llvm-project/compiler-rt/lib/xray/xray_buffer_queue.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

238 lines
7.4 KiB
C++
Raw Normal View History

//===-- xray_buffer_queue.cpp ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Defines the interface for a buffer queue implementation.
//
//===----------------------------------------------------------------------===//
#include "xray_buffer_queue.h"
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_libc.h"
#if !SANITIZER_FUCHSIA
#include "sanitizer_common/sanitizer_posix.h"
#endif
#include "xray_allocator.h"
#include "xray_defs.h"
#include <memory>
#include <sys/mman.h>
using namespace __xray;
namespace {
BufferQueue::ControlBlock *allocControlBlock(size_t Size, size_t Count) {
auto B =
allocateBuffer((sizeof(BufferQueue::ControlBlock) - 1) + (Size * Count));
return B == nullptr ? nullptr
: reinterpret_cast<BufferQueue::ControlBlock *>(B);
}
void deallocControlBlock(BufferQueue::ControlBlock *C, size_t Size,
size_t Count) {
deallocateBuffer(reinterpret_cast<unsigned char *>(C),
(sizeof(BufferQueue::ControlBlock) - 1) + (Size * Count));
}
void decRefCount(BufferQueue::ControlBlock *C, size_t Size, size_t Count) {
if (C == nullptr)
return;
if (atomic_fetch_sub(&C->RefCount, 1, memory_order_acq_rel) == 1)
deallocControlBlock(C, Size, Count);
}
void incRefCount(BufferQueue::ControlBlock *C) {
if (C == nullptr)
return;
atomic_fetch_add(&C->RefCount, 1, memory_order_acq_rel);
}
// We use a struct to ensure that we are allocating one atomic_uint64_t per
// cache line. This allows us to not worry about false-sharing among atomic
// objects being updated (constantly) by different threads.
struct ExtentsPadded {
union {
atomic_uint64_t Extents;
unsigned char Storage[kCacheLineSize];
};
};
constexpr size_t kExtentsSize = sizeof(ExtentsPadded);
} // namespace
BufferQueue::ErrorCode BufferQueue::init(size_t BS, size_t BC) {
SpinMutexLock Guard(&Mutex);
if (!finalizing())
return BufferQueue::ErrorCode::AlreadyInitialized;
cleanupBuffers();
bool Success = false;
BufferSize = BS;
BufferCount = BC;
BackingStore = allocControlBlock(BufferSize, BufferCount);
if (BackingStore == nullptr)
return BufferQueue::ErrorCode::NotEnoughMemory;
auto CleanupBackingStore = at_scope_exit([&, this] {
if (Success)
return;
deallocControlBlock(BackingStore, BufferSize, BufferCount);
BackingStore = nullptr;
});
// Initialize enough atomic_uint64_t instances, each
ExtentsBackingStore = allocControlBlock(kExtentsSize, BufferCount);
if (ExtentsBackingStore == nullptr)
return BufferQueue::ErrorCode::NotEnoughMemory;
auto CleanupExtentsBackingStore = at_scope_exit([&, this] {
if (Success)
return;
deallocControlBlock(ExtentsBackingStore, kExtentsSize, BufferCount);
ExtentsBackingStore = nullptr;
});
Buffers = initArray<BufferRep>(BufferCount);
if (Buffers == nullptr)
return BufferQueue::ErrorCode::NotEnoughMemory;
// At this point we increment the generation number to associate the buffers
// to the new generation.
atomic_fetch_add(&Generation, 1, memory_order_acq_rel);
// First, we initialize the refcount in the ControlBlock, which we treat as
// being at the start of the BackingStore pointer.
atomic_store(&BackingStore->RefCount, 1, memory_order_release);
atomic_store(&ExtentsBackingStore->RefCount, 1, memory_order_release);
// Then we initialise the individual buffers that sub-divide the whole backing
// store. Each buffer will start at the `Data` member of the ControlBlock, and
// will be offsets from these locations.
