2007-02-09 03:20:57 +08:00
|
|
|
//===--- StringMap.cpp - String Hash table map implementation -------------===//
|
2006-10-30 07:42:03 +08:00
|
|
|
//
|
2019-01-19 16:50:56 +08:00
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
2006-10-30 07:42:03 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
2007-02-09 03:20:57 +08:00
|
|
|
// This file implements the StringMap class.
|
2006-10-30 07:42:03 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2007-02-09 03:20:57 +08:00
|
|
|
#include "llvm/ADT/StringMap.h"
|
2009-10-18 02:21:06 +08:00
|
|
|
#include "llvm/ADT/StringExtras.h"
|
2012-08-30 06:57:04 +08:00
|
|
|
#include "llvm/Support/Compiler.h"
|
2018-02-26 23:16:42 +08:00
|
|
|
#include "llvm/Support/DJB.h"
|
2016-08-24 01:14:32 +08:00
|
|
|
#include "llvm/Support/MathExtras.h"
|
2006-10-30 07:42:03 +08:00
|
|
|
#include <cassert>
|
2016-08-24 01:14:32 +08:00
|
|
|
|
2006-10-30 07:42:03 +08:00
|
|
|
using namespace llvm;
|
|
|
|
|
2016-03-25 13:57:57 +08:00
|
|
|
/// Returns the number of buckets to allocate to ensure that the DenseMap can
|
|
|
|
/// accommodate \p NumEntries without need to grow().
|
|
|
|
static unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
|
|
|
|
// Ensure that "NumEntries * 4 < NumBuckets * 3"
|
|
|
|
if (NumEntries == 0)
|
|
|
|
return 0;
|
|
|
|
// +1 is required because of the strict equality.
|
|
|
|
// For example if NumEntries is 48, we need to return 401.
|
|
|
|
return NextPowerOf2(NumEntries * 4 / 3 + 1);
|
|
|
|
}
|
|
|
|
|
2007-02-09 03:20:57 +08:00
|
|
|
StringMapImpl::StringMapImpl(unsigned InitSize, unsigned itemSize) {
|
2007-04-04 08:29:37 +08:00
|
|
|
ItemSize = itemSize;
|
2018-02-26 23:16:42 +08:00
|
|
|
|
2007-04-04 08:29:37 +08:00
|
|
|
// If a size is specified, initialize the table with that many buckets.
|
|
|
|
if (InitSize) {
|
2016-03-25 13:57:57 +08:00
|
|
|
// The table will grow when the number of entries reach 3/4 of the number of
|
|
|
|
// buckets. To guarantee that "InitSize" number of entries can be inserted
|
|
|
|
// in the table without growing, we allocate just what is needed here.
|
|
|
|
init(getMinBucketToReserveForEntries(InitSize));
|
2007-04-04 08:29:37 +08:00
|
|
|
return;
|
|
|
|
}
|
2018-02-26 23:16:42 +08:00
|
|
|
|
2007-04-04 08:29:37 +08:00
|
|
|
// Otherwise, initialize it with zero buckets to avoid the allocation.
|
2014-04-07 12:17:22 +08:00
|
|
|
TheTable = nullptr;
|
2007-04-04 08:29:37 +08:00
|
|
|
NumBuckets = 0;
|
|
|
|
NumItems = 0;
|
|
|
|
NumTombstones = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void StringMapImpl::init(unsigned InitSize) {
|
2006-10-30 07:42:03 +08:00
|
|
|
assert((InitSize & (InitSize-1)) == 0 &&
|
|
|
|
"Init Size must be a power of 2 or zero!");
|
2017-07-20 09:30:39 +08:00
|
|
|
|
|
|
|
unsigned NewNumBuckets = InitSize ? InitSize : 16;
|
2006-10-30 07:42:03 +08:00
|
|
|
NumItems = 0;
|
2007-02-12 04:58:00 +08:00
|
|
|
NumTombstones = 0;
|
2018-02-26 23:16:42 +08:00
|
|
|
|
Report fatal error in the case of out of memory
This is the second part of recommit of r325224. The previous part was
committed in r325426, which deals with C++ memory allocation. Solution
for C memory allocation involved functions `llvm::malloc` and similar.
This was a fragile solution because it caused ambiguity errors in some
cases. In this commit the new functions have names like `llvm::safe_malloc`.
The relevant part of original comment is below, updated for new function
names.
Analysis of fails in the case of out of memory errors can be tricky on
Windows. Such error emerges at the point where memory allocation function
fails, but manifests itself when null pointer is used. These two points
may be distant from each other. Besides, next runs may not exhibit
allocation error.
