2013-04-06 01:05:56 +08:00
|
|
|
; We specify -mcpu explicitly to avoid instruction reordering that happens on
|
|
|
|
; some setups (e.g., Atom) from affecting the output.
|
|
|
|
; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32
|
2013-12-04 09:25:24 +08:00
|
|
|
; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86
|
2014-04-06 18:01:23 +08:00
|
|
|
; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-cygwin | FileCheck %s -check-prefix=CYGWIN
|
2013-12-04 09:25:24 +08:00
|
|
|
; RUN: llc < %s -mcpu=core2 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX
|
2013-04-06 01:05:56 +08:00
|
|
|
; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32
|
2013-12-04 09:25:24 +08:00
|
|
|
; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86
|
2014-04-06 18:01:23 +08:00
|
|
|
; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-cygwin | FileCheck %s -check-prefix=CYGWIN
|
2013-12-04 09:25:24 +08:00
|
|
|
; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX
|
2012-01-20 08:05:46 +08:00
|
|
|
|
|
|
|
; The SysV ABI used by most Unixes and Mingw on x86 specifies that an sret pointer
|
|
|
|
; is callee-cleanup. However, in MSVC's cdecl calling convention, sret pointer
|
|
|
|
; arguments are caller-cleanup like normal arguments.
|
|
|
|
|
2013-03-29 05:30:04 +08:00
|
|
|
define void @sret1(i8* sret %x) nounwind {
|
2012-01-20 08:05:46 +08:00
|
|
|
entry:
|
2013-12-04 05:12:36 +08:00
|
|
|
; WIN32-LABEL: _sret1:
|
2013-03-29 05:30:04 +08:00
|
|
|
; WIN32: movb $42, (%eax)
|
|
|
|
; WIN32-NOT: popl %eax
|
2014-01-08 20:58:07 +08:00
|
|
|
; WIN32: {{retl$}}
|
2013-03-29 05:30:04 +08:00
|
|
|
|
2013-12-04 05:12:36 +08:00
|
|
|
; MINGW_X86-LABEL: _sret1:
|
2014-01-08 20:58:07 +08:00
|
|
|
; MINGW_X86: {{retl$}}
|
2013-03-29 05:30:04 +08:00
|
|
|
|
2014-04-06 18:01:23 +08:00
|
|
|
; CYGWIN-LABEL: _sret1:
|
|
|
|
; CYGWIN: retl $4
|
|
|
|
|
2013-12-04 05:12:36 +08:00
|
|
|
; LINUX-LABEL: sret1:
|
2014-01-08 20:58:07 +08:00
|
|
|
; LINUX: retl $4
|
2013-03-29 05:30:04 +08:00
|
|
|
|
|
|
|
store i8 42, i8* %x, align 4
|
2012-01-20 08:05:46 +08:00
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
2013-03-29 05:30:04 +08:00
|
|
|
define void @sret2(i8* sret %x, i8 %y) nounwind {
|
2012-01-20 08:05:46 +08:00
|
|
|
entry:
|
2013-12-04 05:12:36 +08:00
|
|
|
; WIN32-LABEL: _sret2:
|
2013-03-29 05:30:04 +08:00
|
|
|
; WIN32: movb {{.*}}, (%eax)
|
|
|
|
; WIN32-NOT: popl %eax
|
2014-01-08 20:58:07 +08:00
|
|
|
; WIN32: {{retl$}}
|
2013-03-29 05:30:04 +08:00
|
|
|
|
2013-12-04 05:12:36 +08:00
|
|
|
; MINGW_X86-LABEL: _sret2:
|
2014-01-08 20:58:07 +08:00
|
|
|
; MINGW_X86: {{retl$}}
|
2013-03-29 05:30:04 +08:00
|
|
|
|
2014-04-06 18:01:23 +08:00
|
|
|
; CYGWIN-LABEL: _sret2:
|
|
|
|
; CYGWIN: retl $4
|
|
|
|
|
2013-12-04 05:12:36 +08:00
|
|
|
; LINUX-LABEL: sret2:
|
2014-01-08 20:58:07 +08:00
|
|
|
; LINUX: retl $4
|
2013-03-29 05:30:04 +08:00
|
|
|
|
|
|
|
store i8 %y, i8* %x
|
2012-01-20 08:05:46 +08:00
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
2013-03-29 05:30:04 +08:00
|
|
|
