llvm-project/llvm/test/CodeGen/X86/merge-consecutive-loads-128.ll

1303 lines
48 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+sse2 | FileCheck %s --check-prefix=SSE --check-prefix=SSE2
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+sse4.1 | FileCheck %s --check-prefix=SSE --check-prefix=SSE41
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+avx | FileCheck %s --check-prefix=AVX --check-prefix=AVX1
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+avx2 | FileCheck %s --check-prefix=AVX --check-prefix=AVX2
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+avx512f | FileCheck %s --check-prefix=AVX --check-prefix=AVX512F
;
; 32-bit SSE tests to make sure we do reasonable things.
; RUN: llc < %s -mtriple=i686-unknown-unknown -mattr=+sse | FileCheck %s --check-prefix=X32-SSE --check-prefix=X32-SSE1
; RUN: llc < %s -mtriple=i686-unknown-unknown -mattr=+sse4.1 | FileCheck %s --check-prefix=X32-SSE --check-prefix=X32-SSE41
define <2 x double> @merge_2f64_f64_23(double* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_2f64_f64_23:
; SSE: # %bb.0:
; SSE-NEXT: movups 16(%rdi), %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: merge_2f64_f64_23:
; AVX: # %bb.0:
; AVX-NEXT: vmovups 16(%rdi), %xmm0
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_2f64_f64_23:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: fldl 16(%eax)
; X32-SSE1-NEXT: fldl 24(%eax)
; X32-SSE1-NEXT: fxch %st(1)
; X32-SSE1-NEXT: retl
;
; X32-SSE41-LABEL: merge_2f64_f64_23:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movups 16(%eax), %xmm0
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds double, double* %ptr, i64 2
%ptr1 = getelementptr inbounds double, double* %ptr, i64 3
%val0 = load double, double* %ptr0
%val1 = load double, double* %ptr1
%res0 = insertelement <2 x double> undef, double %val0, i32 0
%res1 = insertelement <2 x double> %res0, double %val1, i32 1
ret <2 x double> %res1
}
define <2 x i64> @merge_2i64_i64_12(i64* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_2i64_i64_12:
; SSE: # %bb.0:
; SSE-NEXT: movups 8(%rdi), %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: merge_2i64_i64_12:
; AVX: # %bb.0:
; AVX-NEXT: vmovups 8(%rdi), %xmm0
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_2i64_i64_12:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: pushl %edi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: pushl %esi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 12
; X32-SSE1-NEXT: .cfi_offset %esi, -12
; X32-SSE1-NEXT: .cfi_offset %edi, -8
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movl 8(%ecx), %edx
; X32-SSE1-NEXT: movl 12(%ecx), %esi
; X32-SSE1-NEXT: movl 16(%ecx), %edi
; X32-SSE1-NEXT: movl 20(%ecx), %ecx
; X32-SSE1-NEXT: movl %ecx, 12(%eax)
; X32-SSE1-NEXT: movl %edi, 8(%eax)
; X32-SSE1-NEXT: movl %esi, 4(%eax)
; X32-SSE1-NEXT: movl %edx, (%eax)
; X32-SSE1-NEXT: popl %esi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: popl %edi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 4
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: merge_2i64_i64_12:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movups 8(%eax), %xmm0
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds i64, i64* %ptr, i64 1
%ptr1 = getelementptr inbounds i64, i64* %ptr, i64 2
%val0 = load i64, i64* %ptr0
%val1 = load i64, i64* %ptr1
%res0 = insertelement <2 x i64> undef, i64 %val0, i32 0
%res1 = insertelement <2 x i64> %res0, i64 %val1, i32 1
ret <2 x i64> %res1
}
define <4 x float> @merge_4f32_f32_2345(float* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_4f32_f32_2345:
; SSE: # %bb.0:
; SSE-NEXT: movups 8(%rdi), %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: merge_4f32_f32_2345:
; AVX: # %bb.0:
; AVX-NEXT: vmovups 8(%rdi), %xmm0
; AVX-NEXT: retq
;
; X32-SSE-LABEL: merge_4f32_f32_2345:
; X32-SSE: # %bb.0:
; X32-SSE-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE-NEXT: movups 8(%eax), %xmm0
; X32-SSE-NEXT: retl
%ptr0 = getelementptr inbounds float, float* %ptr, i64 2
%ptr1 = getelementptr inbounds float, float* %ptr, i64 3
%ptr2 = getelementptr inbounds float, float* %ptr, i64 4
%ptr3 = getelementptr inbounds float, float* %ptr, i64 5
%val0 = load float, float* %ptr0
%val1 = load float, float* %ptr1
%val2 = load float, float* %ptr2
%val3 = load float, float* %ptr3
%res0 = insertelement <4 x float> undef, float %val0, i32 0
%res1 = insertelement <4 x float> %res0, float %val1, i32 1
%res2 = insertelement <4 x float> %res1, float %val2, i32 2
%res3 = insertelement <4 x float> %res2, float %val3, i32 3
ret <4 x float> %res3
}
define <4 x float> @merge_4f32_f32_3zuu(float* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_4f32_f32_3zuu:
; SSE: # %bb.0:
; SSE-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSE-NEXT: retq
;
; AVX-LABEL: merge_4f32_f32_3zuu:
; AVX: # %bb.0:
; AVX-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; AVX-NEXT: retq
;
; X32-SSE-LABEL: merge_4f32_f32_3zuu:
; X32-SSE: # %bb.0:
; X32-SSE-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-SSE-NEXT: retl
%ptr0 = getelementptr inbounds float, float* %ptr, i64 3
%val0 = load float, float* %ptr0
%res0 = insertelement <4 x float> undef, float %val0, i32 0
%res1 = insertelement <4 x float> %res0, float 0.0, i32 1
ret <4 x float> %res1
}
define <4 x float> @merge_4f32_f32_34uu(float* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_4f32_f32_34uu:
; SSE: # %bb.0:
; SSE-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; SSE-NEXT: retq
;
; AVX-LABEL: merge_4f32_f32_34uu:
; AVX: # %bb.0:
