2010-12-05 07:57:24 +08:00
|
|
|
//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
|
2005-07-12 09:41:54 +08:00
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
2007-12-30 04:36:04 +08:00
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
2005-07-12 09:41:54 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
2011-07-02 05:01:15 +08:00
|
|
|
// This file implements the X86 specific subclass of TargetSubtargetInfo.
|
2005-07-12 09:41:54 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2017-07-01 08:45:50 +08:00
|
|
|
#include "X86.h"
|
|
|
|
|
|
|
|
#include "X86CallLowering.h"
|
|
|
|
#include "X86LegalizerInfo.h"
|
|
|
|
#include "X86RegisterBankInfo.h"
|
2005-07-12 09:41:54 +08:00
|
|
|
#include "X86Subtarget.h"
|
2017-06-06 19:49:48 +08:00
|
|
|
#include "MCTargetDesc/X86BaseInfo.h"
|
2014-08-09 09:07:25 +08:00
|
|
|
#include "X86TargetMachine.h"
|
2017-02-03 06:55:55 +08:00
|
|
|
#include "llvm/ADT/Triple.h"
|
2017-07-01 08:45:50 +08:00
|
|
|
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
|
|
|
|
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
|
2013-02-16 06:31:27 +08:00
|
|
|
#include "llvm/IR/Attributes.h"
|
2017-02-02 08:32:03 +08:00
|
|
|
#include "llvm/IR/ConstantRange.h"
|
2013-02-16 06:31:27 +08:00
|
|
|
#include "llvm/IR/Function.h"
|
2013-01-02 19:36:10 +08:00
|
|
|
#include "llvm/IR/GlobalValue.h"
|
2017-02-03 06:55:55 +08:00
|
|
|
#include "llvm/Support/Casting.h"
|
|
|
|
#include "llvm/Support/CodeGen.h"
|
2014-05-22 07:51:57 +08:00
|
|
|
#include "llvm/Support/CommandLine.h"
|
2009-01-03 12:04:46 +08:00
|
|
|
#include "llvm/Support/Debug.h"
|
2011-09-08 00:10:57 +08:00
|
|
|
#include "llvm/Support/ErrorHandling.h"
|
2012-12-04 00:50:05 +08:00
|
|
|
#include "llvm/Support/raw_ostream.h"
|
2006-12-23 06:29:05 +08:00
|
|
|
#include "llvm/Target/TargetMachine.h"
|
2011-07-02 04:45:01 +08:00
|
|
|
|
2009-04-26 02:27:23 +08:00
|
|
|
#if defined(_MSC_VER)
|
2009-08-03 08:11:34 +08:00
|
|
|
#include <intrin.h>
|
2009-04-26 02:27:23 +08:00
|
|
|
#endif
|
|
|
|
|
2014-04-22 10:41:26 +08:00
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "subtarget"
|
|
|
|
|
2014-04-22 10:03:14 +08:00
|
|
|
#define GET_SUBTARGETINFO_TARGET_DESC
|
|
|
|
#define GET_SUBTARGETINFO_CTOR
|
|
|
|
#include "X86GenSubtargetInfo.inc"
|
|
|
|
|
2014-05-22 07:40:26 +08:00
|
|
|
// Temporary option to control early if-conversion for x86 while adding machine
|
|
|
|
// models.
|
|
|
|
static cl::opt<bool>
|
|
|
|
X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
|
|
|
|
cl::desc("Enable early if-conversion on X86"));
|
|
|
|
|
|
|
|
|
2015-08-14 23:11:42 +08:00
|
|
|
/// Classify a blockaddress reference for the current subtarget according to how
|
|
|
|
/// we should reference it in a non-pcrel context.
|
2016-05-20 02:34:20 +08:00
|
|
|
unsigned char X86Subtarget::classifyBlockAddressReference() const {
|
2016-05-20 20:20:10 +08:00
|
|
|
return classifyLocalReference(nullptr);
|
|
|
|
}
|
2012-08-02 02:39:17 +08:00
|
|
|
|
2016-05-20 20:20:10 +08:00
|
|
|
/// Classify a global variable reference for the current subtarget according to
|
|
|
|
/// how we should reference it in a non-pcrel context.
|
|
|
|
unsigned char
|
|
|
|
X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
|
|
|
|
return classifyGlobalReference(GV, *GV->getParent());
|
|
|
|
}
|
2012-08-02 02:39:17 +08:00
|
|
|
|
2016-05-20 20:20:10 +08:00
|
|
|
unsigned char
|
|
|
|
X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
|
|
|
|
// 64 bits can use %rip addressing for anything local.
|
|
|
|
if (is64Bit())
|
|
|
|
return X86II::MO_NO_FLAG;
|
2009-07-10 15:20:05 +08:00
|
|
|
|
2016-05-20 20:20:10 +08:00
|
|
|
// If this is for a position dependent executable, the static linker can
|
|
|
|
// figure it out.