In some cases memory is allocated by a call to some of C allocation
functions, malloc, calloc and realloc. They are used for interoperability
with C code, when allocated object has variable size and when it is
necessary to avoid call of constructors. In many calls the result is not
checked for null pointer. To simplify checks, new functions are defined
in the namespace 'llvm': `safe_malloc`, `safe_calloc` and `safe_realloc`.
They behave as corresponding standard functions but produce fatal error if
allocation fails. This change replaces the standard functions like 'malloc'
in the cases when the result of the allocation function is not checked
for null pointer.
Finally, there are plain C code, that uses malloc and similar functions. If
the result is not checked, assert statement is added.
Differential Revision: https://reviews.llvm.org/D43010
llvm-svn: 325551
2018-02-20 13:41:26 +08:00
|
|
|
TheTable = static_cast<StringMapEntryBase **>(
|
2018-06-09 13:19:45 +08:00
|
|
|
safe_calloc(NewNumBuckets+1,
|
Report fatal error in the case of out of memory
This is the second part of recommit of r325224. The previous part was
committed in r325426, which deals with C++ memory allocation. Solution
for C memory allocation involved functions `llvm::malloc` and similar.
This was a fragile solution because it caused ambiguity errors in some
cases. In this commit the new functions have names like `llvm::safe_malloc`.
The relevant part of original comment is below, updated for new function
names.
Analysis of fails in the case of out of memory errors can be tricky on
Windows. Such error emerges at the point where memory allocation function
fails, but manifests itself when null pointer is used. These two points
may be distant from each other. Besides, next runs may not exhibit
allocation error.
In some cases memory is allocated by a call to some of C allocation
functions, malloc, calloc and realloc. They are used for interoperability
with C code, when allocated object has variable size and when it is
necessary to avoid call of constructors. In many calls the result is not
checked for null pointer. To simplify checks, new functions are defined
in the namespace 'llvm': `safe_malloc`, `safe_calloc` and `safe_realloc`.
They behave as corresponding standard functions but produce fatal error if
allocation fails. This change replaces the standard functions like 'malloc'
in the cases when the result of the allocation function is not checked
for null pointer.
Finally, there are plain C code, that uses malloc and similar functions. If
the result is not checked, assert statement is added.
Differential Revision: https://reviews.llvm.org/D43010
llvm-svn: 325551
2018-02-20 13:41:26 +08:00
|
|
|
sizeof(StringMapEntryBase **) + sizeof(unsigned)));
|
2017-07-20 09:30:39 +08:00
|
|
|
|
|
|
|
// Set the member only if TheTable was successfully allocated
|
|
|
|
NumBuckets = NewNumBuckets;
|
|
|
|
|
2007-02-11 16:20:35 +08:00
|
|
|
// Allocate one extra bucket, set it to look filled so the iterators stop at
|
|
|
|
// end.
|
2011-12-28 04:35:07 +08:00
|
|
|
TheTable[NumBuckets] = (StringMapEntryBase*)2;
|
2006-10-30 07:42:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// LookupBucketFor - Look up the bucket that the specified string should end
|
|
|
|
/// up in. If it already exists as a key in the map, the Item pointer for the
|
|
|
|
/// specified bucket will be non-null. Otherwise, it will be null. In either
|
|
|
|
/// case, the FullHashValue field of the bucket will be set to the hash value
|
|
|
|
/// of the string.
|
2009-11-06 18:58:06 +08:00
|
|
|
unsigned StringMapImpl::LookupBucketFor(StringRef Name) {
|
2006-10-30 07:42:03 +08:00
|
|
|
unsigned HTSize = NumBuckets;
|
2007-04-04 08:29:37 +08:00
|
|
|
if (HTSize == 0) { // Hash table unallocated so far?
|
|
|
|
init(16);
|
|
|
|
HTSize = NumBuckets;
|
|
|
|
}
|
2018-02-26 23:16:42 +08:00
|
|
|
unsigned FullHashValue = djbHash(Name, 0);
|
2006-10-30 07:42:03 +08:00
|
|
|
unsigned BucketNo = FullHashValue & (HTSize-1);
|
2011-12-28 04:35:07 +08:00
|
|
|
unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1);
|
|
|
|
|
2006-10-30 07:42:03 +08:00
|
|
|
unsigned ProbeAmt = 1;
|
2007-02-12 04:58:00 +08:00
|
|
|
int FirstTombstone = -1;
|
2016-08-24 01:14:32 +08:00
|
|
|
while (true) {
|
2011-12-28 04:35:07 +08:00
|
|
|
StringMapEntryBase *BucketItem = TheTable[BucketNo];
|
2006-10-30 07:42:03 +08:00
|
|
|
// If we found an empty bucket, this key isn't in the table yet, return it.
