llvm-project/lldb/source/API/SBInstructionList.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

235 lines
7.6 KiB
C++
Raw Normal View History

//===-- SBInstructionList.cpp -----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/API/SBInstructionList.h"
#include "SBReproducerPrivate.h"
#include "lldb/API/SBAddress.h"
#include "lldb/API/SBInstruction.h"
#include "lldb/API/SBStream.h"
#include "lldb/API/SBFile.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Utility/Stream.h"
using namespace lldb;
using namespace lldb_private;
SBInstructionList::SBInstructionList() : m_opaque_sp() {
LLDB_RECORD_CONSTRUCTOR_NO_ARGS(SBInstructionList);
}
SBInstructionList::SBInstructionList(const SBInstructionList &rhs)
: m_opaque_sp(rhs.m_opaque_sp) {
LLDB_RECORD_CONSTRUCTOR(SBInstructionList, (const lldb::SBInstructionList &),
rhs);
}
const SBInstructionList &SBInstructionList::
operator=(const SBInstructionList &rhs) {
LLDB_RECORD_METHOD(
const lldb::SBInstructionList &,
SBInstructionList, operator=,(const lldb::SBInstructionList &), rhs);
if (this != &rhs)
m_opaque_sp = rhs.m_opaque_sp;
return LLDB_RECORD_RESULT(*this);
}
SBInstructionList::~SBInstructionList() {}
bool SBInstructionList::IsValid() const {
LLDB_RECORD_METHOD_CONST_NO_ARGS(bool, SBInstructionList, IsValid);
return this->operator bool();
}
SBInstructionList::operator bool() const {
LLDB_RECORD_METHOD_CONST_NO_ARGS(bool, SBInstructionList, operator bool);
return m_opaque_sp.get() != nullptr;
}
size_t SBInstructionList::GetSize() {
LLDB_RECORD_METHOD_NO_ARGS(size_t, SBInstructionList, GetSize);
if (m_opaque_sp)
return m_opaque_sp->GetInstructionList().GetSize();
return 0;
}
SBInstruction SBInstructionList::GetInstructionAtIndex(uint32_t idx) {
LLDB_RECORD_METHOD(lldb::SBInstruction, SBInstructionList,
GetInstructionAtIndex, (uint32_t), idx);
SBInstruction inst;
if (m_opaque_sp && idx < m_opaque_sp->GetInstructionList().GetSize())
inst.SetOpaque(
m_opaque_sp,
m_opaque_sp->GetInstructionList().GetInstructionAtIndex(idx));
return LLDB_RECORD_RESULT(inst);
}
size_t SBInstructionList::GetInstructionsCount(const SBAddress &start,
const SBAddress &end,
bool canSetBreakpoint) {
LLDB_RECORD_METHOD(size_t, SBInstructionList, GetInstructionsCount,
(const lldb::SBAddress &, const lldb::SBAddress &, bool),
start, end, canSetBreakpoint);
size_t num_instructions = GetSize();
size_t i = 0;
SBAddress addr;
size_t lower_index = 0;
size_t upper_index = 0;
size_t instructions_to_skip = 0;
for (i = 0; i < num_instructions; ++i) {
addr = GetInstructionAtIndex(i).GetAddress();
if (start == addr)
lower_index = i;
if (end == addr)
upper_index = i;
}
if (canSetBreakpoint)
for (i = lower_index; i <= upper_index; ++i) {
SBInstruction insn = GetInstructionAtIndex(i);
if (!insn.CanSetBreakpoint())
++instructions_to_skip;
}
return upper_index - lower_index - instructions_to_skip;
}
void SBInstructionList::Clear() {
LLDB_RECORD_METHOD_NO_ARGS(void, SBInstructionList, Clear);
m_opaque_sp.reset();
}
void SBInstructionList::AppendInstruction(SBInstruction insn) {
LLDB_RECORD_METHOD(void, SBInstructionList, AppendInstruction,
(lldb::SBInstruction), insn);
}
void SBInstructionList::SetDisassembler(const lldb::DisassemblerSP &opaque_sp) {
m_opaque_sp = opaque_sp;
}
void SBInstructionList::Print(FILE *out) {
LLDB_RECORD_METHOD(void, SBInstructionList, Print, (FILE *), out);
if (out == nullptr)
return;
StreamFile stream(out, false);
GetDescription(stream);
}
void SBInstructionList::Print(SBFile out) {
LLDB_RECORD_METHOD(void, SBInstructionList, Print, (SBFile), out);
if (!out.IsValid())
return;
StreamFile stream(out.m_opaque_sp);
GetDescription(stream);
}
void SBInstructionList::Print(FileSP out_sp) {
LLDB_RECORD_METHOD(void, SBInstructionList, Print, (FileSP), out_sp);
if (!out_sp || !out_sp->IsValid())
return;
StreamFile stream(out_sp);
GetDescription(stream);
}
bool SBInstructionList::GetDescription(lldb::SBStream &stream) {
LLDB_RECORD_METHOD(bool, SBInstructionList, GetDescription,
(lldb::SBStream &), stream);
return GetDescription(stream.ref());
}
bool SBInstructionList::GetDescription(Stream &sref) {
if (m_opaque_sp) {
size_t num_instructions = GetSize();
if (num_instructions) {
// Call the ref() to make sure a stream is created if one deesn't exist
// already inside description...
