalNode)
GlobalNodes.insert(G.getNodes()[i]);
// Add all call nodes to the same set
vector<vector<DSNodeHandle> > &Calls = G.getFunctionCalls();
if (FilterCalls) {
for (unsigned i = 0, e = Calls.size(); i != e; ++i)
for (unsigned j = 0, e = Calls[i].size(); j != e; ++j)
if (Calls[i][j].getNode())
GlobalNodes.insert(Calls[i][j].getNode());
}
// Iterate and recurse until no new live node are discovered.
// This would be a simple iterative loop if function calls were real nodes!
markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls);
// Free up references to dead globals from the ValueMap
std::set<DSNode*>::iterator I=GlobalNodes.begin(), E=GlobalNodes.end();
for( ; I != E; ++I)
if (Alive.count(*I) == 0)
removeRefsToGlobal(*I, G.getValueMap());
// Delete dead function calls
if (FilterCalls)
for (int ei = Calls.size(), i = ei-1; i >= 0; --i) {
bool CallIsDead = true;
for (unsigned j = 0, ej = Calls[i].size(); CallIsDead && j != ej; ++j)
CallIsDead = Alive.count(Calls[i][j].getNode()) == 0;
if (CallIsDead)
Calls.erase(Calls.begin() + i); // remove the call entirely
}
}
// removeDeadNodes - Use a more powerful reachability analysis to eliminate
// subgraphs that are unreachable. This often occurs because the data
// structure doesn't "escape" into it's caller, and thus should be eliminated
// from the caller's graph entirely. This is only appropriate to use when
// inlining graphs.
//
void DSGraph::removeDeadNodes(bool KeepAllGlobals, bool KeepCalls) {
assert((!KeepAllGlobals || KeepCalls) &&
"KeepAllGlobals without KeepCalls is meaningless");
// Reduce the amount of work we have to do...
removeTriviallyDeadNodes(KeepAllGlobals);
// FIXME: Merge nontrivially identical call nodes...
// Alive - a set that holds all nodes found to be reachable/alive.
std::set<DSNode*> Alive;
// If KeepCalls, mark all nodes reachable by call nodes as alive...
if (KeepCalls)
for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
for (unsigned j = 0, e = FunctionCalls[i].size(); j != e; ++j)
markAlive(FunctionCalls[i][j].getNode(), Alive);
#if 0
for (unsigned i = 0, e = OrigFunctionCalls.size(); i != e; ++i)
for (unsigned j = 0, e = OrigFunctionCalls[i].size(); j != e; ++j)
markAlive(OrigFunctionCalls[i][j].getNode(), Alive);
#endif
// Mark all nodes reachable by scalar nodes (and global nodes, if
// keeping them was specified) as alive...
unsigned char keepBits = DSNode::ScalarNode |
(KeepAllGlobals ? DSNode::GlobalNode : 0);
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
if (Nodes[i]->NodeType & keepBits)
markAlive(Nodes[i], Alive);
// The return value is alive as well...
markAlive(RetNode.getNode(), Alive);
// Mark all globals or cast nodes that can reach a live node as alive.
// This also marks all nodes reachable from such nodes as alive.
// Of course, if KeepAllGlobals is specified, they would be live already.
if (! KeepAllGlobals)
markGlobalsAlive(*this, Alive, ! KeepCalls);
// Loop over all unreachable nodes, dropping their references...
vector<DSNode*> DeadNodes;
DeadNodes.reserve(Nodes.size()); // Only one allocation is allowed.
for (unsigned i = 0; i != Nodes.size(); ++i)
if (!Alive.count(Nodes[i])) {
DSNode *N = Nodes[i];
Nodes.erase(Nodes.begin()+i--); // Erase node from alive list.
DeadNodes.push_back(N); // Add node to our list of dead nodes
N->dropAllReferences(); // Drop all outgoing edges
}
// Delete all dead nodes...
std::for_each(DeadNodes.begin(), DeadNodes.end(), deleter<DSNode>);
}
// maskNodeTypes - Apply a mask to all of the node types in the graph. This
// is useful for clearing out markers like Scalar or Incomplete.
//
void DSGraph::maskNodeTypes(unsigned char Mask) {
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
Nodes[i]->NodeType &= Mask;
}
#if 0
//===----------------------------------------------------------------------===//
// GlobalDSGraph Implementation
//===----------------------------------------------------------------------===//
GlobalDSGraph::GlobalDSGraph() : DSGraph(*(Function*)0, this) {
}
GlobalDSGraph::~GlobalDSGraph() {
assert(Referrers.size() == 0 &&
"Deleting global graph while references from other graphs exist");
}
void GlobalDSGraph::addReference(const DSGraph* referrer) {
if (referrer != this)
Referrers.insert(referrer);
}
void GlobalDSGraph::removeReference(const DSGraph* referrer) {
if (referrer != this) {
assert(Referrers.find(referrer) != Referrers.end() && "This is very bad!");
Referrers.erase(referrer);
if (Referrers.size() == 0)
delete this;
}
}
// Bits used in the next function
static const char ExternalTypeBits = DSNode::GlobalNode | DSNode::NewNode;
#if 0
// GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally
// visible target links (and recursively their such links) into this graph.