; AVX-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_4f32_f32_34uu:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-SSE1-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; X32-SSE1-NEXT: unpcklps {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1]
; X32-SSE1-NEXT: retl
;
; X32-SSE41-LABEL: merge_4f32_f32_34uu:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds float, float* %ptr, i64 3
%ptr1 = getelementptr inbounds float, float* %ptr, i64 4
%val0 = load float, float* %ptr0
%val1 = load float, float* %ptr1
%res0 = insertelement <4 x float> undef, float %val0, i32 0
%res1 = insertelement <4 x float> %res0, float %val1, i32 1
ret <4 x float> %res1
}
define <4 x float> @merge_4f32_f32_34z6(float* %ptr) nounwind uwtable noinline ssp {
; SSE2-LABEL: merge_4f32_f32_34z6:
; SSE2: # %bb.0:
; SSE2-NEXT: movups 12(%rdi), %xmm0
; SSE2-NEXT: xorps %xmm1, %xmm1
; SSE2-NEXT: shufps {{.*#+}} xmm1 = xmm1[2,0],xmm0[3,0]
; SSE2-NEXT: shufps {{.*#+}} xmm0 = xmm0[0,1],xmm1[0,2]
; SSE2-NEXT: retq
;
; SSE41-LABEL: merge_4f32_f32_34z6:
; SSE41: # %bb.0:
; SSE41-NEXT: movups 12(%rdi), %xmm1
; SSE41-NEXT: xorps %xmm0, %xmm0
; SSE41-NEXT: blendps {{.*#+}} xmm0 = xmm1[0,1],xmm0[2],xmm1[3]
; SSE41-NEXT: retq
;
; AVX-LABEL: merge_4f32_f32_34z6:
; AVX: # %bb.0:
; AVX-NEXT: vxorps %xmm0, %xmm0, %xmm0
; AVX-NEXT: vblendps {{.*#+}} xmm0 = mem[0,1],xmm0[2],mem[3]
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_4f32_f32_34z6:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movups 12(%eax), %xmm0
; X32-SSE1-NEXT: xorps %xmm1, %xmm1
; X32-SSE1-NEXT: shufps {{.*#+}} xmm1 = xmm1[2,0],xmm0[3,0]
; X32-SSE1-NEXT: shufps {{.*#+}} xmm0 = xmm0[0,1],xmm1[0,2]
; X32-SSE1-NEXT: retl
;
; X32-SSE41-LABEL: merge_4f32_f32_34z6:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movups 12(%eax), %xmm1
; X32-SSE41-NEXT: xorps %xmm0, %xmm0
; X32-SSE41-NEXT: blendps {{.*#+}} xmm0 = xmm1[0,1],xmm0[2],xmm1[3]
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds float, float* %ptr, i64 3
%ptr1 = getelementptr inbounds float, float* %ptr, i64 4
%ptr3 = getelementptr inbounds float, float* %ptr, i64 6
%val0 = load float, float* %ptr0
%val1 = load float, float* %ptr1
%val3 = load float, float* %ptr3
%res0 = insertelement <4 x float> zeroinitializer, float %val0, i32 0
%res1 = insertelement <4 x float> %res0, float %val1, i32 1
%res3 = insertelement <4 x float> %res1, float %val3, i32 3
ret <4 x float> %res3
}
define <4 x float> @merge_4f32_f32_45zz(float* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_4f32_f32_45zz:
; SSE: # %bb.0:
; SSE-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; SSE-NEXT: retq
;
; AVX-LABEL: merge_4f32_f32_45zz:
; AVX: # %bb.0:
; AVX-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_4f32_f32_45zz:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-SSE1-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; X32-SSE1-NEXT: unpcklps {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1]
; X32-SSE1-NEXT: xorps %xmm1, %xmm1
; X32-SSE1-NEXT: movlhps {{.*#+}} xmm0 = xmm0[0],xmm1[0]
; X32-SSE1-NEXT: retl
;
; X32-SSE41-LABEL: merge_4f32_f32_45zz:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds float, float* %ptr, i64 4
%ptr1 = getelementptr inbounds float, float* %ptr, i64 5
%val0 = load float, float* %ptr0
%val1 = load float, float* %ptr1
%res0 = insertelement <4 x float> zeroinitializer, float %val0, i32 0
%res1 = insertelement <4 x float> %res0, float %val1, i32 1
ret <4 x float> %res1
}
define <4 x float> @merge_4f32_f32_012u(float* %ptr) nounwind uwtable noinline ssp {
; SSE2-LABEL: merge_4f32_f32_012u:
; SSE2: # %bb.0:
; SSE2-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; SSE2-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; SSE2-NEXT: movlhps {{.*#+}} xmm0 = xmm0[0],xmm1[0]
; SSE2-NEXT: retq
;
; SSE41-LABEL: merge_4f32_f32_012u:
; SSE41: # %bb.0:
; SSE41-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; SSE41-NEXT: insertps {{.*#+}} xmm0 = xmm0[0,1],mem[0],xmm0[3]
; SSE41-NEXT: retq
;
; AVX-LABEL: merge_4f32_f32_012u:
; AVX: # %bb.0:
; AVX-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
; AVX-NEXT: vinsertps {{.*#+}} xmm0 = xmm0[0,1],mem[0],xmm0[3]
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_4f32_f32_012u:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; X32-SSE1-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-SSE1-NEXT: movss {{.*#+}} xmm2 = mem[0],zero,zero,zero
; X32-SSE1-NEXT: unpcklps {{.*#+}} xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1]
; X32-SSE1-NEXT: movlhps {{.*#+}} xmm0 = xmm0[0],xmm1[0]
; X32-SSE1-NEXT: retl
;
; X32-SSE41-LABEL: merge_4f32_f32_012u:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; X32-SSE41-NEXT: insertps {{.*#+}} xmm0 = xmm0[0,1],mem[0],xmm0[3]
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds float, float* %ptr, i64 0
%ptr1 = getelementptr inbounds float, float* %ptr, i64 1
%ptr2 = getelementptr inbounds float, float* %ptr, i64 2
%val0 = load float, float* %ptr0
%val1 = load float, float* %ptr1
%val2 = load float, float* %ptr2
%res0 = insertelement <4 x float> undef, float %val0, i32 0
%res1 = insertelement <4 x float> %res0, float %val1, i32 1
%res2 = insertelement <4 x float> %res1, float %val2, i32 2
%res3 = insertelement <4 x float> %res2, float undef, i32 3
ret <4 x float> %res3
}
define <4 x float> @merge_4f32_f32_019u(float* %ptr) nounwind uwtable noinline ssp {
; SSE2-LABEL: merge_4f32_f32_019u:
; SSE2: # %bb.0:
; SSE2-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; SSE2-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; SSE2-NEXT: movlhps {{.*#+}} xmm0 = xmm0[0],xmm1[0]
; SSE2-NEXT: retq
;
; SSE41-LABEL: merge_4f32_f32_019u:
; SSE41: # %bb.0:
; SSE41-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; SSE41-NEXT: insertps {{.*#+}} xmm0 = xmm0[0,1],mem[0],xmm0[3]
