llvm-project/lldb/source/Symbol/ArmUnwindInfo.cpp

372 lines
12 KiB
C++
Raw Normal View History

//===-- ArmUnwindInfo.cpp ---------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include <vector>
#include "Utility/ARM_DWARF_Registers.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/Section.h"
#include "lldb/Host/Endian.h"
#include "lldb/Symbol/ArmUnwindInfo.h"
#include "lldb/Symbol/SymbolVendor.h"
#include "lldb/Symbol/UnwindPlan.h"
/*
* Unwind information reader and parser for the ARM exception handling ABI
*
* Implemented based on:
* Exception Handling ABI for the ARM Architecture
* Document number: ARM IHI 0038A (current through ABI r2.09)
* Date of Issue: 25th January 2007, reissued 30th November 2012
* http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038a/IHI0038A_ehabi.pdf
*/
using namespace lldb;
using namespace lldb_private;
// Converts a prel31 avlue to lldb::addr_t with sign extension
static addr_t Prel31ToAddr(uint32_t prel31) {
addr_t res = prel31;
if (prel31 & (1 << 30))
res |= 0xffffffff80000000ULL;
return res;
}
ArmUnwindInfo::ArmExidxEntry::ArmExidxEntry(uint32_t f, lldb::addr_t a,
uint32_t d)
: file_address(f), address(a), data(d) {}
bool ArmUnwindInfo::ArmExidxEntry::operator<(const ArmExidxEntry &other) const {
return address < other.address;
}
ArmUnwindInfo::ArmUnwindInfo(const ObjectFile &objfile, SectionSP &arm_exidx,
SectionSP &arm_extab)
: m_byte_order(objfile.GetByteOrder()), m_arm_exidx_sp(arm_exidx),
m_arm_extab_sp(arm_extab) {
objfile.ReadSectionData(arm_exidx.get(), m_arm_exidx_data);
objfile.ReadSectionData(arm_extab.get(), m_arm_extab_data);
addr_t exidx_base_addr = m_arm_exidx_sp->GetFileAddress();
offset_t offset = 0;
while (m_arm_exidx_data.ValidOffset(offset)) {
lldb::addr_t file_addr = exidx_base_addr + offset;
lldb::addr_t addr = exidx_base_addr + (addr_t)offset +
Prel31ToAddr(m_arm_exidx_data.GetU32(&offset));
uint32_t data = m_arm_exidx_data.GetU32(&offset);
m_exidx_entries.emplace_back(file_addr, addr, data);
}
// Sort the entries in the exidx section. The entries should be sorted inside
// the section but
// some old compiler isn't sorted them.
std::sort(m_exidx_entries.begin(), m_exidx_entries.end());
}
ArmUnwindInfo::~ArmUnwindInfo() {}
// Read a byte from the unwind instruction stream with the given offset.
// Custom function is required because have to red in order of significance
// within their containing
// word (most significant byte first) and in increasing word address order.
uint8_t ArmUnwindInfo::GetByteAtOffset(const uint32_t *data,
uint16_t offset) const {
uint32_t value = data[offset / 4];
if (m_byte_order != endian::InlHostByteOrder())
value = llvm::ByteSwap_32(value);
return (value >> ((3 - (offset % 4)) * 8)) & 0xff;
}
uint64_t ArmUnwindInfo::GetULEB128(const uint32_t *data, uint16_t &offset,
uint16_t max_offset) const {
uint64_t result = 0;
uint8_t shift = 0;
while (offset < max_offset) {
uint8_t byte = GetByteAtOffset(data, offset++);
result |= (uint64_t)(byte & 0x7f) << shift;
if ((byte & 0x80) == 0)
break;
shift += 7;
}
return result;
}
bool ArmUnwindInfo::GetUnwindPlan(Target &target, const Address &addr,
UnwindPlan &unwind_plan) {
const uint32_t *data = (const uint32_t *)GetExceptionHandlingTableEntry(addr);
if (data == nullptr)
return false; // No unwind information for the function
if (data[0] == 0x1)
return false; // EXIDX_CANTUNWIND
uint16_t byte_count = 0;
uint16_t byte_offset = 0;