const uint32_t max_opcode_byte_size =
Added the ability to get the min and max instruction byte size for an architecture into ArchSpec: uint32_t ArchSpec::GetMinimumOpcodeByteSize() const; uint32_t ArchSpec::GetMaximumOpcodeByteSize() const; Added an AddressClass to the Instruction class in Disassembler.h. This allows decoded instructions to know know if they are code, code with alternate ISA (thumb), or even data which can be mixed into code. The instruction does have an address, but it is a good idea to cache this value so we don't have to look it up more than once. Fixed an issue in Opcode::SetOpcodeBytes() where the length wasn't getting set. Changed: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc); To: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc, bool merge_symbol_into_function); This function was typically being used when looking up functions and symbols. Now if you lookup a function, then find the symbol, they can be merged into the same symbol context and not cause multiple symbol contexts to appear in a symbol context list that describes the same function. Fixed the SymbolContext not equal operator which was causing mixed mode disassembly to not work ("disassembler --mixed --name main"). Modified the disassembler classes to know about the fact we know, for a given architecture, what the min and max opcode byte sizes are. The InstructionList class was modified to return the max opcode byte size for all of the instructions in its list. These two fixes means when disassemble a list of instructions and dump them and show the opcode bytes, we can format the output more intelligently when showing opcode bytes. This affects any architectures that have varying opcode byte sizes (x86_64 and i386). Knowing the max opcode byte size also helps us to be able to disassemble N instructions without having to re-read data if we didn't read enough bytes. Added the ability to set the architecture for the disassemble command. This means you can easily cross disassemble data for any supported architecture. I also added the ability to specify "thumb" as an architecture so that we can force disassembly into thumb mode when needed. In GDB this was done using a hack of specifying an odd address when disassembling. I don't want to repeat this hack in LLDB, so the auto detection between ARM and thumb is failing, just specify thumb when disassembling: (lldb) disassemble --arch thumb --name main You can also have data in say an x86_64 file executable and disassemble data as any other supported architecture: % lldb a.out Current executable set to 'a.out' (x86_64). (lldb) b main (lldb) run (lldb) disassemble --arch thumb --count 2 --start-address 0x0000000100001080 --bytes 0x100001080: 0xb580 push {r7, lr} 0x100001082: 0xaf00 add r7, sp, #0 Fixed Target::ReadMemory(...) to be able to deal with Address argument object that isn't section offset. When an address object was supplied that was out on the heap or stack, target read memory would fail. Disassembly uses Target::ReadMemory(...), and the example above where we disassembler thumb opcodes in an x86 binary was failing do to this bug. llvm-svn: 128347
2011-03-27 03:14:58 +08:00
m_opaque_sp->GetInstructionList().GetMaxOpcocdeByteSize();