for (size_t i = 0; i < BufferCount; ++i) {
auto &T = Buffers[i];
auto &Buf = T.Buff;
auto *E = reinterpret_cast<ExtentsPadded *>(&ExtentsBackingStore->Data +
(kExtentsSize * i));
Buf.Extents = &E->Extents;
atomic_store(Buf.Extents, 0, memory_order_release);
Buf.Generation = generation();
Buf.Data = &BackingStore->Data + (BufferSize * i);
Buf.Size = BufferSize;
Buf.BackingStore = BackingStore;
Buf.ExtentsBackingStore = ExtentsBackingStore;
Buf.Count = BufferCount;
T.Used = false;
}
Next = Buffers;
First = Buffers;
LiveBuffers = 0;
atomic_store(&Finalizing, 0, memory_order_release);
Success = true;
return BufferQueue::ErrorCode::Ok;
}
BufferQueue::BufferQueue(size_t B, size_t N,
bool &Success) XRAY_NEVER_INSTRUMENT
: BufferSize(B),
BufferCount(N),
Mutex(),
Finalizing{1},
BackingStore(nullptr),
ExtentsBackingStore(nullptr),
Buffers(nullptr),
Next(Buffers),
First(Buffers),
LiveBuffers(0),
Generation{0} {
Success = init(B, N) == BufferQueue::ErrorCode::Ok;
}
BufferQueue::ErrorCode BufferQueue::getBuffer(Buffer &Buf) {
if (atomic_load(&Finalizing, memory_order_acquire))
return ErrorCode::QueueFinalizing;
BufferRep *B = nullptr;
{
SpinMutexLock Guard(&Mutex);
if (LiveBuffers == BufferCount)
return ErrorCode::NotEnoughMemory;
B = Next++;
if (Next == (Buffers + BufferCount))
Next = Buffers;
++LiveBuffers;
}
incRefCount(BackingStore);
incRefCount(ExtentsBackingStore);
Buf = B->Buff;
Buf.Generation = generation();
B->Used = true;
return ErrorCode::Ok;
}
BufferQueue::ErrorCode BufferQueue::releaseBuffer(Buffer &Buf) {
// Check whether the buffer being referred to is within the bounds of the
// backing store's range.
BufferRep *B = nullptr;
{
SpinMutexLock Guard(&Mutex);
if (Buf.Generation != generation() || LiveBuffers == 0) {
Buf = {};
decRefCount(Buf.BackingStore, Buf.Size, Buf.Count);
decRefCount(Buf.ExtentsBackingStore, kExtentsSize, Buf.Count);
return BufferQueue::ErrorCode::Ok;
}
if (Buf.Data < &BackingStore->Data ||
Buf.Data > &BackingStore->Data + (BufferCount * BufferSize))
return BufferQueue::ErrorCode::UnrecognizedBuffer;
--LiveBuffers;
B = First++;
if (First == (Buffers + BufferCount))
First = Buffers;
}
[XRay][compiler-rt] XRay Flight Data Recorder Mode Summary: In this change we introduce the notion of a "flight data recorder" mode for XRay logging, where XRay logs in-memory first, and write out data on-demand as required (as opposed to the naive implementation that keeps logging while tracing is "on"). This depends on D26232 where we implement the core data structure for holding the buffers that threads will be using to write out records of operation. This implementation only currently works on x86_64 and depends heavily on the TSC math to write out smaller records to the inmemory buffers. Also, this implementation defines two different kinds of records with different sizes (compared to the current naive implementation): a MetadataRecord (16 bytes) and a FunctionRecord (8 bytes). MetadataRecord entries are meant to write out information like the thread ID for which the metadata record is defined for, whether the execution of a thread moved to a different CPU, etc. while a FunctionRecord represents the different kinds of function call entry/exit records we might encounter in the course of a thread's execution along with a delta from the last time the logging handler was called. While this implementation is not exactly what is described in the original XRay whitepaper, this one gives us an initial implementation that we can iterate and build upon. Reviewers: echristo, rSerge, majnemer Subscribers: mehdi_amini, llvm-commits, mgorny Differential Revision: https://reviews.llvm.org/D27038 llvm-svn: 293015
2017-01-25 11:50:46 +08:00
// Now that the buffer has been released, we mark it as "used".
B->Buff = Buf;
B->Used = true;
decRefCount(Buf.BackingStore, Buf.Size, Buf.Count);
decRefCount(Buf.ExtentsBackingStore, kExtentsSize, Buf.Count);
atomic_store(B->Buff.Extents, atomic_load(Buf.Extents, memory_order_acquire),
memory_order_release);
Buf = {};
return ErrorCode::Ok;
}
BufferQueue::ErrorCode BufferQueue::finalize() {
if (atomic_exchange(&Finalizing, 1, memory_order_acq_rel))
return ErrorCode::QueueFinalizing;
return ErrorCode::Ok;
}
void BufferQueue::cleanupBuffers() {
for (auto B = Buffers, E = Buffers + BufferCount; B != E; ++B)
B->~BufferRep();
deallocateBuffer(Buffers, BufferCount);
decRefCount(BackingStore, BufferSize, BufferCount);
decRefCount(ExtentsBackingStore, kExtentsSize, BufferCount);
BackingStore = nullptr;
ExtentsBackingStore = nullptr;
Buffers = nullptr;
BufferCount = 0;
BufferSize = 0;
}
BufferQueue::~BufferQueue() { cleanupBuffers(); }