llvm-project/llvm/lib/CodeGen/LazyLiveness.cpp

169 lines
5.7 KiB
C++
Raw Normal View History

//===- LazyLiveness.cpp - Lazy, CFG-invariant liveness information --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements a lazy liveness analysis as per "Fast Liveness Checking
// for SSA-form Programs," by Boissinot, et al.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "lazyliveness"
#include "llvm/CodeGen/LazyLiveness.h"
#include "llvm/CodeGen/MachineDominators.h"
2009-08-20 06:05:21 +08:00
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
using namespace llvm;
char LazyLiveness::ID = 0;
static RegisterPass<LazyLiveness> X("lazy-liveness", "Lazy Liveness Analysis");
void LazyLiveness::computeBackedgeChain(MachineFunction& mf,
MachineBasicBlock* MBB) {
SparseBitVector<128> tmp = rv[MBB];
tmp.set(preorder[MBB]);
tmp &= backedge_source;
calculated.set(preorder[MBB]);
for (SparseBitVector<128>::iterator I = tmp.begin(); I != tmp.end(); ++I) {
assert(rev_preorder.size() > *I && "Unknown block!");
MachineBasicBlock* SrcMBB = rev_preorder[*I];
for (MachineBasicBlock::succ_iterator SI = SrcMBB->succ_begin(),
SE = SrcMBB->succ_end(); SI != SE; ++SI) {
MachineBasicBlock* TgtMBB = *SI;
if (backedges.count(std::make_pair(SrcMBB, TgtMBB)) &&
!rv[MBB].test(preorder[TgtMBB])) {
if (!calculated.test(preorder[TgtMBB]))
computeBackedgeChain(mf, TgtMBB);
tv[MBB].set(preorder[TgtMBB]);
SparseBitVector<128> right = tv[TgtMBB];
tv[MBB] |= right;
}
}
tv[MBB].reset(preorder[MBB]);
}
}
bool LazyLiveness::runOnMachineFunction(MachineFunction &mf) {
rv.clear();
tv.clear();
backedges.clear();
backedge_source.clear();
backedge_target.clear();
calculated.clear();
preorder.clear();
rev_preorder.clear();
rv.resize(mf.size());
tv.resize(mf.size());
preorder.resize(mf.size());
rev_preorder.reserve(mf.size());
MRI = &mf.getRegInfo();
MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
// Step 0: Compute preorder numbering for all MBBs.
unsigned num = 0;
2009-06-13 06:07:19 +08:00
for (df_iterator<MachineDomTreeNode*> DI = df_begin(MDT.getRootNode()),
DE = df_end(MDT.getRootNode()); DI != DE; ++DI) {
preorder[(*DI)->getBlock()] = num++;
rev_preorder.push_back((*DI)->getBlock());
}
// Step 1: Compute the transitive closure of the CFG, ignoring backedges.
2009-06-13 06:07:19 +08:00
for (po_iterator<MachineBasicBlock*> POI = po_begin(&*mf.begin()),
POE = po_end(&*mf.begin()); POI != POE; ++POI) {
MachineBasicBlock* MBB = *POI;
SparseBitVector<128>& entry = rv[MBB];
entry.set(preorder[MBB]);
2009-06-13 06:07:19 +08:00
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI) {
DenseMap<MachineBasicBlock*, SparseBitVector<128> >::iterator SII =
rv.find(*SI);
// Because we're iterating in postorder, any successor that does not yet
// have an rv entry must be on a backedge.
if (SII != rv.end()) {
entry |= SII->second;
} else {
backedges.insert(std::make_pair(MBB, *SI));
backedge_source.set(preorder[MBB]);
backedge_target.set(preorder[*SI]);
}
}
}
for (SparseBitVector<128>::iterator I = backedge_source.begin();
I != backedge_source.end(); ++I)
computeBackedgeChain(mf, rev_preorder[*I]);
for (po_iterator<MachineBasicBlock*> POI = po_begin(&*mf.begin()),
POE = po_end(&*mf.begin()); POI != POE; ++POI)
if (!backedge_target.test(preorder[*POI]))
2009-06-13 06:07:19 +08:00
for (MachineBasicBlock::succ_iterator SI = (*POI)->succ_begin(),
SE = (*POI)->succ_end(); SI != SE; ++SI)
if (!backedges.count(std::make_pair(*POI, *SI)) && tv.count(*SI)) {
SparseBitVector<128> right = tv[*SI];
tv[*POI] |= right;
}
for (po_iterator<MachineBasicBlock*> POI = po_begin(&*mf.begin()),
POE = po_end(&*mf.begin()); POI != POE; ++POI)
tv[*POI].set(preorder[*POI]);
return false;
}
bool LazyLiveness::vregLiveIntoMBB(unsigned vreg, MachineBasicBlock* MBB) {
MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
MachineBasicBlock* DefMBB = MRI->def_begin(vreg)->getParent();
unsigned def = preorder[DefMBB];
unsigned max_dom = 0;
2009-06-13 06:07:19 +08:00
for (df_iterator<MachineDomTreeNode*> DI = df_begin(MDT[DefMBB]),
DE = df_end(MDT[DefMBB]); DI != DE; ++DI) {
if (preorder[DI->getBlock()] > max_dom) {
max_dom = preorder[(*DI)->getBlock()];
}
2009-06-13 06:07:19 +08:00
}
if (preorder[MBB] <= def || max_dom < preorder[MBB])
return false;
SparseBitVector<128>::iterator I = tv[MBB].begin();
while (I != tv[MBB].end() && *I <= def) ++I;
while (I != tv[MBB].end() && *I < max_dom) {
2009-06-13 06:07:19 +08:00
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(vreg),
UE = MachineRegisterInfo::use_end(); UI != UE; ++UI) {
MachineBasicBlock* UseMBB = UI->getParent();
if (rv[rev_preorder[*I]].test(preorder[UseMBB]))
return true;
2009-06-13 06:07:19 +08:00
unsigned t_dom = 0;
for (df_iterator<MachineDomTreeNode*> DI =
2009-06-13 06:07:19 +08:00
df_begin(MDT[rev_preorder[*I]]), DE = df_end(MDT[rev_preorder[*I]]);
DI != DE; ++DI)
if (preorder[DI->getBlock()] > t_dom) {
max_dom = preorder[(*DI)->getBlock()];
}
I = tv[MBB].begin();
while (I != tv[MBB].end() && *I < t_dom) ++I;
}
}
return false;
}