|
2016-06-18 08:03:20 +08:00
|
|
|
if (!isPositionIndependent())
|
2016-05-20 20:20:10 +08:00
|
|
|
return X86II::MO_NO_FLAG;
|
2012-08-02 02:39:17 +08:00
|
|
|
|
2016-05-20 20:20:10 +08:00
|
|
|
// The COFF dynamic linker just patches the executable sections.
|
|
|
|
if (isTargetCOFF())
|
|
|
|
return X86II::MO_NO_FLAG;
|
|
|
|
|
|
|
|
if (isTargetDarwin()) {
|
|
|
|
// 32 bit macho has no relocation for a-b if a is undefined, even if
|
|
|
|
// b is in the section that is being relocated.
|
|
|
|
// This means we have to use o load even for GVs that are known to be
|
|
|
|
// local to the dso.
|
|
|
|
if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
|
2016-05-18 00:01:32 +08:00
|
|
|
return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
|
2012-08-02 02:39:17 +08:00
|
|
|
|
2009-07-11 04:53:38 +08:00
|
|
|
return X86II::MO_PIC_BASE_OFFSET;
|
|
|
|
}
|
2012-08-02 02:39:17 +08:00
|
|
|
|
2016-05-20 20:20:10 +08:00
|
|
|
return X86II::MO_GOTOFF;
|
|
|
|
}
|
2012-08-02 02:39:17 +08:00
|
|
|
|
2016-05-20 20:20:10 +08:00
|
|
|
unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
|
|
|
|
const Module &M) const {
|
|
|
|
// Large model never uses stubs.
|
|
|
|
if (TM.getCodeModel() == CodeModel::Large)
|
|
|
|
return X86II::MO_NO_FLAG;
|
2012-08-02 02:39:17 +08:00
|
|
|
|
2016-12-09 03:01:00 +08:00
|
|
|
// Absolute symbols can be referenced directly.
|
2017-02-02 08:32:03 +08:00
|
|
|
if (GV) {
|
|
|
|
if (Optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
|
|
|
|
// See if we can use the 8-bit immediate form. Note that some instructions
|
|
|
|
// will sign extend the immediate operand, so to be conservative we only
|
|
|
|
// accept the range [0,128).
|
|
|
|
if (CR->getUnsignedMax().ult(128))
|
|
|
|
return X86II::MO_ABS8;
|
|
|
|
else
|
|
|
|
return X86II::MO_NO_FLAG;
|
|
|
|
}
|
|
|
|
}
|
2016-12-09 03:01:00 +08:00
|
|
|
|
2017-10-28 05:18:48 +08:00
|
|
|
if (TM.shouldAssumeDSOLocal(M, GV))
|
2016-05-20 20:20:10 +08:00
|
|
|
return classifyLocalReference(GV);
|
2009-09-03 15:04:02 +08:00
|
|
|
|
2016-05-20 20:20:10 +08:00
|
|
|
if (isTargetCOFF())
|
|
|
|
return X86II::MO_DLLIMPORT;
|
|
|
|
|
|
|
|
if (is64Bit())
|
|
|
|
return X86II::MO_GOTPCREL;
|
|
|
|
|
|
|
|
if (isTargetDarwin()) {
|
2016-06-18 08:03:20 +08:00
|
|
|
if (!isPositionIndependent())
|
2016-05-20 20:20:10 +08:00
|
|
|
return X86II::MO_DARWIN_NONLAZY;
|
|
|
|
return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
|
2009-07-10 15:20:05 +08:00
|
|
|
}
|
2012-08-02 02:39:17 +08:00
|
|
|
|
2016-05-20 20:20:10 +08:00
|
|
|
return X86II::MO_GOT;
|
2009-07-10 15:20:05 +08:00
|
|
|
}
|
|
|
|
|
2016-05-20 02:49:29 +08:00
|
|
|
unsigned char
|
|
|
|
X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
|
2016-05-20 20:20:10 +08:00
|
|
|
return classifyGlobalFunctionReference(GV, *GV->getParent());
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned char
|
|
|
|
X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
|
|
|
|
const Module &M) const {
|
2016-06-28 07:15:57 +08:00
|
|
|
if (TM.shouldAssumeDSOLocal(M, GV))
|
2016-05-20 20:20:10 +08:00
|
|
|
return X86II::MO_NO_FLAG;
|
|
|
|
|
2017-08-05 08:10:43 +08:00
|
|
|
if (isTargetCOFF()) {
|
|
|
|
assert(GV->hasDLLImportStorageClass() &&
|
|
|
|
"shouldAssumeDSOLocal gave inconsistent answer");
|
|
|
|
return X86II::MO_DLLIMPORT;
|
|
|
|
}
|
|
|
|
|
2017-11-08 08:01:05 +08:00
|
|
|
const Function *F = dyn_cast_or_null<Function>(GV);
|
|
|
|
|
2017-05-04 15:22:49 +08:00
|
|
|
if (isTargetELF()) {
|
|
|
|
if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
|
|
|
|
// According to psABI, PLT stub clobbers XMM8-XMM15.