|
2014-04-09 12:20:00 +08:00
|
|
|
if (LLVM_LIKELY(!BucketItem)) {
|
2007-02-12 04:58:00 +08:00
|
|
|
// If we found a tombstone, we want to reuse the tombstone instead of an
|
|
|
|
// empty bucket. This reduces probing.
|
|
|
|
if (FirstTombstone != -1) {
|
2011-12-28 04:35:07 +08:00
|
|
|
HashTable[FirstTombstone] = FullHashValue;
|
2007-02-12 04:58:00 +08:00
|
|
|
return FirstTombstone;
|
|
|
|
}
|
2018-02-26 23:16:42 +08:00
|
|
|
|
2011-12-28 04:35:07 +08:00
|
|
|
HashTable[BucketNo] = FullHashValue;
|
2006-10-30 07:42:03 +08:00
|
|
|
return BucketNo;
|
|
|
|
}
|
2018-02-26 23:16:42 +08:00
|
|
|
|
2007-02-12 04:58:00 +08:00
|
|
|
if (BucketItem == getTombstoneVal()) {
|
|
|
|
// Skip over tombstones. However, remember the first one we see.
|
|
|
|
if (FirstTombstone == -1) FirstTombstone = BucketNo;
|
2012-08-30 06:57:04 +08:00
|
|
|
} else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) {
|
2007-02-12 04:58:00 +08:00
|
|
|
// If the full hash value matches, check deeply for a match. The common
|
|
|
|
// case here is that we are only looking at the buckets (for item info
|
|
|
|
// being non-null and for the full hash value) not at the items. This
|
|
|
|
// is important for cache locality.
|
2018-02-26 23:16:42 +08:00
|
|
|
|
2009-07-24 02:17:34 +08:00
|
|
|
// Do the comparison like this because Name isn't necessarily
|
2006-10-30 07:42:03 +08:00
|
|
|
// null-terminated!
|
|
|
|
char *ItemStr = (char*)BucketItem+ItemSize;
|
2009-07-24 02:17:34 +08:00
|
|
|
if (Name == StringRef(ItemStr, BucketItem->getKeyLength())) {
|
2006-10-30 07:42:03 +08:00
|
|
|
// We found a match!
|
|
|
|
return BucketNo;
|
|
|
|
}
|
|
|
|
}
|
2018-02-26 23:16:42 +08:00
|
|
|
|
2006-10-30 07:42:03 +08:00
|
|
|
// Okay, we didn't find the item. Probe to the next bucket.
|
|
|
|
BucketNo = (BucketNo+ProbeAmt) & (HTSize-1);
|
2018-02-26 23:16:42 +08:00
|
|
|
|
2006-10-30 07:42:03 +08:00
|
|
|
// Use quadratic probing, it has fewer clumping artifacts than linear
|
|
|
|
// probing and has good cache behavior in the common case.
|
|
|
|
++ProbeAmt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-02-12 03:49:41 +08:00
|
|
|
/// FindKey - Look up the bucket that contains the specified key. If it exists
|
|
|
|
/// in the map, return the bucket number of the key. Otherwise return -1.
|
|
|
|
/// This does not modify the map.
|
2009-11-06 18:58:06 +08:00
|
|
|
int StringMapImpl::FindKey(StringRef Key) const {
|
2007-02-12 03:49:41 +08:00
|
|
|
unsigned HTSize = NumBuckets;
|
2007-04-04 08:29:37 +08:00
|
|
|
if (HTSize == 0) return -1; // Really empty table?
|
2018-02-26 23:16:42 +08:00
|
|
|
unsigned FullHashValue = djbHash(Key, 0);
|
2007-02-12 03:49:41 +08:00
|
|
|
unsigned BucketNo = FullHashValue & (HTSize-1);
|
2011-12-28 04:35:07 +08:00
|
|
|
unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1);
|
|
|
|
|
2007-02-12 03:49:41 +08:00
|
|
|
unsigned ProbeAmt = 1;
|
2016-08-24 01:14:32 +08:00
|
|
|
while (true) {
|
2011-12-28 04:35:07 +08:00
|
|
|
StringMapEntryBase *BucketItem = TheTable[BucketNo];
|
2007-02-12 03:49:41 +08:00
|
|
|
// If we found an empty bucket, this key isn't in the table yet, return.