define void @sret3(i8* sret %x, i8* %y) nounwind {
|
|
|
|
entry:
|
2013-12-04 05:12:36 +08:00
|
|
|
; WIN32-LABEL: _sret3:
|
2013-03-29 05:30:04 +08:00
|
|
|
; WIN32: movb $42, (%eax)
|
|
|
|
; WIN32-NOT: movb $13, (%eax)
|
|
|
|
; WIN32-NOT: popl %eax
|
2014-01-08 20:58:07 +08:00
|
|
|
; WIN32: {{retl$}}
|
2013-03-29 05:30:04 +08:00
|
|
|
|
2013-12-04 05:12:36 +08:00
|
|
|
; MINGW_X86-LABEL: _sret3:
|
2014-01-08 20:58:07 +08:00
|
|
|
; MINGW_X86: {{retl$}}
|
2013-03-29 05:30:04 +08:00
|
|
|
|
2014-04-06 18:01:23 +08:00
|
|
|
; CYGWIN-LABEL: _sret3:
|
|
|
|
; CYGWIN: retl $4
|
|
|
|
|
2013-12-04 05:12:36 +08:00
|
|
|
; LINUX-LABEL: sret3:
|
2014-01-08 20:58:07 +08:00
|
|
|
; LINUX: retl $4
|
2013-03-29 05:30:04 +08:00
|
|
|
|
|
|
|
store i8 42, i8* %x
|
|
|
|
store i8 13, i8* %y
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
; PR15556
|
|
|
|
%struct.S4 = type { i32, i32, i32 }
|
|
|
|
|
|
|
|
define void @sret4(%struct.S4* noalias sret %agg.result) {
|
|
|
|
entry:
|
2013-12-04 05:12:36 +08:00
|
|
|
; WIN32-LABEL: _sret4:
|
2013-03-29 05:30:04 +08:00
|
|
|
; WIN32: movl $42, (%eax)
|
|
|
|
; WIN32-NOT: popl %eax
|
2014-01-08 20:58:07 +08:00
|
|
|
; WIN32: {{retl$}}
|
2013-03-29 05:30:04 +08:00
|
|
|
|
2013-12-04 05:12:36 +08:00
|
|
|
; MINGW_X86-LABEL: _sret4:
|
2014-01-08 20:58:07 +08:00
|
|
|
; MINGW_X86: {{retl$}}
|
2013-03-29 05:30:04 +08:00
|
|
|
|
2014-04-06 18:01:23 +08:00
|
|
|
; CYGWIN-LABEL: _sret4:
|
|
|
|
; CYGWIN: retl $4
|
|
|
|
|
2013-12-04 05:12:36 +08:00
|
|
|
; LINUX-LABEL: sret4:
|
2014-01-08 20:58:07 +08:00
|
|
|
; LINUX: retl $4
|
2013-03-29 05:30:04 +08:00
|
|
|
|
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
2015-02-28 03:29:02 +08:00
|
|
|
%x = getelementptr inbounds %struct.S4, %struct.S4* %agg.result, i32 0, i32 0
|
2013-03-29 05:30:04 +08:00
|
|
|
store i32 42, i32* %x, align 4
|
|
|
|
ret void
|
|
|
|
}
|
2013-04-03 19:27:54 +08:00
|
|
|
|
|
|
|
%struct.S5 = type { i32 }
|
|
|
|
%class.C5 = type { i8 }
|
|
|
|
|
|
|
|
define x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(%struct.S5* noalias sret %agg.result, %class.C5* %this) {
|
|
|
|
entry:
|
|
|
|
%this.addr = alloca %class.C5*, align 4
|
|
|
|
store %class.C5* %this, %class.C5** %this.addr, align 4
|
2015-02-28 05:17:42 +08:00
|
|
|
%this1 = load %class.C5*, %class.C5** %this.addr
|
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
2015-02-28 03:29:02 +08:00
|
|
|
%x = getelementptr inbounds %struct.S5, %struct.S5* %agg.result, i32 0, i32 0
|
2013-04-03 19:27:54 +08:00
|
|
|
store i32 42, i32* %x, align 4
|
|
|
|
ret void
|
2013-12-04 05:12:36 +08:00
|
|
|
; WIN32-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ":
|
|
|
|
; MINGW_X86-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ":
|
2014-04-06 18:01:23 +08:00
|
|
|
; CYGWIN-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ":
|
2013-12-04 05:12:36 +08:00
|
|
|
; LINUX-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ":
|
2013-04-03 19:27:54 +08:00
|
|
|
|
|
|
|
; The address of the return structure is passed as an implicit parameter.