; SSE41-NEXT: retq
;
; AVX-LABEL: merge_4f32_f32_019u:
; AVX: # %bb.0:
; AVX-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
; AVX-NEXT: vinsertps {{.*#+}} xmm0 = xmm0[0,1],mem[0],xmm0[3]
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_4f32_f32_019u:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; X32-SSE1-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-SSE1-NEXT: movss {{.*#+}} xmm2 = mem[0],zero,zero,zero
; X32-SSE1-NEXT: unpcklps {{.*#+}} xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1]
; X32-SSE1-NEXT: movlhps {{.*#+}} xmm0 = xmm0[0],xmm1[0]
; X32-SSE1-NEXT: retl
;
; X32-SSE41-LABEL: merge_4f32_f32_019u:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; X32-SSE41-NEXT: insertps {{.*#+}} xmm0 = xmm0[0,1],mem[0],xmm0[3]
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds float, float* %ptr, i64 0
%ptr1 = getelementptr inbounds float, float* %ptr, i64 1
%ptr2 = getelementptr inbounds float, float* %ptr, i64 9
%val0 = load float, float* %ptr0
%val1 = load float, float* %ptr1
%val2 = load float, float* %ptr2
%res0 = insertelement <4 x float> undef, float %val0, i32 0
%res1 = insertelement <4 x float> %res0, float %val1, i32 1
%res2 = insertelement <4 x float> %res1, float %val2, i32 2
%res3 = insertelement <4 x float> %res2, float undef, i32 3
ret <4 x float> %res3
}
define <4 x i32> @merge_4i32_i32_23u5(i32* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_4i32_i32_23u5:
; SSE: # %bb.0:
; SSE-NEXT: movups 8(%rdi), %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: merge_4i32_i32_23u5:
; AVX: # %bb.0:
; AVX-NEXT: vmovups 8(%rdi), %xmm0
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_4i32_i32_23u5:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: pushl %esi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: .cfi_offset %esi, -8
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movl 8(%ecx), %edx
; X32-SSE1-NEXT: movl 12(%ecx), %esi
; X32-SSE1-NEXT: movl 20(%ecx), %ecx
; X32-SSE1-NEXT: movl %esi, 4(%eax)
; X32-SSE1-NEXT: movl %edx, (%eax)
; X32-SSE1-NEXT: movl %ecx, 12(%eax)
; X32-SSE1-NEXT: popl %esi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 4
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: merge_4i32_i32_23u5:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movups 8(%eax), %xmm0
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds i32, i32* %ptr, i64 2
%ptr1 = getelementptr inbounds i32, i32* %ptr, i64 3
%ptr3 = getelementptr inbounds i32, i32* %ptr, i64 5
%val0 = load i32, i32* %ptr0
%val1 = load i32, i32* %ptr1
%val3 = load i32, i32* %ptr3
%res0 = insertelement <4 x i32> undef, i32 %val0, i32 0
%res1 = insertelement <4 x i32> %res0, i32 %val1, i32 1
%res3 = insertelement <4 x i32> %res1, i32 %val3, i32 3
ret <4 x i32> %res3
}
define <4 x i32> @merge_4i32_i32_23u5_inc2(i32* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_4i32_i32_23u5_inc2:
; SSE: # %bb.0:
; SSE-NEXT: movups 8(%rdi), %xmm0
; SSE-NEXT: incl 8(%rdi)
; SSE-NEXT: retq
;
; AVX-LABEL: merge_4i32_i32_23u5_inc2:
; AVX: # %bb.0:
; AVX-NEXT: vmovups 8(%rdi), %xmm0
; AVX-NEXT: incl 8(%rdi)
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_4i32_i32_23u5_inc2:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: pushl %edi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: pushl %esi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 12
; X32-SSE1-NEXT: .cfi_offset %esi, -12
; X32-SSE1-NEXT: .cfi_offset %edi, -8
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movl 8(%ecx), %edx
; X32-SSE1-NEXT: movl 12(%ecx), %esi
; X32-SSE1-NEXT: leal 1(%edx), %edi
; X32-SSE1-NEXT: movl %edi, 8(%ecx)
; X32-SSE1-NEXT: movl 20(%ecx), %ecx
; X32-SSE1-NEXT: movl %esi, 4(%eax)
; X32-SSE1-NEXT: movl %edx, (%eax)
; X32-SSE1-NEXT: movl %ecx, 12(%eax)
; X32-SSE1-NEXT: popl %esi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: popl %edi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 4
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: merge_4i32_i32_23u5_inc2:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movups 8(%eax), %xmm0
; X32-SSE41-NEXT: incl 8(%eax)
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds i32, i32* %ptr, i64 2
%ptr1 = getelementptr inbounds i32, i32* %ptr, i64 3
%ptr3 = getelementptr inbounds i32, i32* %ptr, i64 5
%val0 = load i32, i32* %ptr0
%inc = add i32 %val0, 1
store i32 %inc, i32* %ptr0
%val1 = load i32, i32* %ptr1
%val3 = load i32, i32* %ptr3
%res0 = insertelement <4 x i32> undef, i32 %val0, i32 0
%res1 = insertelement <4 x i32> %res0, i32 %val1, i32 1
%res3 = insertelement <4 x i32> %res1, i32 %val3, i32 3
ret <4 x i32> %res3
}
define <4 x i32> @merge_4i32_i32_23u5_inc3(i32* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_4i32_i32_23u5_inc3:
; SSE: # %bb.0:
; SSE-NEXT: movups 8(%rdi), %xmm0
; SSE-NEXT: incl 12(%rdi)
; SSE-NEXT: retq
;
; AVX-LABEL: merge_4i32_i32_23u5_inc3:
; AVX: # %bb.0:
; AVX-NEXT: vmovups 8(%rdi), %xmm0
; AVX-NEXT: incl 12(%rdi)
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_4i32_i32_23u5_inc3:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: pushl %edi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: pushl %esi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 12
; X32-SSE1-NEXT: .cfi_offset %esi, -12
; X32-SSE1-NEXT: .cfi_offset %edi, -8
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movl 8(%ecx), %edx
; X32-SSE1-NEXT: movl 12(%ecx), %esi
; X32-SSE1-NEXT: leal 1(%esi), %edi
; X32-SSE1-NEXT: movl %edi, 12(%ecx)
; X32-SSE1-NEXT: movl 20(%ecx), %ecx
; X32-SSE1-NEXT: movl %esi, 4(%eax)
; X32-SSE1-NEXT: movl %edx, (%eax)
; X32-SSE1-NEXT: movl %ecx, 12(%eax)