|
|
|
|
// In Regcall calling convention those registers are used for passing
|
|
|
|
// parameters. Thus we need to prevent lazy binding in Regcall.
|
|
|
|
return X86II::MO_GOTPCREL;
|
2018-02-24 05:32:06 +08:00
|
|
|
// If PLT must be avoided then the call should be via GOTPCREL.
|
|
|
|
if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) ||
|
|
|
|
(!F && M.getRtLibUseGOT())) &&
|
|
|
|
is64Bit())
|
|
|
|
return X86II::MO_GOTPCREL;
|
2016-04-20 16:32:57 +08:00
|
|
|
return X86II::MO_PLT;
|
2017-05-04 15:22:49 +08:00
|
|
|
}
|
2016-05-20 20:20:10 +08:00
|
|
|
|
|
|
|
if (is64Bit()) {
|
|
|
|
if (F && F->hasFnAttribute(Attribute::NonLazyBind))
|
|
|
|
// If the function is marked as non-lazy, generate an indirect call
|
|
|
|
// which loads from the GOT directly. This avoids runtime overhead
|
|
|
|
// at the cost of eager binding (and one extra byte of encoding).
|
|
|
|
return X86II::MO_GOTPCREL;
|
|
|
|
return X86II::MO_NO_FLAG;
|
2016-04-20 16:32:57 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return X86II::MO_NO_FLAG;
|
|
|
|
}
|
2006-12-01 06:42:55 +08:00
|
|
|
|
2015-08-14 23:11:42 +08:00
|
|
|
/// Return true if the subtarget allows calls to immediate address.
|
2016-05-20 02:49:29 +08:00
|
|
|
bool X86Subtarget::isLegalToCallImmediateAddr() const {
|
2014-03-29 05:40:47 +08:00
|
|
|
// FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
|
|
|
|
// but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does,
|
|
|
|
// the following check for Win32 should be removed.
|
|
|
|
if (In64BitMode || isTargetWin32())
|
2009-05-20 12:53:57 +08:00
|
|
|
return false;
|
2016-05-20 06:07:57 +08:00
|
|
|
return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
|
2009-05-20 12:53:57 +08:00
|
|
|
}
|
|
|
|
|
2014-09-04 04:36:31 +08:00
|
|
|
void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
|
2013-02-27 13:56:20 +08:00
|
|
|
std::string CPUName = CPU;
|
2014-04-12 09:34:29 +08:00
|
|
|
if (CPUName.empty())
|
|
|
|
CPUName = "generic";
|
2011-07-09 07:43:01 +08:00
|
|
|
|
2014-04-12 09:34:29 +08:00
|
|
|
// Make sure 64-bit features are available in 64-bit mode. (But make sure
|
|
|
|
// SSE2 can be turned off explicitly.)
|
|
|
|
std::string FullFS = FS;
|
|
|
|
if (In64BitMode) {
|
|
|
|
if (!FullFS.empty())
|
|
|
|
FullFS = "+64bit,+sse2," + FullFS;
|
|
|
|
else
|
|
|
|
FullFS = "+64bit,+sse2";
|
2006-09-08 14:48:29 +08:00
|
|
|
}
|
2011-07-11 11:57:24 +08:00
|
|
|
|
2015-12-05 07:00:33 +08:00
|
|
|
// LAHF/SAHF are always supported in non-64-bit mode.
|
|
|
|
if (!In64BitMode) {
|
|
|
|
if (!FullFS.empty())
|
|
|
|
FullFS = "+sahf," + FullFS;
|
|
|
|
else
|
|
|
|
FullFS = "+sahf";
|
|
|
|
}
|
|
|
|
|
2015-07-11 06:33:01 +08:00
|
|
|
// Parse features string and set the CPU.
|
2014-04-12 09:34:29 +08:00
|
|
|
ParseSubtargetFeatures(CPUName, FullFS);
|
|
|
|
|
2015-08-26 00:29:21 +08:00
|
|
|
// All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
|
|
|
|
// 16-bytes and under that are reasonably fast. These features were
|
|
|
|
// introduced with Intel's Nehalem/Silvermont and AMD's Family10h
|
|
|
|
// micro-architectures respectively.
|
|
|
|
if (hasSSE42() || hasSSE4A())
|
2015-09-02 04:51:51 +08:00
|
|
|
IsUAMem16Slow = false;
|
2015-08-26 00:29:21 +08:00
|
|
|
|
2012-08-07 08:25:30 +08:00
|
|
|
InstrItins = getInstrItineraryForCPU(CPUName);
|
2012-02-02 07:20:51 +08:00
|
|
|
|
2011-07-11 11:57:24 +08:00
|
|
|
// It's important to keep the MCSubtargetInfo feature bits in sync with
|
|
|
|
// target data structure which is shared with MC code emitter, etc.