|
|
|
|
; In the -O0 build, %eax is spilled at the beginning of the function, hence we
|
|
|
|
; should match both 4(%esp) and 8(%esp).
|
|
|
|
; WIN32: {{[48]}}(%esp), %eax
|
|
|
|
; WIN32: movl $42, (%eax)
|
2014-01-08 20:58:07 +08:00
|
|
|
; WIN32: retl $4
|
2013-04-03 19:27:54 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
define void @call_foo5() {
|
|
|
|
entry:
|
|
|
|
%c = alloca %class.C5, align 1
|
|
|
|
%s = alloca %struct.S5, align 4
|
|
|
|
call x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(%struct.S5* sret %s, %class.C5* %c)
|
2013-12-04 05:12:36 +08:00
|
|
|
; WIN32-LABEL: {{^}}_call_foo5:
|
|
|
|
; MINGW_X86-LABEL: {{^}}_call_foo5:
|
2014-04-06 18:01:23 +08:00
|
|
|
; CYGWIN-LABEL: {{^}}_call_foo5:
|
2013-12-04 05:12:36 +08:00
|
|
|
; LINUX-LABEL: {{^}}call_foo5:
|
|
|
|
|
2013-04-03 19:27:54 +08:00
|
|
|
|
|
|
|
; Load the address of the result and put it onto stack
|
|
|
|
; (through %ecx in the -O0 build).
|
2013-05-25 11:08:10 +08:00
|
|
|
; WIN32: leal {{[0-9]+}}(%esp), %e{{[a-d]}}x
|
|
|
|
; WIN32: movl %e{{[a-d]}}x, (%e{{([a-d]x)|(sp)}})
|
2013-04-03 19:27:54 +08:00
|
|
|
|
|
|
|
; The this pointer goes to ECX.
|
2013-04-06 01:05:56 +08:00
|
|
|
; WIN32-NEXT: leal {{[0-9]+}}(%esp), %ecx
|
|
|
|
; WIN32-NEXT: calll "?foo@C5@@QAE?AUS5@@XZ"
|
2014-01-08 20:58:07 +08:00
|
|
|
; WIN32: retl
|
2013-04-03 19:27:54 +08:00
|
|
|
ret void
|
|
|
|
}
|
2013-12-04 04:51:23 +08:00
|
|
|
|
|
|
|
|
|
|
|
%struct.test6 = type { i32, i32, i32 }
|
|
|
|
define void @test6_f(%struct.test6* %x) nounwind {
|
|
|
|
; WIN32-LABEL: _test6_f:
|
|
|
|
; MINGW_X86-LABEL: _test6_f:
|
2014-04-06 18:01:23 +08:00
|
|
|
; CYGWIN-LABEL: _test6_f:
|
2013-12-04 05:12:36 +08:00
|
|
|
; LINUX-LABEL: test6_f:
|
2013-12-04 04:51:23 +08:00
|
|
|
|
|
|
|
; The %x argument is moved to %ecx. It will be the this pointer.
|
|
|
|
; WIN32: movl 8(%ebp), %ecx
|
|
|
|
|
|
|
|
; The %x argument is moved to (%esp). It will be the this pointer. With -O0
|
|
|
|
; we copy esp to ecx and use (ecx) instead of (esp).
|
|
|
|
; MINGW_X86: movl 8(%ebp), %eax
|
|
|
|
; MINGW_X86: movl %eax, (%e{{([a-d]x)|(sp)}})
|
|
|
|
|
2014-04-06 18:01:23 +08:00
|
|
|
; CYGWIN: movl 8(%ebp), %eax
|
|
|
|
; CYGWIN: movl %eax, (%e{{([a-d]x)|(sp)}})
|
|
|
|
|
2013-12-04 04:51:23 +08:00
|
|
|
; The sret pointer is (%esp)
|
|
|
|
; WIN32: leal 8(%esp), %[[REG:e[a-d]x]]
|
|
|
|
; WIN32-NEXT: movl %[[REG]], (%e{{([a-d]x)|(sp)}})
|
|
|
|
|
|
|
|
; The sret pointer is %ecx
|
|
|
|
; MINGW_X86-NEXT: leal 8(%esp), %ecx
|
|
|
|
; MINGW_X86-NEXT: calll _test6_g
|
|
|
|
|
2014-04-06 18:01:23 +08:00
|
|
|
; CYGWIN-NEXT: leal 8(%esp), %ecx
|
|
|
|
; CYGWIN-NEXT: calll _test6_g
|
|
|
|
|
2013-12-04 04:51:23 +08:00
|
|
|
%tmp = alloca %struct.test6, align 4
|
|
|
|
call x86_thiscallcc void @test6_g(%struct.test6* sret %tmp, %struct.test6* %x)
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
declare x86_thiscallcc void @test6_g(%struct.test6* sret, %struct.test6*)
|
2014-05-10 06:32:13 +08:00
|
|
|
|
|
|
|
; Flipping the parameters at the IR level generates the same code.