; X32-SSE1-NEXT: popl %esi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: popl %edi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 4
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: merge_4i32_i32_23u5_inc3:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movups 8(%eax), %xmm0
; X32-SSE41-NEXT: incl 12(%eax)
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds i32, i32* %ptr, i64 2
%ptr1 = getelementptr inbounds i32, i32* %ptr, i64 3
%ptr3 = getelementptr inbounds i32, i32* %ptr, i64 5
%val0 = load i32, i32* %ptr0
%val1 = load i32, i32* %ptr1
%inc = add i32 %val1, 1
store i32 %inc, i32* %ptr1
%val3 = load i32, i32* %ptr3
%res0 = insertelement <4 x i32> undef, i32 %val0, i32 0
%res1 = insertelement <4 x i32> %res0, i32 %val1, i32 1
%res3 = insertelement <4 x i32> %res1, i32 %val3, i32 3
ret <4 x i32> %res3
}
define <4 x i32> @merge_4i32_i32_3zuu(i32* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_4i32_i32_3zuu:
; SSE: # %bb.0:
; SSE-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSE-NEXT: retq
;
; AVX-LABEL: merge_4i32_i32_3zuu:
; AVX: # %bb.0:
; AVX-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_4i32_i32_3zuu:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movl 12(%ecx), %ecx
; X32-SSE1-NEXT: movl %ecx, (%eax)
; X32-SSE1-NEXT: movl $0, 4(%eax)
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: merge_4i32_i32_3zuu:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds i32, i32* %ptr, i64 3
%val0 = load i32, i32* %ptr0
%res0 = insertelement <4 x i32> undef, i32 %val0, i32 0
%res1 = insertelement <4 x i32> %res0, i32 0, i32 1
ret <4 x i32> %res1
}
define <4 x i32> @merge_4i32_i32_34uu(i32* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_4i32_i32_34uu:
; SSE: # %bb.0:
; SSE-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; SSE-NEXT: retq
;
; AVX-LABEL: merge_4i32_i32_34uu:
; AVX: # %bb.0:
; AVX-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_4i32_i32_34uu:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movl 12(%ecx), %edx
; X32-SSE1-NEXT: movl 16(%ecx), %ecx
; X32-SSE1-NEXT: movl %ecx, 4(%eax)
; X32-SSE1-NEXT: movl %edx, (%eax)
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: merge_4i32_i32_34uu:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds i32, i32* %ptr, i64 3
%ptr1 = getelementptr inbounds i32, i32* %ptr, i64 4
%val0 = load i32, i32* %ptr0
%val1 = load i32, i32* %ptr1
%res0 = insertelement <4 x i32> undef, i32 %val0, i32 0
%res1 = insertelement <4 x i32> %res0, i32 %val1, i32 1
ret <4 x i32> %res1
}
define <4 x i32> @merge_4i32_i32_45zz(i32* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_4i32_i32_45zz:
; SSE: # %bb.0:
; SSE-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; SSE-NEXT: retq
;
; AVX-LABEL: merge_4i32_i32_45zz:
; AVX: # %bb.0:
; AVX-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_4i32_i32_45zz:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movl 16(%ecx), %edx
; X32-SSE1-NEXT: movl 20(%ecx), %ecx
; X32-SSE1-NEXT: movl %ecx, 4(%eax)
; X32-SSE1-NEXT: movl %edx, (%eax)
; X32-SSE1-NEXT: movl $0, 12(%eax)
; X32-SSE1-NEXT: movl $0, 8(%eax)
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: merge_4i32_i32_45zz:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds i32, i32* %ptr, i64 4
%ptr1 = getelementptr inbounds i32, i32* %ptr, i64 5
%val0 = load i32, i32* %ptr0
%val1 = load i32, i32* %ptr1
%res0 = insertelement <4 x i32> zeroinitializer, i32 %val0, i32 0
%res1 = insertelement <4 x i32> %res0, i32 %val1, i32 1
ret <4 x i32> %res1
}
define <4 x i32> @merge_4i32_i32_45zz_inc4(i32* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_4i32_i32_45zz_inc4:
; SSE: # %bb.0:
; SSE-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; SSE-NEXT: incl 16(%rdi)
; SSE-NEXT: retq
;
; AVX-LABEL: merge_4i32_i32_45zz_inc4:
; AVX: # %bb.0:
; AVX-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
; AVX-NEXT: incl 16(%rdi)
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_4i32_i32_45zz_inc4:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: pushl %edi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: pushl %esi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 12
; X32-SSE1-NEXT: .cfi_offset %esi, -12
; X32-SSE1-NEXT: .cfi_offset %edi, -8
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movl 16(%ecx), %edx
; X32-SSE1-NEXT: movl 20(%ecx), %esi
; X32-SSE1-NEXT: leal 1(%edx), %edi
; X32-SSE1-NEXT: movl %edi, 16(%ecx)
; X32-SSE1-NEXT: movl %esi, 4(%eax)
; X32-SSE1-NEXT: movl %edx, (%eax)
; X32-SSE1-NEXT: movl $0, 12(%eax)
; X32-SSE1-NEXT: movl $0, 8(%eax)
; X32-SSE1-NEXT: popl %esi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: popl %edi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 4
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: merge_4i32_i32_45zz_inc4:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; X32-SSE41-NEXT: incl 16(%eax)
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds i32, i32* %ptr, i64 4
%ptr1 = getelementptr inbounds i32, i32* %ptr, i64 5
%val0 = load i32, i32* %ptr0
%inc = add i32 %val0, 1
store i32 %inc, i32* %ptr0
%val1 = load i32, i32* %ptr1
%res0 = insertelement <4 x i32> zeroinitializer, i32 %val0, i32 0
%res1 = insertelement <4 x i32> %res0, i32 %val1, i32 1
ret <4 x i32> %res1
}
define <4 x i32> @merge_4i32_i32_45zz_inc5(i32* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_4i32_i32_45zz_inc5:
; SSE: # %bb.0:
; SSE-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; SSE-NEXT: incl 20(%rdi)
; SSE-NEXT: retq
;
; AVX-LABEL: merge_4i32_i32_45zz_inc5:
; AVX: # %bb.0:
; AVX-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
; AVX-NEXT: incl 20(%rdi)