|
|
|
|
if (In64BitMode)
|
|
|
|
ToggleFeature(X86::Mode64Bit);
|
2014-01-06 12:55:54 +08:00
|
|
|
else if (In32BitMode)
|
|
|
|
ToggleFeature(X86::Mode32Bit);
|
|
|
|
else if (In16BitMode)
|
|
|
|
ToggleFeature(X86::Mode16Bit);
|
|
|
|
else
|
|
|
|
llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");
|
2011-07-11 11:57:24 +08:00
|
|
|
|
2010-01-05 09:29:13 +08:00
|
|
|
DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
|
2009-08-03 08:11:34 +08:00
|
|
|
<< ", 3DNowLevel " << X863DNowLevel
|
|
|
|
<< ", 64bit " << HasX86_64 << "\n");
|
2011-07-08 05:06:52 +08:00
|
|
|
assert((!In64BitMode || HasX86_64) &&
|
2009-02-03 08:04:43 +08:00
|
|
|
"64-bit code requested on a subtarget that doesn't support it!");
|
2006-09-08 14:48:29 +08:00
|
|
|
|
2016-05-05 19:35:51 +08:00
|
|
|
// Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD and Solaris (both
|
2011-02-23 01:30:05 +08:00
|
|
|
// 32 and 64 bit) and for all 64-bit targets.
|
2011-06-24 01:54:54 +08:00
|
|
|
if (StackAlignOverride)
|
|
|
|
stackAlignment = StackAlignOverride;
|
2012-11-10 04:10:44 +08:00
|
|
|
else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
|
2016-05-05 19:35:51 +08:00
|
|
|
isTargetKFreeBSD() || In64BitMode)
|
2005-07-12 09:41:54 +08:00
|
|
|
stackAlignment = 16;
|
2017-11-19 09:11:58 +08:00
|
|
|
|
2017-11-26 02:09:37 +08:00
|
|
|
// Some CPUs have more overhead for gather. The specified overhead is relative
|
|
|
|
// to the Load operation. "2" is the number provided by Intel architects. This
|
2017-11-19 09:11:58 +08:00
|
|
|
// parameter is used for cost estimation of Gather Op and comparison with
|
|
|
|
// other alternatives.
|
2017-11-26 02:09:37 +08:00
|
|
|
// TODO: Remove the explicit hasAVX512()?, That would mean we would only
|
|
|
|
// enable gather with a -march.
|
|
|
|
if (hasAVX512() || (hasAVX2() && hasFastGather()))
|
2017-09-13 17:00:27 +08:00
|
|
|
GatherOverhead = 2;
|
|
|
|
if (hasAVX512())
|
|
|
|
ScatterOverhead = 2;
|
2018-01-20 08:26:08 +08:00
|
|
|
|
|
|
|
// Consume the vector width attribute or apply any target specific limit.
|
|
|
|
if (PreferVectorWidthOverride)
|
|
|
|
PreferVectorWidth = PreferVectorWidthOverride;
|
|
|
|
else if (Prefer256Bit)
|
|
|
|
PreferVectorWidth = 256;
|
2010-05-28 02:43:40 +08:00
|
|
|
}
|
2012-02-02 07:20:51 +08:00
|
|
|
|
2013-02-16 09:36:26 +08:00
|
|
|
void X86Subtarget::initializeEnvironment() {
|
Move the MMX subtarget feature out of the SSE set of features and into
its own variable.
This is needed so that we can explicitly turn off MMX without turning
off SSE and also so that we can diagnose feature set incompatibilities
that involve MMX without SSE.
Rationale:
// sse3
__m128d test_mm_addsub_pd(__m128d A, __m128d B) {
return _mm_addsub_pd(A, B);
}
// mmx
void shift(__m64 a, __m64 b, int c) {
_mm_slli_pi16(a, c);
_mm_slli_pi32(a, c);
_mm_slli_si64(a, c);
_mm_srli_pi16(a, c);
_mm_srli_pi32(a, c);
_mm_srli_si64(a, c);
_mm_srai_pi16(a, c);
_mm_srai_pi32(a, c);
}
clang -msse3 -mno-mmx file.c -c
For this code we should be able to explicitly turn off MMX
without affecting the compilation of the SSE3 function and then
diagnose and error on compiling the MMX function.
This matches the existing gcc behavior and follows the spirit of
the SSE/MMX separation in llvm where we can (and do) turn off
MMX code generation except in the presence of intrinsics.
Updated a couple of tests, but primarily tested with a couple of tests
for turning on only mmx and only sse.