|
|
|
|
%struct.test7 = type { i32, i32, i32 }
|
|
|
|
define void @test7_f(%struct.test7* %x) nounwind {
|
|
|
|
; WIN32-LABEL: _test7_f:
|
|
|
|
; MINGW_X86-LABEL: _test7_f:
|
|
|
|
; CYGWIN-LABEL: _test7_f:
|
|
|
|
; LINUX-LABEL: test7_f:
|
|
|
|
|
|
|
|
; The %x argument is moved to %ecx on all OSs. It will be the this pointer.
|
|
|
|
; WIN32: movl 8(%ebp), %ecx
|
|
|
|
; MINGW_X86: movl 8(%ebp), %ecx
|
|
|
|
; CYGWIN: movl 8(%ebp), %ecx
|
|
|
|
|
|
|
|
; The sret pointer is (%esp)
|
|
|
|
; WIN32: leal 8(%esp), %[[REG:e[a-d]x]]
|
|
|
|
; WIN32-NEXT: movl %[[REG]], (%e{{([a-d]x)|(sp)}})
|
|
|
|
; MINGW_X86: leal 8(%esp), %[[REG:e[a-d]x]]
|
|
|
|
; MINGW_X86-NEXT: movl %[[REG]], (%e{{([a-d]x)|(sp)}})
|
|
|
|
; CYGWIN: leal 8(%esp), %[[REG:e[a-d]x]]
|
|
|
|
; CYGWIN-NEXT: movl %[[REG]], (%e{{([a-d]x)|(sp)}})
|
|
|
|
|
|
|
|
%tmp = alloca %struct.test7, align 4
|
|
|
|
call x86_thiscallcc void @test7_g(%struct.test7* %x, %struct.test7* sret %tmp)
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
define x86_thiscallcc void @test7_g(%struct.test7* %in, %struct.test7* sret %out) {
|
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
2015-02-28 03:29:02 +08:00
|
|
|
%s = getelementptr %struct.test7, %struct.test7* %in, i32 0, i32 0
|
|
|
|
%d = getelementptr %struct.test7, %struct.test7* %out, i32 0, i32 0
|
2015-02-28 05:17:42 +08:00
|
|
|
%v = load i32, i32* %s
|
2014-05-10 06:32:13 +08:00
|
|
|
store i32 %v, i32* %d
|
|
|
|
call void @clobber_eax()
|
|
|
|
ret void
|
|
|
|
|
|
|
|
; Make sure we return the second parameter in %eax.
|
|
|
|
; WIN32-LABEL: _test7_g:
|
|
|
|
; WIN32: calll _clobber_eax
|
|
|
|
; WIN32: movl {{.*}}, %eax
|
|
|
|
; WIN32: retl
|
|
|
|
}
|
|
|
|
|
|
|
|
declare void @clobber_eax()
|
|
|
|
|
|
|
|
; Test what happens if the first parameter has to be split by codegen.
|
|
|
|
; Realistically, no frontend will generate code like this, but here it is for
|
|
|
|
; completeness.
|
|
|
|
define void @test8_f(i64 inreg %a, i64* sret %out) {
|
|
|
|
store i64 %a, i64* %out
|
|
|
|
call void @clobber_eax()
|
|
|
|
ret void
|
|
|
|
|
|
|
|
; WIN32-LABEL: _test8_f:
|
|
|
|
; WIN32: movl {{[0-9]+}}(%esp), %[[out:[a-z]+]]
|
|
|
|
; WIN32-DAG: movl %edx, 4(%[[out]])
|
|
|
|
; WIN32-DAG: movl %eax, (%[[out]])
|
|
|
|
; WIN32: calll _clobber_eax
|
|
|
|
; WIN32: movl {{.*}}, %eax
|
|
|
|
; WIN32: retl
|
|
|
|
}
|