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_4i32_i32_45zz_inc5:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: pushl %edi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: pushl %esi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 12
; X32-SSE1-NEXT: .cfi_offset %esi, -12
; X32-SSE1-NEXT: .cfi_offset %edi, -8
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movl 16(%ecx), %edx
; X32-SSE1-NEXT: movl 20(%ecx), %esi
; X32-SSE1-NEXT: leal 1(%esi), %edi
; X32-SSE1-NEXT: movl %edi, 20(%ecx)
; X32-SSE1-NEXT: movl %esi, 4(%eax)
; X32-SSE1-NEXT: movl %edx, (%eax)
; X32-SSE1-NEXT: movl $0, 12(%eax)
; X32-SSE1-NEXT: movl $0, 8(%eax)
; X32-SSE1-NEXT: popl %esi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: popl %edi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 4
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: merge_4i32_i32_45zz_inc5:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; X32-SSE41-NEXT: incl 20(%eax)
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds i32, i32* %ptr, i64 4
%ptr1 = getelementptr inbounds i32, i32* %ptr, i64 5
%val0 = load i32, i32* %ptr0
%val1 = load i32, i32* %ptr1
%inc = add i32 %val1, 1
store i32 %inc, i32* %ptr1
%res0 = insertelement <4 x i32> zeroinitializer, i32 %val0, i32 0
%res1 = insertelement <4 x i32> %res0, i32 %val1, i32 1
ret <4 x i32> %res1
}
define <8 x i16> @merge_8i16_i16_23u567u9(i16* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_8i16_i16_23u567u9:
; SSE: # %bb.0:
; SSE-NEXT: movups 4(%rdi), %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: merge_8i16_i16_23u567u9:
; AVX: # %bb.0:
; AVX-NEXT: vmovups 4(%rdi), %xmm0
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_8i16_i16_23u567u9:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: pushl %edi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: pushl %esi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 12
; X32-SSE1-NEXT: .cfi_offset %esi, -12
; X32-SSE1-NEXT: .cfi_offset %edi, -8
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movl 4(%ecx), %edx
; X32-SSE1-NEXT: movl 10(%ecx), %esi
; X32-SSE1-NEXT: movzwl 14(%ecx), %edi
; X32-SSE1-NEXT: movzwl 18(%ecx), %ecx
; X32-SSE1-NEXT: movw %di, 10(%eax)
; X32-SSE1-NEXT: movw %cx, 14(%eax)
; X32-SSE1-NEXT: movl %esi, 6(%eax)
; X32-SSE1-NEXT: movl %edx, (%eax)
; X32-SSE1-NEXT: popl %esi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: popl %edi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 4
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: merge_8i16_i16_23u567u9:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movups 4(%eax), %xmm0
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds i16, i16* %ptr, i64 2
%ptr1 = getelementptr inbounds i16, i16* %ptr, i64 3
%ptr3 = getelementptr inbounds i16, i16* %ptr, i64 5
%ptr4 = getelementptr inbounds i16, i16* %ptr, i64 6
%ptr5 = getelementptr inbounds i16, i16* %ptr, i64 7
%ptr7 = getelementptr inbounds i16, i16* %ptr, i64 9
%val0 = load i16, i16* %ptr0
%val1 = load i16, i16* %ptr1
%val3 = load i16, i16* %ptr3
%val4 = load i16, i16* %ptr4
%val5 = load i16, i16* %ptr5
%val7 = load i16, i16* %ptr7
%res0 = insertelement <8 x i16> undef, i16 %val0, i32 0
%res1 = insertelement <8 x i16> %res0, i16 %val1, i32 1
%res3 = insertelement <8 x i16> %res1, i16 %val3, i32 3
%res4 = insertelement <8 x i16> %res3, i16 %val4, i32 4
%res5 = insertelement <8 x i16> %res4, i16 %val5, i32 5
%res7 = insertelement <8 x i16> %res5, i16 %val7, i32 7
ret <8 x i16> %res7
}
define <8 x i16> @merge_8i16_i16_34uuuuuu(i16* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_8i16_i16_34uuuuuu:
; SSE: # %bb.0:
; SSE-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSE-NEXT: retq
;
; AVX-LABEL: merge_8i16_i16_34uuuuuu:
; AVX: # %bb.0:
; AVX-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_8i16_i16_34uuuuuu:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movl 6(%ecx), %ecx
; X32-SSE1-NEXT: movl %ecx, (%eax)
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: merge_8i16_i16_34uuuuuu:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds i16, i16* %ptr, i64 3
%ptr1 = getelementptr inbounds i16, i16* %ptr, i64 4
%val0 = load i16, i16* %ptr0
%val1 = load i16, i16* %ptr1
%res0 = insertelement <8 x i16> undef, i16 %val0, i32 0
%res1 = insertelement <8 x i16> %res0, i16 %val1, i32 1
ret <8 x i16> %res1
}
define <8 x i16> @merge_8i16_i16_45u7zzzz(i16* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_8i16_i16_45u7zzzz:
; SSE: # %bb.0:
; SSE-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; SSE-NEXT: retq
;
; AVX-LABEL: merge_8i16_i16_45u7zzzz:
; AVX: # %bb.0:
; AVX-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_8i16_i16_45u7zzzz:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movl 8(%ecx), %edx
; X32-SSE1-NEXT: movzwl 14(%ecx), %ecx
; X32-SSE1-NEXT: movw %cx, 6(%eax)
; X32-SSE1-NEXT: movl %edx, (%eax)
; X32-SSE1-NEXT: movl $0, 12(%eax)
; X32-SSE1-NEXT: movl $0, 8(%eax)
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: merge_8i16_i16_45u7zzzz:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds i16, i16* %ptr, i64 4
%ptr1 = getelementptr inbounds i16, i16* %ptr, i64 5
%ptr3 = getelementptr inbounds i16, i16* %ptr, i64 7
%val0 = load i16, i16* %ptr0
%val1 = load i16, i16* %ptr1
%val3 = load i16, i16* %ptr3
%res0 = insertelement <8 x i16> undef, i16 %val0, i32 0
%res1 = insertelement <8 x i16> %res0, i16 %val1, i32 1
%res3 = insertelement <8 x i16> %res1, i16 %val3, i32 3
%res4 = insertelement <8 x i16> %res3, i16 0, i32 4
%res5 = insertelement <8 x i16> %res4, i16 0, i32 5
%res6 = insertelement <8 x i16> %res5, i16 0, i32 6
%res7 = insertelement <8 x i16> %res6, i16 0, i32 7
ret <8 x i16> %res7
}