This is paired with a patch to clang to take advantage of this behavior.
llvm-svn: 249731
2015-10-09 04:10:06 +08:00
|
|
|
X86SSELevel = NoSSE;
|
2013-02-16 09:36:26 +08:00
|
|
|
X863DNowLevel = NoThreeDNow;
|
2016-03-23 19:13:54 +08:00
|
|
|
HasX87 = false;
|
2018-01-11 06:07:16 +08:00
|
|
|
HasNOPL = false;
|
2013-02-16 09:36:26 +08:00
|
|
|
HasCMov = false;
|
|
|
|
HasX86_64 = false;
|
|
|
|
HasPOPCNT = false;
|
|
|
|
HasSSE4A = false;
|
|
|
|
HasAES = false;
|
2017-11-21 17:11:41 +08:00
|
|
|
HasVAES = false;
|
2015-10-16 14:03:09 +08:00
|
|
|
HasFXSR = false;
|
2015-10-12 19:47:46 +08:00
|
|
|
HasXSAVE = false;
|
|
|
|
HasXSAVEOPT = false;
|
|
|
|
HasXSAVEC = false;
|
|
|
|
HasXSAVES = false;
|
2013-02-16 09:36:26 +08:00
|
|
|
HasPCLMUL = false;
|
2017-11-21 17:30:33 +08:00
|
|
|
HasVPCLMULQDQ = false;
|
2017-11-26 17:36:41 +08:00
|
|
|
HasGFNI = false;
|
2013-02-16 09:36:26 +08:00
|
|
|
HasFMA = false;
|
|
|
|
HasFMA4 = false;
|
|
|
|
HasXOP = false;
|
2013-09-25 02:21:52 +08:00
|
|
|
HasTBM = false;
|
2017-05-03 23:51:39 +08:00
|
|
|
HasLWP = false;
|
2013-02-16 09:36:26 +08:00
|
|
|
HasMOVBE = false;
|
|
|
|
HasRDRAND = false;
|
|
|
|
HasF16C = false;
|
|
|
|
HasFSGSBase = false;
|
|
|
|
HasLZCNT = false;
|
|
|
|
HasBMI = false;
|
|
|
|
HasBMI2 = false;
|
2016-01-17 21:42:12 +08:00
|
|
|
HasVBMI = false;
|
2017-11-21 17:48:44 +08:00
|
|
|
HasVBMI2 = false;
|
2016-01-24 18:41:28 +08:00
|
|
|
HasIFMA = false;
|
2013-02-16 09:36:26 +08:00
|
|
|
HasRTM = false;
|
2013-07-28 16:28:38 +08:00
|
|
|
HasERI = false;
|
|
|
|
HasCDI = false;
|
2013-08-20 13:23:59 +08:00
|
|
|
HasPFI = false;
|
2014-07-21 22:54:21 +08:00
|
|
|
HasDQI = false;
|
2017-05-25 21:45:23 +08:00
|
|
|
HasVPOPCNTDQ = false;
|
2014-07-21 22:54:21 +08:00
|
|
|
HasBWI = false;
|
|
|
|
HasVLX = false;
|
2013-02-16 09:36:26 +08:00
|
|
|
HasADX = false;
|
2015-12-15 21:35:29 +08:00
|
|
|
HasPKU = false;
|
2017-11-21 18:04:28 +08:00
|
|
|
HasVNNI = false;
|
2017-11-21 18:32:42 +08:00
|
|
|
HasBITALG = false;
|
2013-09-12 23:51:31 +08:00
|
|
|
HasSHA = false;
|
2017-12-22 11:53:14 +08:00
|
|
|
HasPREFETCHWT1 = false;
|
2013-03-27 01:47:11 +08:00
|
|
|
HasPRFCHW = false;
|
2013-03-29 07:41:26 +08:00
|
|
|
HasRDSEED = false;
|
2015-12-05 07:00:33 +08:00
|
|
|
HasLAHFSAHF = false;
|
2016-05-18 19:59:12 +08:00
|
|
|
HasMWAITX = false;
|
2017-02-09 12:27:34 +08:00
|
|
|
HasCLZERO = false;
|
2015-06-03 18:30:57 +08:00
|
|
|
HasMPX = false;
|
2017-11-26 21:02:45 +08:00
|
|
|
HasSHSTK = false;
|
|
|
|
HasIBT = false;
|
2017-05-02 01:50:15 +08:00
|
|
|
HasSGX = false;
|
|
|
|
HasCLFLUSHOPT = false;
|
|
|
|
HasCLWB = false;
|
2018-01-19 07:52:31 +08:00
|
|
|
HasRDPID = false;
|
Introduce the "retpoline" x86 mitigation technique for variant #2 of the speculative execution vulnerabilities disclosed today, specifically identified by CVE-2017-5715, "Branch Target Injection", and is one of the two halves to Spectre..