if (data[0] & 0x80000000) {
switch ((data[0] >> 24) & 0x0f) {
case 0:
byte_count = 4;
byte_offset = 1;
break;
case 1:
case 2:
byte_count = 4 * ((data[0] >> 16) & 0xff) + 4;
byte_offset = 2;
break;
default:
// Unhandled personality routine index
return false;
}
} else {
byte_count = 4 * ((data[1] >> 24) & 0xff) + 8;
byte_offset = 5;
}
uint8_t vsp_reg = dwarf_sp;
int32_t vsp = 0;
std::vector<std::pair<uint32_t, int32_t>>
register_offsets; // register -> (offset from vsp_reg)
while (byte_offset < byte_count) {
uint8_t byte1 = GetByteAtOffset(data, byte_offset++);
if ((byte1 & 0xc0) == 0x00) {
// 00xxxxxx
// vsp = vsp + (xxxxxx << 2) + 4. Covers range 0x04-0x100 inclusive
vsp += ((byte1 & 0x3f) << 2) + 4;
} else if ((byte1 & 0xc0) == 0x40) {
// 01xxxxxx
// vsp = vsp (xxxxxx << 2) - 4. Covers range 0x04-0x100 inclusive
vsp -= ((byte1 & 0x3f) << 2) + 4;
} else if ((byte1 & 0xf0) == 0x80) {
if (byte_offset >= byte_count)
return false;
uint8_t byte2 = GetByteAtOffset(data, byte_offset++);
if (byte1 == 0x80 && byte2 == 0) {
// 10000000 00000000
// Refuse to unwind (for example, out of a cleanup) (see remark a)
return false;
} else {
// 1000iiii iiiiiiii (i not all 0)
// Pop up to 12 integer registers under masks {r15-r12}, {r11-r4} (see
// remark b)
uint16_t regs = ((byte1 & 0x0f) << 8) | byte2;
for (uint8_t i = 0; i < 12; ++i) {
if (regs & (1 << i)) {
register_offsets.emplace_back(dwarf_r4 + i, vsp);
vsp += 4;
}
}
}
} else if ((byte1 & 0xff) == 0x9d) {
// 10011101
// Reserved as prefix for ARM register to register moves
return false;
} else if ((byte1 & 0xff) == 0x9f) {
// 10011111
// Reserved as prefix for Intel Wireless MMX register to register moves
return false;
} else if ((byte1 & 0xf0) == 0x90) {
// 1001nnnn (nnnn != 13,15)
// Set vsp = r[nnnn]
vsp_reg = dwarf_r0 + (byte1 & 0x0f);
} else if ((byte1 & 0xf8) == 0xa0) {
// 10100nnn
// Pop r4-r[4+nnn]
uint8_t n = byte1 & 0x7;
for (uint8_t i = 0; i <= n; ++i) {
register_offsets.emplace_back(dwarf_r4 + i, vsp);
vsp += 4;
}
} else if ((byte1 & 0xf8) == 0xa8) {
// 10101nnn
// Pop r4-r[4+nnn], r14
uint8_t n = byte1 & 0x7;
for (uint8_t i = 0; i <= n; ++i) {
register_offsets.emplace_back(dwarf_r4 + i, vsp);
vsp += 4;
}
register_offsets.emplace_back(dwarf_lr, vsp);
vsp += 4;
} else if ((byte1 & 0xff) == 0xb0) {
// 10110000
// Finish (see remark c)
break;
} else if ((byte1 & 0xff) == 0xb1) {
if (byte_offset >= byte_count)
return false;
uint8_t byte2 = GetByteAtOffset(data, byte_offset++);
if ((byte2 & 0xff) == 0x00) {
// 10110001 00000000
// Spare (see remark f)
return false;
} else if ((byte2 & 0xf0) == 0x00) {
// 10110001 0000iiii (i not all 0)
// Pop integer registers under mask {r3, r2, r1, r0}
for (uint8_t i = 0; i < 4; ++i) {
if (byte2 & (1 << i)) {
register_offsets.emplace_back(dwarf_r0 + i, vsp);
vsp += 4;
}
}
} else {
// 10110001 xxxxyyyy
// Spare (xxxx != 0000)
return false;
}
} else if ((byte1 & 0xff) == 0xb2) {
// 10110010 uleb128
// vsp = vsp + 0x204+ (uleb128 << 2)
uint64_t uleb128 = GetULEB128(data, byte_offset, byte_count);
vsp += 0x204 + (uleb128 << 2);
} else if ((byte1 & 0xff) == 0xb3) {
// 10110011 sssscccc
// Pop VFP double-precision registers D[ssss]-D[ssss+cccc] saved (as if)
// by FSTMFDX (see remark d)
if (byte_offset >= byte_count)
return false;
uint8_t byte2 = GetByteAtOffset(data, byte_offset++);
uint8_t s = (byte2 & 0xf0) >> 4;
uint8_t c = (byte2 & 0x0f) >> 0;
for (uint8_t i = 0; i <= c; ++i) {
register_offsets.emplace_back(dwarf_d0 + s + i, vsp);