define <16 x i8> @merge_16i8_i8_01u3456789ABCDuF(i8* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_16i8_i8_01u3456789ABCDuF:
; SSE: # %bb.0:
; SSE-NEXT: movups (%rdi), %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: merge_16i8_i8_01u3456789ABCDuF:
; AVX: # %bb.0:
; AVX-NEXT: vmovups (%rdi), %xmm0
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_16i8_i8_01u3456789ABCDuF:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: pushl %ebp
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: pushl %ebx
; X32-SSE1-NEXT: .cfi_def_cfa_offset 12
; X32-SSE1-NEXT: pushl %edi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 16
; X32-SSE1-NEXT: pushl %esi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 20
; X32-SSE1-NEXT: .cfi_offset %esi, -20
; X32-SSE1-NEXT: .cfi_offset %edi, -16
; X32-SSE1-NEXT: .cfi_offset %ebx, -12
; X32-SSE1-NEXT: .cfi_offset %ebp, -8
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movzwl (%ecx), %ebp
; X32-SSE1-NEXT: movl 3(%ecx), %esi
; X32-SSE1-NEXT: movl 7(%ecx), %edi
; X32-SSE1-NEXT: movzwl 11(%ecx), %ebx
; X32-SSE1-NEXT: movb 13(%ecx), %dl
; X32-SSE1-NEXT: movb 15(%ecx), %cl
; X32-SSE1-NEXT: movb %dl, 13(%eax)
; X32-SSE1-NEXT: movb %cl, 15(%eax)
; X32-SSE1-NEXT: movw %bx, 11(%eax)
; X32-SSE1-NEXT: movl %edi, 7(%eax)
; X32-SSE1-NEXT: movl %esi, 3(%eax)
; X32-SSE1-NEXT: movw %bp, (%eax)
; X32-SSE1-NEXT: popl %esi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 16
; X32-SSE1-NEXT: popl %edi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 12
; X32-SSE1-NEXT: popl %ebx
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: popl %ebp
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 4
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: merge_16i8_i8_01u3456789ABCDuF:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movups (%eax), %xmm0
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds i8, i8* %ptr, i64 0
%ptr1 = getelementptr inbounds i8, i8* %ptr, i64 1
%ptr3 = getelementptr inbounds i8, i8* %ptr, i64 3
%ptr4 = getelementptr inbounds i8, i8* %ptr, i64 4
%ptr5 = getelementptr inbounds i8, i8* %ptr, i64 5
%ptr6 = getelementptr inbounds i8, i8* %ptr, i64 6
%ptr7 = getelementptr inbounds i8, i8* %ptr, i64 7
%ptr8 = getelementptr inbounds i8, i8* %ptr, i64 8
%ptr9 = getelementptr inbounds i8, i8* %ptr, i64 9
%ptrA = getelementptr inbounds i8, i8* %ptr, i64 10
%ptrB = getelementptr inbounds i8, i8* %ptr, i64 11
%ptrC = getelementptr inbounds i8, i8* %ptr, i64 12
%ptrD = getelementptr inbounds i8, i8* %ptr, i64 13
%ptrF = getelementptr inbounds i8, i8* %ptr, i64 15
%val0 = load i8, i8* %ptr0
%val1 = load i8, i8* %ptr1
%val3 = load i8, i8* %ptr3
%val4 = load i8, i8* %ptr4
%val5 = load i8, i8* %ptr5
%val6 = load i8, i8* %ptr6
%val7 = load i8, i8* %ptr7
%val8 = load i8, i8* %ptr8
%val9 = load i8, i8* %ptr9
%valA = load i8, i8* %ptrA
%valB = load i8, i8* %ptrB
%valC = load i8, i8* %ptrC
%valD = load i8, i8* %ptrD
%valF = load i8, i8* %ptrF
%res0 = insertelement <16 x i8> undef, i8 %val0, i32 0
%res1 = insertelement <16 x i8> %res0, i8 %val1, i32 1
%res3 = insertelement <16 x i8> %res1, i8 %val3, i32 3
%res4 = insertelement <16 x i8> %res3, i8 %val4, i32 4
%res5 = insertelement <16 x i8> %res4, i8 %val5, i32 5
%res6 = insertelement <16 x i8> %res5, i8 %val6, i32 6
%res7 = insertelement <16 x i8> %res6, i8 %val7, i32 7
%res8 = insertelement <16 x i8> %res7, i8 %val8, i32 8
%res9 = insertelement <16 x i8> %res8, i8 %val9, i32 9
%resA = insertelement <16 x i8> %res9, i8 %valA, i32 10
%resB = insertelement <16 x i8> %resA, i8 %valB, i32 11
%resC = insertelement <16 x i8> %resB, i8 %valC, i32 12
%resD = insertelement <16 x i8> %resC, i8 %valD, i32 13
%resF = insertelement <16 x i8> %resD, i8 %valF, i32 15
ret <16 x i8> %resF
}
define <16 x i8> @merge_16i8_i8_01u3uuzzuuuuuzzz(i8* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_16i8_i8_01u3uuzzuuuuuzzz:
; SSE: # %bb.0:
; SSE-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSE-NEXT: retq
;
; AVX-LABEL: merge_16i8_i8_01u3uuzzuuuuuzzz:
; AVX: # %bb.0:
; AVX-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_16i8_i8_01u3uuzzuuuuuzzz:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movzwl (%ecx), %edx
; X32-SSE1-NEXT: movb 3(%ecx), %cl
; X32-SSE1-NEXT: movb %cl, 3(%eax)
; X32-SSE1-NEXT: movw %dx, (%eax)
; X32-SSE1-NEXT: movb $0, 15(%eax)
; X32-SSE1-NEXT: movw $0, 13(%eax)
; X32-SSE1-NEXT: movw $0, 6(%eax)
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: merge_16i8_i8_01u3uuzzuuuuuzzz:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds i8, i8* %ptr, i64 0
%ptr1 = getelementptr inbounds i8, i8* %ptr, i64 1
%ptr3 = getelementptr inbounds i8, i8* %ptr, i64 3
%val0 = load i8, i8* %ptr0
%val1 = load i8, i8* %ptr1
%val3 = load i8, i8* %ptr3
%res0 = insertelement <16 x i8> undef, i8 %val0, i32 0
%res1 = insertelement <16 x i8> %res0, i8 %val1, i32 1
%res3 = insertelement <16 x i8> %res1, i8 %val3, i32 3
%res6 = insertelement <16 x i8> %res3, i8 0, i32 6
%res7 = insertelement <16 x i8> %res6, i8 0, i32 7
%resD = insertelement <16 x i8> %res7, i8 0, i32 13
%resE = insertelement <16 x i8> %resD, i8 0, i32 14
%resF = insertelement <16 x i8> %resE, i8 0, i32 15
ret <16 x i8> %resF
}
define <16 x i8> @merge_16i8_i8_0123uu67uuuuuzzz(i8* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_16i8_i8_0123uu67uuuuuzzz:
; SSE: # %bb.0:
; SSE-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; SSE-NEXT: retq
;
; AVX-LABEL: merge_16i8_i8_0123uu67uuuuuzzz:
; AVX: # %bb.0:
; AVX-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_16i8_i8_0123uu67uuuuuzzz:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movl (%ecx), %edx
; X32-SSE1-NEXT: movzwl 6(%ecx), %ecx
; X32-SSE1-NEXT: movw %cx, 6(%eax)