|
2014-04-09 12:20:00 +08:00
|
|
|
if (LLVM_LIKELY(!BucketItem))
|
2007-02-12 03:49:41 +08:00
|
|
|
return -1;
|
2018-02-26 23:16:42 +08:00
|
|
|
|
2007-02-12 04:58:00 +08:00
|
|
|
if (BucketItem == getTombstoneVal()) {
|
|
|
|
// Ignore tombstones.
|
2012-08-30 06:57:04 +08:00
|
|
|
} else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) {
|
2007-02-12 04:58:00 +08:00
|
|
|
// If the full hash value matches, check deeply for a match. The common
|
|
|
|
// case here is that we are only looking at the buckets (for item info
|
|
|
|
// being non-null and for the full hash value) not at the items. This
|
|
|
|
// is important for cache locality.
|
2018-02-26 23:16:42 +08:00
|
|
|
|
2007-02-12 03:49:41 +08:00
|
|
|
// Do the comparison like this because NameStart isn't necessarily
|
|
|
|
// null-terminated!
|
|
|
|
char *ItemStr = (char*)BucketItem+ItemSize;
|
2009-07-24 02:17:34 +08:00
|
|
|
if (Key == StringRef(ItemStr, BucketItem->getKeyLength())) {
|
2007-02-12 03:49:41 +08:00
|
|
|
// We found a match!
|
|
|
|
return BucketNo;
|
|
|
|
}
|
|
|
|
}
|
2018-02-26 23:16:42 +08:00
|
|
|
|
2007-02-12 03:49:41 +08:00
|
|
|
// Okay, we didn't find the item. Probe to the next bucket.
|
|
|
|
BucketNo = (BucketNo+ProbeAmt) & (HTSize-1);
|
2018-02-26 23:16:42 +08:00
|
|
|
|
2007-02-12 03:49:41 +08:00
|
|
|
// Use quadratic probing, it has fewer clumping artifacts than linear
|
|
|
|
// probing and has good cache behavior in the common case.
|
|
|
|
++ProbeAmt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-02-12 04:58:00 +08:00
|
|
|
/// RemoveKey - Remove the specified StringMapEntry from the table, but do not
|
|
|
|
/// delete it. This aborts if the value isn't in the table.
|
|
|
|
void StringMapImpl::RemoveKey(StringMapEntryBase *V) {
|
|
|
|
const char *VStr = (char*)V + ItemSize;
|
2009-07-24 02:17:34 +08:00
|
|
|
StringMapEntryBase *V2 = RemoveKey(StringRef(VStr, V->getKeyLength()));
|
2010-12-23 08:58:24 +08:00
|
|
|
(void)V2;
|
2007-02-12 04:58:00 +08:00
|
|
|
assert(V == V2 && "Didn't find key?");
|
|
|
|
}
|
|
|
|
|
|
|
|
/// RemoveKey - Remove the StringMapEntry for the specified key from the
|
|
|
|
/// table, returning it. If the key is not in the table, this returns null.
|
2009-11-06 18:58:06 +08:00
|
|
|
StringMapEntryBase *StringMapImpl::RemoveKey(StringRef Key) {
|
2009-07-24 02:17:34 +08:00
|
|
|
int Bucket = FindKey(Key);
|
2014-04-07 12:17:22 +08:00
|
|
|
if (Bucket == -1) return nullptr;
|
2018-02-26 23:16:42 +08:00
|
|
|
|
2011-12-28 04:35:07 +08:00
|
|
|
StringMapEntryBase *Result = TheTable[Bucket];
|
|
|
|
TheTable[Bucket] = getTombstoneVal();
|
2007-02-12 04:58:00 +08:00
|
|
|
--NumItems;
|
|
|
|
++NumTombstones;
|
2011-03-31 02:32:51 +08:00
|
|
|
assert(NumItems + NumTombstones <= NumBuckets);
|
|
|
|
|
2007-02-12 04:58:00 +08:00
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
2006-10-30 07:42:03 +08:00
|
|
|
/// RehashTable - Grow the table, redistributing values into the buckets with
|
|
|
|
/// the appropriate mod-of-hashtable-size.