// NodeCache maps the node being cloned to its clone in the Globals graph,
// in order to track cycles.
// GlobalsAreFinal is a flag that says whether it is safe to assume that
// an existing global node is complete. This is important to avoid
// reinserting all globals when inserting Calls to functions.
// This is a helper function for cloneGlobals and cloneCalls.
//
DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode,
std::map<const DSNode*, DSNode*> &NodeCache,
bool GlobalsAreFinal) {
if (OldNode == 0) return 0;
// The caller should check this is an external node. Just more efficient...
assert((OldNode->NodeType & ExternalTypeBits) && "Non-external node");
// If a clone has already been created for OldNode, return it.
DSNode*& CacheEntry = NodeCache[OldNode];
if (CacheEntry != 0)
return CacheEntry;
// The result value...
DSNode* NewNode = 0;
// If nodes already exist for any of the globals of OldNode,
// merge all such nodes together since they are merged in OldNode.
// If ValueCacheIsFinal==true, look for an existing node that has
// an identical list of globals and return it if it exists.
//
for (unsigned j = 0, N = OldNode->getGlobals().size(); j != N; ++j)
if (DSNode *PrevNode = ValueMap[OldNode->getGlobals()[j]].getNode()) {
if (NewNode == 0) {
NewNode = PrevNode; // first existing node found
if (GlobalsAreFinal && j == 0)
if (OldNode->getGlobals() == PrevNode->getGlobals()) {
CacheEntry = NewNode;
return NewNode;
}
}
else if (NewNode != PrevNode) { // found another, different from prev
// update ValMap *before* merging PrevNode into NewNode
for (unsigned k = 0, NK = PrevNode->getGlobals().size(); k < NK; ++k)
ValueMap[PrevNode->getGlobals()[k]] = NewNode;
NewNode->mergeWith(PrevNode);
}
} else if (NewNode != 0) {
ValueMap[OldNode->getGlobals()[j]] = NewNode; // add the merged node
}
// If no existing node was found, clone the node and update the ValMap.
if (NewNode == 0) {
NewNode = new DSNode(*OldNode);
Nodes.push_back(NewNode);
for (unsigned j = 0, e = NewNode->getNumLinks(); j != e; ++j)
NewNode->setLink(j, 0);
for (unsigned j = 0, N = NewNode->getGlobals().size(); j < N; ++j)
ValueMap[NewNode->getGlobals()[j]] = NewNode;
}
else
NewNode->NodeType |= OldNode->NodeType; // Markers may be different!
// Add the entry to NodeCache
CacheEntry = NewNode;
// Rewrite the links in the new node to point into the current graph,
// but only for links to external nodes. Set other links to NULL.
for (unsigned j = 0, e = OldNode->getNumLinks(); j != e; ++j) {
DSNode* OldTarget = OldNode->getLink(j);
if (OldTarget && (OldTarget->NodeType & ExternalTypeBits)) {
DSNode* NewLink = this->cloneNodeInto(OldTarget, NodeCache);
if (NewNode->getLink(j))
NewNode->getLink(j)->mergeWith(NewLink);
else
NewNode->setLink(j, NewLink);
}
}
// Remove all local markers
NewNode->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode);
return NewNode;
}
// GlobalDSGraph::cloneGlobals - Clone global nodes and all their externally
// visible target links (and recursively their such links) into this graph.
//
void GlobalDSGraph::cloneGlobals(DSGraph& Graph, bool CloneCalls) {
std::map<const DSNode*, DSNode*> NodeCache;
#if 0
for (unsigned i = 0, N = Graph.Nodes.size(); i < N; ++i)
if (Graph.Nodes[i]->NodeType & DSNode::GlobalNode)
GlobalsGraph->cloneNodeInto(Graph.Nodes[i], NodeCache, false);
if (CloneCalls)
GlobalsGraph->cloneCalls(Graph);
GlobalsGraph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true);
#endif
}
// GlobalDSGraph::cloneCalls - Clone function calls and their visible target
// links (and recursively their such links) into this graph.
//
void GlobalDSGraph::cloneCalls(DSGraph& Graph) {
std::map<const DSNode*, DSNode*> NodeCache;
vector<vector<DSNodeHandle> >& FromCalls =Graph.FunctionCalls;
FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size());
for (int i = 0, ei = FromCalls.size(); i < ei; ++i) {
FunctionCalls.push_back(vector<DSNodeHandle>());
FunctionCalls.back().reserve(FromCalls[i].size());
for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j)
FunctionCalls.back().push_back
((FromCalls[i][j] && (FromCalls[i][j]->NodeType & ExternalTypeBits))
? cloneNodeInto(FromCalls[i][j], NodeCache, true)
: 0);
}
// remove trivially identical function calls
removeIdenticalCalls(FunctionCalls, "Globals Graph");
}
#endif
#endif