; X32-SSE1-NEXT: movl %edx, (%eax)
; X32-SSE1-NEXT: movb $0, 15(%eax)
; X32-SSE1-NEXT: movw $0, 13(%eax)
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: merge_16i8_i8_0123uu67uuuuuzzz:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds i8, i8* %ptr, i64 0
%ptr1 = getelementptr inbounds i8, i8* %ptr, i64 1
%ptr2 = getelementptr inbounds i8, i8* %ptr, i64 2
%ptr3 = getelementptr inbounds i8, i8* %ptr, i64 3
%ptr6 = getelementptr inbounds i8, i8* %ptr, i64 6
%ptr7 = getelementptr inbounds i8, i8* %ptr, i64 7
%val0 = load i8, i8* %ptr0
%val1 = load i8, i8* %ptr1
%val2 = load i8, i8* %ptr2
%val3 = load i8, i8* %ptr3
%val6 = load i8, i8* %ptr6
%val7 = load i8, i8* %ptr7
%res0 = insertelement <16 x i8> undef, i8 %val0, i32 0
%res1 = insertelement <16 x i8> %res0, i8 %val1, i32 1
%res2 = insertelement <16 x i8> %res1, i8 %val2, i32 2
%res3 = insertelement <16 x i8> %res2, i8 %val3, i32 3
%res6 = insertelement <16 x i8> %res3, i8 %val6, i32 6
%res7 = insertelement <16 x i8> %res6, i8 %val7, i32 7
%resD = insertelement <16 x i8> %res7, i8 0, i32 13
%resE = insertelement <16 x i8> %resD, i8 0, i32 14
2016-02-06 23:38:25 +08:00
%resF = insertelement <16 x i8> %resE, i8 0, i32 15
ret <16 x i8> %resF
}
define void @merge_4i32_i32_combine(<4 x i32>* %dst, i32* %src) {
; SSE-LABEL: merge_4i32_i32_combine:
; SSE: # %bb.0:
; SSE-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSE-NEXT: movaps %xmm0, (%rdi)
2016-02-06 23:38:25 +08:00
; SSE-NEXT: retq
;
; AVX-LABEL: merge_4i32_i32_combine:
; AVX: # %bb.0:
; AVX-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; AVX-NEXT: vmovaps %xmm0, (%rdi)
; AVX-NEXT: retq
2016-02-06 23:38:25 +08:00
;
; X32-SSE1-LABEL: merge_4i32_i32_combine:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-SSE1-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; X32-SSE1-NEXT: andps %xmm0, %xmm1
; X32-SSE1-NEXT: movaps %xmm1, (%eax)
; X32-SSE1-NEXT: retl
;
; X32-SSE41-LABEL: merge_4i32_i32_combine:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE41-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-SSE41-NEXT: movaps %xmm0, (%eax)
; X32-SSE41-NEXT: retl
2016-02-06 23:38:25 +08:00
%1 = getelementptr i32, i32* %src, i32 0
%2 = load i32, i32* %1
%3 = insertelement <4 x i32> undef, i32 %2, i32 0
%4 = shufflevector <4 x i32> %3, <4 x i32> undef, <4 x i32> zeroinitializer
%5 = lshr <4 x i32> %4, <i32 0, i32 undef, i32 undef, i32 undef>
%6 = and <4 x i32> %5, <i32 -1, i32 0, i32 0, i32 0>
store <4 x i32> %6, <4 x i32>* %dst
ret void
}
;
; consecutive loads including any/all volatiles may not be combined
;
define <2 x i64> @merge_2i64_i64_12_volatile(i64* %ptr) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_2i64_i64_12_volatile:
; SSE: # %bb.0:
; SSE-NEXT: movsd {{.*#+}} xmm0 = mem[0],zero
; SSE-NEXT: movsd {{.*#+}} xmm1 = mem[0],zero
; SSE-NEXT: movlhps {{.*#+}} xmm0 = xmm0[0],xmm1[0]
; SSE-NEXT: retq
;
; AVX-LABEL: merge_2i64_i64_12_volatile:
; AVX: # %bb.0:
; AVX-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
; AVX-NEXT: vmovsd {{.*#+}} xmm1 = mem[0],zero
; AVX-NEXT: vmovlhps {{.*#+}} xmm0 = xmm0[0],xmm1[0]
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_2i64_i64_12_volatile:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: pushl %edi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: pushl %esi
; X32-SSE1-NEXT: .cfi_def_cfa_offset 12
; X32-SSE1-NEXT: .cfi_offset %esi, -12
; X32-SSE1-NEXT: .cfi_offset %edi, -8
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movl 8(%ecx), %edx
; X32-SSE1-NEXT: movl 12(%ecx), %esi
; X32-SSE1-NEXT: movl 16(%ecx), %edi
; X32-SSE1-NEXT: movl 20(%ecx), %ecx
; X32-SSE1-NEXT: movl %ecx, 12(%eax)
; X32-SSE1-NEXT: movl %edi, 8(%eax)
; X32-SSE1-NEXT: movl %esi, 4(%eax)
; X32-SSE1-NEXT: movl %edx, (%eax)
; X32-SSE1-NEXT: popl %esi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 8
; X32-SSE1-NEXT: popl %edi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-SSE1-NEXT: .cfi_def_cfa_offset 4
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: merge_2i64_i64_12_volatile:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movd {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-SSE41-NEXT: pinsrd $1, 12(%eax), %xmm0
; X32-SSE41-NEXT: pinsrd $2, 16(%eax), %xmm0
; X32-SSE41-NEXT: pinsrd $3, 20(%eax), %xmm0
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds i64, i64* %ptr, i64 1
%ptr1 = getelementptr inbounds i64, i64* %ptr, i64 2
%val0 = load volatile i64, i64* %ptr0
%val1 = load volatile i64, i64* %ptr1
%res0 = insertelement <2 x i64> undef, i64 %val0, i32 0
%res1 = insertelement <2 x i64> %res0, i64 %val1, i32 1
ret <2 x i64> %res1
}
define <4 x float> @merge_4f32_f32_2345_volatile(float* %ptr) nounwind uwtable noinline ssp {
; SSE2-LABEL: merge_4f32_f32_2345_volatile:
; SSE2: # %bb.0:
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled. Recommiting with compiler time improvements Recommitting after fixup of 32-bit aliasing sign offset bug in DAGCombiner. * Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search and chain alias analysis which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. When merging stores search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and the output Codegen (save perhaps for some ARM cases where we correctly constructs wider loads, but then promotes them to float operations which appear but requires more expensive constant generation). Some minor peephole optimizations to deal with improved SubDAG shapes (listed below) Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seems sufficient to not cause regressions in tests. 5. Remove Chain dependencies of Memory operations on CopyfromReg nodes as these are captured by data dependence 6. Forward loads-store values through tokenfactors containing {CopyToReg,CopyFromReg} Values. 