Summary:
First, we need to explain the core of the vulnerability. Note that this
is a very incomplete description, please see the Project Zero blog post
for details:
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
The basis for branch target injection is to direct speculative execution
of the processor to some "gadget" of executable code by poisoning the
prediction of indirect branches with the address of that gadget. The
gadget in turn contains an operation that provides a side channel for
reading data. Most commonly, this will look like a load of secret data
followed by a branch on the loaded value and then a load of some
predictable cache line. The attacker then uses timing of the processors
cache to determine which direction the branch took *in the speculative
execution*, and in turn what one bit of the loaded value was. Due to the
nature of these timing side channels and the branch predictor on Intel
processors, this allows an attacker to leak data only accessible to
a privileged domain (like the kernel) back into an unprivileged domain.
The goal is simple: avoid generating code which contains an indirect
branch that could have its prediction poisoned by an attacker. In many
cases, the compiler can simply use directed conditional branches and
a small search tree. LLVM already has support for lowering switches in
this way and the first step of this patch is to disable jump-table
lowering of switches and introduce a pass to rewrite explicit indirectbr
sequences into a switch over integers.
However, there is no fully general alternative to indirect calls. We
introduce a new construct we call a "retpoline" to implement indirect
calls in a non-speculatable way. It can be thought of loosely as
a trampoline for indirect calls which uses the RET instruction on x86.
Further, we arrange for a specific call->ret sequence which ensures the
processor predicts the return to go to a controlled, known location. The
retpoline then "smashes" the return address pushed onto the stack by the
call with the desired target of the original indirect call. The result
is a predicted return to the next instruction after a call (which can be
used to trap speculative execution within an infinite loop) and an
actual indirect branch to an arbitrary address.
On 64-bit x86 ABIs, this is especially easily done in the compiler by
using a guaranteed scratch register to pass the target into this device.
For 32-bit ABIs there isn't a guaranteed scratch register and so several
different retpoline variants are introduced to use a scratch register if
one is available in the calling convention and to otherwise use direct
stack push/pop sequences to pass the target address.
This "retpoline" mitigation is fully described in the following blog
post: https://support.google.com/faqs/answer/7625886
We also support a target feature that disables emission of the retpoline
thunk by the compiler to allow for custom thunks if users want them.
These are particularly useful in environments like kernels that
routinely do hot-patching on boot and want to hot-patch their thunk to
different code sequences. They can write this custom thunk and use
`-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this
case, on x86-64 thu thunk names must be:
```
__llvm_external_retpoline_r11
```
or on 32-bit:
```
__llvm_external_retpoline_eax
__llvm_external_retpoline_ecx
__llvm_external_retpoline_edx
__llvm_external_retpoline_push
```
And the target of the retpoline is passed in the named register, or in
the case of the `push` suffix on the top of the stack via a `pushl`
instruction.
There is one other important source of indirect branches in x86 ELF
binaries: the PLT. These patches also include support for LLD to
generate PLT entries that perform a retpoline-style indirection.
The only other indirect branches remaining that we are aware of are from
precompiled runtimes (such as crt0.o and similar). The ones we have
found are not really attackable, and so we have not focused on them
here, but eventually these runtimes should also be replicated for
retpoline-ed configurations for completeness.
For kernels or other freestanding or fully static executables, the
compiler switch `-mretpoline` is sufficient to fully mitigate this
particular attack. For dynamic executables, you must compile *all*
libraries with `-mretpoline` and additionally link the dynamic
executable and all shared libraries with LLD and pass `-z retpolineplt`
(or use similar functionality from some other linker). We strongly
recommend also using `-z now` as non-lazy binding allows the
retpoline-mitigated PLT to be substantially smaller.
When manually apply similar transformations to `-mretpoline` to the
Linux kernel we observed very small performance hits to applications
running typical workloads, and relatively minor hits (approximately 2%)
even for extremely syscall-heavy applications. This is largely due to
the small number of indirect branches that occur in performance
sensitive paths of the kernel.
When using these patches on statically linked applications, especially
C++ applications, you should expect to see a much more dramatic
performance hit. For microbenchmarks that are switch, indirect-, or
virtual-call heavy we have seen overheads ranging from 10% to 50%.
However, real-world workloads exhibit substantially lower performance
impact. Notably, techniques such as PGO and ThinLTO dramatically reduce
the impact of hot indirect calls (by speculatively promoting them to
direct calls) and allow optimized search trees to be used to lower
switches. If you need to deploy these techniques in C++ applications, we
*strongly* recommend that you ensure all hot call targets are statically
linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well
tuned servers using all of these techniques saw 5% - 10% overhead from
the use of retpoline.
We will add detailed documentation covering these components in
subsequent patches, but wanted to make the core functionality available
as soon as possible. Happy for more code review, but we'd really like to
get these patches landed and backported ASAP for obvious reasons. We're
planning to backport this to both 6.0 and 5.0 release streams and get
a 5.0 release with just this cherry picked ASAP for distros and vendors.
