llvm-project/clang/test/FixIt/typo.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

46 lines
1.7 KiB
C
Raw Normal View History

// RUN: %clang_cc1 -fsyntax-only -verify %s
// RUN: not %clang_cc1 -fsyntax-only -fdiagnostics-parseable-fixits %s 2>&1 | FileCheck %s
// RUN: cp %s %t
// RUN: not %clang_cc1 -fsyntax-only -fixit -x c %t
// RUN: %clang_cc1 -fsyntax-only -pedantic -Werror -x c %t
struct Point {
float x, y;
};
struct Rectangle {
struct Point top_left, // expected-note{{'top_left' declared here}}
bottom_right;
};
enum Color { Red, Green, Blue };
struct Window {
struct Rectangle bounds; // expected-note{{'bounds' declared here}}
enum Color color;
};
struct Window window = {
.bunds. // expected-error{{field designator 'bunds' does not refer to any field in type 'struct Window'; did you mean 'bounds'?}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-1]]:4-[[@LINE-1]]:9}:"bounds"
topleft.x = 3.14, // expected-error{{field designator 'topleft' does not refer to any field in type 'struct Rectangle'; did you mean 'top_left'?}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-1]]:3-[[@LINE-1]]:10}:"top_left"
2.71818, 5.0, 6.0, Red
};
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
void test(void) {
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
Rectangle r1; // expected-error{{must use 'struct' tag to refer to type 'Rectangle'}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-1]]:3-[[@LINE-1]]:3}:"struct "
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
r1.top_left.x = 0;
typedef struct Rectangle Rectangle; // expected-note{{'Rectangle' declared here}}
rectangle *r2 = &r1; // expected-error{{unknown type name 'rectangle'; did you mean 'Rectangle'?}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-1]]:3-[[@LINE-1]]:12}:"Rectangle"
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
r2->top_left.y = 0;
unsinged *ptr = 0; // expected-error{{use of undeclared identifier 'unsinged'; did you mean 'unsigned'?}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-1]]:3-[[@LINE-1]]:11}:"unsigned"
Implement a new identifier-classification scheme where Sema performs name lookup for an identifier and resolves it to a type/expression/template/etc. in the same step. This scheme is intended to improve both performance (by reducing the number of redundant name lookups for a given identifier token) and error recovery (by giving Sema a chance to correct type names before the parser has decided that the identifier isn't a type name). For example, this allows us to properly typo-correct type names at the beginning of a statement: t.c:6:3: error: use of undeclared identifier 'integer'; did you mean 'Integer'? integer *i = 0; ^~~~~~~ Integer t.c:1:13: note: 'Integer' declared here typedef int Integer; ^ Previously, we wouldn't give a Fix-It because the typo correction occurred after the parser had checked whether "integer" was a type name (via Sema::getTypeName(), which isn't allowed to typo-correct) and therefore decided to parse "integer * i = 0" as an expression. By typo-correcting earlier, we typo-correct to the type name Integer and parse this as a declaration. Moreover, in this context, we can also typo-correct identifiers to keywords, e.g., t.c:7:3: error: use of undeclared identifier 'vid'; did you mean 'void'? vid *p = i; ^~~ void and recover appropriately. Note that this is very much a work-in-progress. The new Sema::ClassifyName is only used for expression-or-declaration disambiguation in C at the statement level. The next steps will be to make this work for the same disambiguation in C++ (where functional-style casts make some trouble), then push it further into the parser to eliminate more redundant name lookups. Fixes <rdar://problem/7963833> for C and starts us down the path of <rdar://problem/8172000>. llvm-svn: 130082
2011-04-24 13:37:28 +08:00
*ptr = 17;
}