vsp += 8;
}
vsp += 4;
} else if ((byte1 & 0xfc) == 0xb4) {
// 101101nn
// Spare (was Pop FPA)
return false;
} else if ((byte1 & 0xf8) == 0xb8) {
// 10111nnn
// Pop VFP double-precision registers D[8]-D[8+nnn] saved (as if) by
// FSTMFDX (see remark d)
uint8_t n = byte1 & 0x07;
for (uint8_t i = 0; i <= n; ++i) {
register_offsets.emplace_back(dwarf_d8 + i, vsp);
vsp += 8;
}
vsp += 4;
} else if ((byte1 & 0xf8) == 0xc0) {
// 11000nnn (nnn != 6,7)
// Intel Wireless MMX pop wR[10]-wR[10+nnn]
// 11000110 sssscccc
// Intel Wireless MMX pop wR[ssss]-wR[ssss+cccc] (see remark e)
// 11000111 00000000
// Spare
// 11000111 0000iiii
// Intel Wireless MMX pop wCGR registers under mask {wCGR3,2,1,0}
// 11000111 xxxxyyyy
// Spare (xxxx != 0000)
return false;
} else if ((byte1 & 0xff) == 0xc8) {
// 11001000 sssscccc
// Pop VFP double precision registers D[16+ssss]-D[16+ssss+cccc] saved (as
// if) by FSTMFDD (see remarks d,e)
if (byte_offset >= byte_count)
return false;
uint8_t byte2 = GetByteAtOffset(data, byte_offset++);
uint8_t s = (byte2 & 0xf0) >> 4;
uint8_t c = (byte2 & 0x0f) >> 0;
for (uint8_t i = 0; i <= c; ++i) {
register_offsets.emplace_back(dwarf_d16 + s + i, vsp);
vsp += 8;
}
} else if ((byte1 & 0xff) == 0xc9) {
// 11001001 sssscccc
// Pop VFP double precision registers D[ssss]-D[ssss+cccc] saved (as if)
// by FSTMFDD (see remark d)
if (byte_offset >= byte_count)
return false;
uint8_t byte2 = GetByteAtOffset(data, byte_offset++);
uint8_t s = (byte2 & 0xf0) >> 4;
uint8_t c = (byte2 & 0x0f) >> 0;
for (uint8_t i = 0; i <= c; ++i) {
register_offsets.emplace_back(dwarf_d0 + s + i, vsp);
vsp += 8;
}
} else if ((byte1 & 0xf8) == 0xc8) {
// 11001yyy
// Spare (yyy != 000, 001)
return false;
} else if ((byte1 & 0xf8) == 0xc0) {
// 11010nnn
// Pop VFP double-precision registers D[8]-D[8+nnn] saved (as if) by
// FSTMFDD (see remark d)
uint8_t n = byte1 & 0x07;
for (uint8_t i = 0; i <= n; ++i) {
register_offsets.emplace_back(dwarf_d8 + i, vsp);
vsp += 8;
}
} else if ((byte1 & 0xc0) == 0xc0) {
// 11xxxyyy Spare (xxx != 000, 001, 010)
return false;
} else {
return false;
}
}
UnwindPlan::RowSP row = std::make_shared<UnwindPlan::Row>();
row->SetOffset(0);
row->GetCFAValue().SetIsRegisterPlusOffset(vsp_reg, vsp);
bool have_location_for_pc = false;
for (const auto &offset : register_offsets) {
have_location_for_pc |= offset.first == dwarf_pc;
row->SetRegisterLocationToAtCFAPlusOffset(offset.first, offset.second - vsp,
true);
}
if (!have_location_for_pc) {
UnwindPlan::Row::RegisterLocation lr_location;
if (row->GetRegisterInfo(dwarf_lr, lr_location))
row->SetRegisterInfo(dwarf_pc, lr_location);
else
row->SetRegisterLocationToRegister(dwarf_pc, dwarf_lr, false);
}
unwind_plan.AppendRow(row);
unwind_plan.SetSourceName("ARM.exidx unwind info");
unwind_plan.SetSourcedFromCompiler(eLazyBoolYes);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
return true;
}
const uint8_t *
ArmUnwindInfo::GetExceptionHandlingTableEntry(const Address &addr) {
auto it = std::upper_bound(m_exidx_entries.begin(), m_exidx_entries.end(),
ArmExidxEntry{0, addr.GetFileAddress(), 0});
if (it == m_exidx_entries.begin())
return nullptr;
--it;
if (it->data == 0x1)
return nullptr; // EXIDX_CANTUNWIND
if (it->data & 0x80000000)
return (const uint8_t *)&it->data;
addr_t data_file_addr = it->file_address + 4 + Prel31ToAddr(it->data);
return m_arm_extab_data.GetDataStart() +
(data_file_addr - m_arm_extab_sp->GetFileAddress());
}