This patch is the work of a number of people over the past month: Eric, Reid,
Rui, and myself. I'm mailing it out as a single commit due to the time
sensitive nature of landing this and the need to backport it. Huge thanks to
everyone who helped out here, and everyone at Intel who helped out in
discussions about how to craft this. Also, credit goes to Paul Turner (at
Google, but not an LLVM contributor) for much of the underlying retpoline
design.
Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer
Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D41723
llvm-svn: 323155
2018-01-23 06:05:25 +08:00
|
|
|
UseRetpoline = false;
|
|
|
|
UseRetpolineExternalThunk = false;
|
2016-12-07 03:35:20 +08:00
|
|
|
IsPMULLDSlow = false;
|
SHLD/SHRD are VectorPath (microcode) instructions known to have poor latency on certain architectures. While generating SHLD/SHRD instructions is acceptable when optimizing for size, optimizing for speed on these platforms should be implemented using alternative sequences of instructions composed of add, adc, shr, shl, or and lea which are directPath instructions. These alternative instructions not only have a lower latency but they also increase the decode bandwidth by allowing simultaneous decoding of a third directPath instruction.
AMD's processors family K7, K8, K10, K12, K15 and K16 are known to have SHLD/SHRD instructions with very poor latency. Optimization guides for these processors recommend using an alternative sequence of instructions. For these AMD's processors, I disabled folding (or (x << c) | (y >> (64 - c))) when we are not optimizing for size.
It might be beneficial to disable this folding for some of the Intel's processors. However, since I couldn't find specific recommendations regarding using SHLD/SHRD instructions on Intel's processors, I haven't disabled this peephole for Intel.
llvm-svn: 195383
2013-11-22 07:21:26 +08:00
|
|
|
IsSHLDSlow = false;
|
2015-09-02 04:51:51 +08:00
|
|
|
IsUAMem16Slow = false;
|
2014-11-22 01:40:04 +08:00
|
|
|
IsUAMem32Slow = false;
|
2015-02-04 01:13:04 +08:00
|
|
|
HasSSEUnalignedMem = false;
|
2013-02-16 09:36:26 +08:00
|
|
|
HasCmpxchg16b = false;
|
|
|
|
UseLeaForSP = false;
|
2018-01-22 18:07:01 +08:00
|
|
|
HasPOPCNTFalseDeps = false;
|
|
|
|
HasLZCNTFalseDeps = false;
|
2017-12-19 22:34:35 +08:00
|
|
|
HasFastVariableShuffle = false;
|
2017-03-03 17:03:24 +08:00
|
|
|
HasFastPartialYMMorZMMWrite = false;
|
2018-01-30 05:24:31 +08:00
|
|
|
HasFast11ByteNOP = false;
|
|
|
|
HasFast15ByteNOP = false;
|
2017-11-26 02:09:37 +08:00
|
|
|
HasFastGather = false;
|
2016-08-04 20:47:28 +08:00
|
|
|
HasFastScalarFSQRT = false;
|
|
|
|
HasFastVectorFSQRT = false;
|
2016-10-15 00:41:38 +08:00
|
|
|
HasFastLZCNT = false;
|
2017-02-21 14:39:13 +08:00
|
|
|
HasFastSHLDRotate = false;
|
2017-08-30 12:34:48 +08:00
|
|
|
HasMacroFusion = false;
|
2017-04-21 17:20:50 +08:00
|
|
|
HasERMSB = false;
|
2014-11-21 19:19:34 +08:00
|
|
|
HasSlowDivide32 = false;
|
|
|
|
HasSlowDivide64 = false;
|
2013-02-16 09:36:26 +08:00
|
|
|
PadShortFunctions = false;
|
2017-08-29 13:14:27 +08:00
|
|
|
SlowTwoMemOps = false;
|
2013-04-26 04:29:37 +08:00
|
|
|
LEAUsesAG = false;
|
2014-05-20 16:55:50 +08:00
|
|
|
SlowLEA = false;
|
2017-05-18 16:11:50 +08:00
|
|
|
Slow3OpsLEA = false;
|
2014-06-09 19:40:41 +08:00
|
|
|
SlowIncDec = false;
|
2013-02-16 09:36:26 +08:00
|
|
|
stackAlignment = 4;
|
|
|
|
// FIXME: this is a known good value for Yonah. How about others?