7. Peephole to convert buildvector of extract_vector_elt to extract_subvector if possible (see CodeGen/AArch64/store-merge.ll) 8. Store merging for the ARM target is restricted to 32-bit as some in some contexts invalid 64-bit operations are being generated. This can be removed once appropriate checks are added. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable, improving load-store forwarding. One test in particular is worth noting: CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store forwarding converts a load-store pair into a parallel store and a memory-realized bitcast of the same value. However, because we lose the sharing of the explicit and implicit store values we must create another local store. A similar transformation happens before SelectionDAG as well. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle llvm-svn: 297695
2017-03-14 08:34:14 +08:00
; SSE2-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSE2-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; SSE2-NEXT: unpcklps {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1]
; SSE2-NEXT: movhps {{.*#+}} xmm0 = xmm0[0,1],mem[0,1]
; SSE2-NEXT: retq
;
; SSE41-LABEL: merge_4f32_f32_2345_volatile:
; SSE41: # %bb.0:
; SSE41-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSE41-NEXT: insertps {{.*#+}} xmm0 = xmm0[0],mem[0],xmm0[2,3]
; SSE41-NEXT: insertps {{.*#+}} xmm0 = xmm0[0,1],mem[0],xmm0[3]
; SSE41-NEXT: insertps {{.*#+}} xmm0 = xmm0[0,1,2],mem[0]
; SSE41-NEXT: retq
;
; AVX-LABEL: merge_4f32_f32_2345_volatile:
; AVX: # %bb.0:
; AVX-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; AVX-NEXT: vinsertps {{.*#+}} xmm0 = xmm0[0],mem[0],xmm0[2,3]
; AVX-NEXT: vinsertps {{.*#+}} xmm0 = xmm0[0,1],mem[0],xmm0[3]
; AVX-NEXT: vinsertps {{.*#+}} xmm0 = xmm0[0,1,2],mem[0]
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: merge_4f32_f32_2345_volatile:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-SSE1-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; X32-SSE1-NEXT: unpcklps {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1]
; X32-SSE1-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-SSE1-NEXT: movss {{.*#+}} xmm2 = mem[0],zero,zero,zero
; X32-SSE1-NEXT: unpcklps {{.*#+}} xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1]
; X32-SSE1-NEXT: movlhps {{.*#+}} xmm0 = xmm0[0],xmm1[0]
; X32-SSE1-NEXT: retl
;
; X32-SSE41-LABEL: merge_4f32_f32_2345_volatile:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-SSE41-NEXT: insertps {{.*#+}} xmm0 = xmm0[0],mem[0],xmm0[2,3]
; X32-SSE41-NEXT: insertps {{.*#+}} xmm0 = xmm0[0,1],mem[0],xmm0[3]
; X32-SSE41-NEXT: insertps {{.*#+}} xmm0 = xmm0[0,1,2],mem[0]
; X32-SSE41-NEXT: retl
%ptr0 = getelementptr inbounds float, float* %ptr, i64 2
%ptr1 = getelementptr inbounds float, float* %ptr, i64 3
%ptr2 = getelementptr inbounds float, float* %ptr, i64 4
%ptr3 = getelementptr inbounds float, float* %ptr, i64 5
%val0 = load volatile float, float* %ptr0
%val1 = load float, float* %ptr1
%val2 = load float, float* %ptr2
%val3 = load float, float* %ptr3
%res0 = insertelement <4 x float> undef, float %val0, i32 0
%res1 = insertelement <4 x float> %res0, float %val1, i32 1
%res2 = insertelement <4 x float> %res1, float %val2, i32 2
%res3 = insertelement <4 x float> %res2, float %val3, i32 3
ret <4 x float> %res3
}
;
; Non-consecutive test.
;
define <4 x float> @merge_4f32_f32_X0YY(float* %ptr0, float* %ptr1) nounwind uwtable noinline ssp {
; SSE-LABEL: merge_4f32_f32_X0YY:
; SSE: # %bb.0:
; SSE-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; SSE-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSE-NEXT: shufps {{.*#+}} xmm0 = xmm0[0,1],xmm1[0,0]
; SSE-NEXT: retq
;
; AVX-LABEL: merge_4f32_f32_X0YY:
; AVX: # %bb.0:
; AVX-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; AVX-NEXT: vmovss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; AVX-NEXT: vshufps {{.*#+}} xmm0 = xmm1[0,1],xmm0[0,0]
; AVX-NEXT: retq
;
; X32-SSE-LABEL: merge_4f32_f32_X0YY:
; X32-SSE: # %bb.0:
; X32-SSE-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; X32-SSE-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-SSE-NEXT: shufps {{.*#+}} xmm0 = xmm0[0,1],xmm1[0,0]
; X32-SSE-NEXT: retl
%val0 = load float, float* %ptr0, align 4
%val1 = load float, float* %ptr1, align 4
%res0 = insertelement <4 x float> undef, float %val0, i32 0
%res1 = insertelement <4 x float> %res0, float 0.000000e+00, i32 1
%res2 = insertelement <4 x float> %res1, float %val1, i32 2
%res3 = insertelement <4 x float> %res2, float %val1, i32 3
ret <4 x float> %res3
}
;
; Extension tests.
;
; PR31309
define <4 x i32> @load_i32_zext_i128_v4i32(i32* %ptr) {
; SSE-LABEL: load_i32_zext_i128_v4i32:
; SSE: # %bb.0:
; SSE-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSE-NEXT: retq
;
; AVX-LABEL: load_i32_zext_i128_v4i32:
; AVX: # %bb.0:
; AVX-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; AVX-NEXT: retq
;
; X32-SSE1-LABEL: load_i32_zext_i128_v4i32:
; X32-SSE1: # %bb.0:
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE1-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-SSE1-NEXT: movl (%ecx), %ecx
; X32-SSE1-NEXT: movl %ecx, (%eax)
; X32-SSE1-NEXT: movl $0, 12(%eax)
; X32-SSE1-NEXT: movl $0, 8(%eax)
; X32-SSE1-NEXT: movl $0, 4(%eax)
; X32-SSE1-NEXT: retl $4
;
; X32-SSE41-LABEL: load_i32_zext_i128_v4i32:
; X32-SSE41: # %bb.0:
; X32-SSE41-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-SSE41-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-SSE41-NEXT: retl
%1 = load i32, i32* %ptr
%2 = zext i32 %1 to i128
%3 = bitcast i128 %2 to <4 x i32>
ret <4 x i32> %3
}