Get rid of Debugger::FormatPrompt() and replace it with the new FormatEntity class. Why? Debugger::FormatPrompt() would run through the format prompt every time and parse it and emit it piece by piece. It also did formatting differently depending on which key/value pair it was parsing. The new code improves on this with the following features: 1 - Allow format strings to be parsed into a FormatEntity::Entry which can contain multiple child FormatEntity::Entry objects. This FormatEntity::Entry is a parsed version of what was previously always done in Debugger::FormatPrompt() so it is more efficient to emit formatted strings using the new parsed FormatEntity::Entry. 2 - Allows errors in format strings to be shown immediately when setting the settings (frame-format, thread-format, disassembly-format 3 - Allows auto completion by implementing a new OptionValueFormatEntity and switching frame-format, thread-format, and disassembly-format settings over to using it. 4 - The FormatEntity::Entry for each of the frame-format, thread-format, disassembly-format settings only replaces the old one if the format parses correctly 5 - Combines all consecutive string values together for efficient output. This means all "${ansi.*}" keys and all desensitized characters like "\n" "\t" "\0721" "\x23" will get combined with their previous strings 6 - ${*.script:} (like "${var.script:mymodule.my_var_function}") have all been switched over to use ${script.*:} "${script.var:mymodule.my_var_function}") to make the format easier to parse as I don't believe anyone was using these format string power user features. 7 - All key values pairs are defined in simple C arrays of entries so it is much easier to add new entries. These changes pave the way for subsequent modifications where we can modify formats to do more (like control the width of value strings can do more and add more functionality more easily like string formatting to control the width, printf formats and more). llvm-svn: 228207
2015-02-05 06:00:53 +08:00
FormatEntity::Entry format;
FormatEntity::Parse("${addr}: ", format);
SymbolContext sc;
SymbolContext prev_sc;
for (size_t i = 0; i < num_instructions; ++i) {
Instruction *inst =
m_opaque_sp->GetInstructionList().GetInstructionAtIndex(i).get();
if (inst == nullptr)
break;
const Address &addr = inst->GetAddress();
prev_sc = sc;
ModuleSP module_sp(addr.GetModule());
if (module_sp) {
module_sp->ResolveSymbolContextForAddress(
addr, eSymbolContextEverything, sc);
}
inst->Dump(&sref, max_opcode_byte_size, true, false, nullptr, &sc,
&prev_sc, &format, 0);
sref.EOL();
}
return true;
}
}
return false;
}
bool SBInstructionList::DumpEmulationForAllInstructions(const char *triple) {
LLDB_RECORD_METHOD(bool, SBInstructionList, DumpEmulationForAllInstructions,
(const char *), triple);
if (m_opaque_sp) {
size_t len = GetSize();
for (size_t i = 0; i < len; ++i) {
if (!GetInstructionAtIndex((uint32_t)i).DumpEmulation(triple))
return false;
}
}
return true;
}
namespace lldb_private {
namespace repro {
template <>
void RegisterMethods<SBInstructionList>(Registry &R) {
LLDB_REGISTER_CONSTRUCTOR(SBInstructionList, ());
LLDB_REGISTER_CONSTRUCTOR(SBInstructionList,
(const lldb::SBInstructionList &));
LLDB_REGISTER_METHOD(
const lldb::SBInstructionList &,
SBInstructionList, operator=,(const lldb::SBInstructionList &));
LLDB_REGISTER_METHOD_CONST(bool, SBInstructionList, IsValid, ());
LLDB_REGISTER_METHOD_CONST(bool, SBInstructionList, operator bool, ());
LLDB_REGISTER_METHOD(size_t, SBInstructionList, GetSize, ());
LLDB_REGISTER_METHOD(lldb::SBInstruction, SBInstructionList,
GetInstructionAtIndex, (uint32_t));
LLDB_REGISTER_METHOD(
size_t, SBInstructionList, GetInstructionsCount,
(const lldb::SBAddress &, const lldb::SBAddress &, bool));
LLDB_REGISTER_METHOD(void, SBInstructionList, Clear, ());
LLDB_REGISTER_METHOD(void, SBInstructionList, AppendInstruction,
(lldb::SBInstruction));
LLDB_REGISTER_METHOD(void, SBInstructionList, Print, (FILE *));
LLDB_REGISTER_METHOD(void, SBInstructionList, Print, (SBFile));
LLDB_REGISTER_METHOD(void, SBInstructionList, Print, (FileSP));
LLDB_REGISTER_METHOD(bool, SBInstructionList, GetDescription,
(lldb::SBStream &));
LLDB_REGISTER_METHOD(bool, SBInstructionList,
DumpEmulationForAllInstructions, (const char *));
}
}
}