|
|
|
|
MaxInlineSizeThreshold = 128;
|
2015-05-12 09:26:05 +08:00
|
|
|
UseSoftFloat = false;
|
2017-09-13 17:00:27 +08:00
|
|
|
X86ProcFamily = Others;
|
|
|
|
GatherOverhead = 1024;
|
|
|
|
ScatterOverhead = 1024;
|
2018-01-20 08:26:08 +08:00
|
|
|
PreferVectorWidth = UINT32_MAX;
|
|
|
|
Prefer256Bit = false;
|
2013-02-16 09:36:26 +08:00
|
|
|
}
|
|
|
|
|
2014-06-11 08:25:19 +08:00
|
|
|
X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
|
|
|
|
StringRef FS) {
|
|
|
|
initializeEnvironment();
|
2014-09-04 04:36:31 +08:00
|
|
|
initSubtargetFeatures(CPU, FS);
|
2014-06-11 08:25:19 +08:00
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
2016-05-21 02:16:06 +08:00
|
|
|
X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
|
|
|
|
const X86TargetMachine &TM,
|
2018-01-20 08:26:08 +08:00
|
|
|
unsigned StackAlignOverride,
|
2018-02-11 16:06:27 +08:00
|
|
|
unsigned PreferVectorWidthOverride,
|
|
|
|
unsigned RequiredVectorWidth)
|
2015-09-16 00:17:27 +08:00
|
|
|
: X86GenSubtargetInfo(TT, CPU, FS), X86ProcFamily(Others),
|
2016-05-20 06:07:57 +08:00
|
|
|
PICStyle(PICStyles::None), TM(TM), TargetTriple(TT),
|
2014-05-08 05:05:47 +08:00
|
|
|
StackAlignOverride(StackAlignOverride),
|
2018-01-20 08:26:08 +08:00
|
|
|
PreferVectorWidthOverride(PreferVectorWidthOverride),
|
2018-02-11 16:06:27 +08:00
|
|
|
RequiredVectorWidth(RequiredVectorWidth),
|
2014-05-08 05:05:47 +08:00
|
|
|
In64BitMode(TargetTriple.getArch() == Triple::x86_64),
|
|
|
|
In32BitMode(TargetTriple.getArch() == Triple::x86 &&
|
|
|
|
TargetTriple.getEnvironment() != Triple::CODE16),
|
|
|
|
In16BitMode(TargetTriple.getArch() == Triple::x86 &&
|
2014-06-10 01:08:19 +08:00
|
|
|
TargetTriple.getEnvironment() == Triple::CODE16),
|
2017-04-30 01:30:09 +08:00
|
|
|
InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this),
|
2017-05-19 19:08:33 +08:00
|
|
|
FrameLowering(*this, getStackAlignment()) {
|
2014-08-09 09:07:25 +08:00
|
|
|
// Determine the PICStyle based on the target selected.
|
2016-06-21 07:41:56 +08:00
|
|
|
if (!isPositionIndependent())
|
2014-08-09 09:07:25 +08:00
|
|
|
setPICStyle(PICStyles::None);
|
2016-06-21 07:41:56 +08:00
|
|
|
else if (is64Bit())
|
2014-08-09 09:07:25 +08:00
|
|
|
setPICStyle(PICStyles::RIPRel);
|
2016-06-21 07:41:56 +08:00
|
|
|
else if (isTargetCOFF())
|
2014-08-09 09:07:25 +08:00
|
|
|
setPICStyle(PICStyles::None);
|
2016-06-21 07:41:56 +08:00
|
|
|
else if (isTargetDarwin())
|
|
|
|
setPICStyle(PICStyles::StubPIC);
|
|
|
|
else if (isTargetELF())
|
2014-08-09 09:07:25 +08:00
|
|
|
setPICStyle(PICStyles::GOT);
|
2017-07-01 08:45:50 +08:00
|
|
|
|
2017-08-16 06:31:51 +08:00
|
|
|
CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
|
|
|
|
Legalizer.reset(new X86LegalizerInfo(*this, TM));
|
2017-07-01 08:45:50 +08:00
|
|
|
|
|
|
|
auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
|
2017-08-16 06:31:51 +08:00
|
|
|
RegBankInfo.reset(RBI);
|
|
|
|
InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
|
2014-08-09 09:07:25 +08:00
|
|
|
}
|
2013-02-16 06:31:27 +08:00
|
|
|
|
2016-11-15 14:34:33 +08:00
|
|
|
const CallLowering *X86Subtarget::getCallLowering() const {
|
2017-08-16 06:31:51 +08:00
|
|
|
return CallLoweringInfo.get();
|
2016-11-15 14:34:33 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
const InstructionSelector *X86Subtarget::getInstructionSelector() const {
|
2017-08-16 06:31:51 +08:00
|
|
|
return InstSelector.get();
|
2016-11-15 14:34:33 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
|
2017-08-16 06:31:51 +08:00
|
|
|
return Legalizer.get();
|
2016-11-15 14:34:33 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
|
2017-08-16 06:31:51 +08:00
|
|
|
return RegBankInfo.get();
|
2016-11-15 14:34:33 +08:00
|
|
|
}
|
|
|
|
|
2014-07-16 06:39:58 +08:00
|
|
|
bool X86Subtarget::enableEarlyIfConversion() const {
|
2014-05-22 07:51:57 +08:00
|
|
|
return hasCMov() && X86EarlyIfConv;
|
2014-05-22 07:40:26 +08:00
|
|
|
}
|