|
2014-06-24 02:28:53 +08:00
|
|
|
unsigned StringMapImpl::RehashTable(unsigned BucketNo) {
|
2011-03-31 02:32:44 +08:00
|
|
|
unsigned NewSize;
|
2011-12-28 04:35:07 +08:00
|
|
|
unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1);
|
2011-03-31 02:32:44 +08:00
|
|
|
|
|
|
|
// If the hash table is now more than 3/4 full, or if fewer than 1/8 of
|
|
|
|
// the buckets are empty (meaning that many are filled with tombstones),
|
|
|
|
// grow/rehash the table.
|
2015-02-24 00:41:36 +08:00
|
|
|
if (LLVM_UNLIKELY(NumItems * 4 > NumBuckets * 3)) {
|
2011-03-31 02:32:44 +08:00
|
|
|
NewSize = NumBuckets*2;
|
2015-02-24 00:41:36 +08:00
|
|
|
} else if (LLVM_UNLIKELY(NumBuckets - (NumItems + NumTombstones) <=
|
|
|
|
NumBuckets / 8)) {
|
2011-03-31 02:32:44 +08:00
|
|
|
NewSize = NumBuckets;
|
|
|
|
} else {
|
2014-06-24 02:28:53 +08:00
|
|
|
return BucketNo;
|
2011-03-31 02:32:44 +08:00
|
|
|
}
|
|
|
|
|
2014-06-24 02:28:53 +08:00
|
|
|
unsigned NewBucketNo = BucketNo;
|
2007-02-11 16:20:35 +08:00
|
|
|
// Allocate one extra bucket which will always be non-empty. This allows the
|
|
|
|
// iterators to stop at end.
|
Report fatal error in the case of out of memory
This is the second part of recommit of r325224. The previous part was
committed in r325426, which deals with C++ memory allocation. Solution
for C memory allocation involved functions `llvm::malloc` and similar.
This was a fragile solution because it caused ambiguity errors in some
cases. In this commit the new functions have names like `llvm::safe_malloc`.
The relevant part of original comment is below, updated for new function
names.
Analysis of fails in the case of out of memory errors can be tricky on
Windows. Such error emerges at the point where memory allocation function
fails, but manifests itself when null pointer is used. These two points
may be distant from each other. Besides, next runs may not exhibit
allocation error.
In some cases memory is allocated by a call to some of C allocation
functions, malloc, calloc and realloc. They are used for interoperability
with C code, when allocated object has variable size and when it is
necessary to avoid call of constructors. In many calls the result is not
checked for null pointer. To simplify checks, new functions are defined
in the namespace 'llvm': `safe_malloc`, `safe_calloc` and `safe_realloc`.
They behave as corresponding standard functions but produce fatal error if
allocation fails. This change replaces the standard functions like 'malloc'
in the cases when the result of the allocation function is not checked
for null pointer.
Finally, there are plain C code, that uses malloc and similar functions. If
the result is not checked, assert statement is added.
Differential Revision: https://reviews.llvm.org/D43010
llvm-svn: 325551
2018-02-20 13:41:26 +08:00
|
|
|
auto NewTableArray = static_cast<StringMapEntryBase **>(
|
2018-06-09 13:19:45 +08:00
|
|
|
safe_calloc(NewSize+1, sizeof(StringMapEntryBase *) + sizeof(unsigned)));
|
2017-07-20 09:30:39 +08:00
|
|
|
|
2011-12-28 04:35:07 +08:00
|
|
|
unsigned *NewHashArray = (unsigned *)(NewTableArray + NewSize + 1);
|
|
|
|
NewTableArray[NewSize] = (StringMapEntryBase*)2;
|
|
|
|
|
2006-10-30 07:42:03 +08:00
|
|
|
// Rehash all the items into their new buckets. Luckily :) we already have
|
|
|
|
// the hash values available, so we don't have to rehash any strings.
|
2011-12-28 04:35:07 +08:00
|
|
|
for (unsigned I = 0, E = NumBuckets; I != E; ++I) {
|
|
|
|
StringMapEntryBase *Bucket = TheTable[I];
|
|
|
|
if (Bucket && Bucket != getTombstoneVal()) {
|
2006-10-30 07:42:03 +08:00
|
|
|
// Fast case, bucket available.
|
2011-12-28 04:35:07 +08:00
|
|
|
unsigned FullHash = HashTable[I];
|
2006-10-30 07:42:03 +08:00
|
|
|
unsigned NewBucket = FullHash & (NewSize-1);
|
2014-04-09 12:20:00 +08:00
|
|
|
if (!NewTableArray[NewBucket]) {
|
2011-12-28 04:35:07 +08:00
|
|
|
NewTableArray[FullHash & (NewSize-1)] = Bucket;
|
|
|
|
NewHashArray[FullHash & (NewSize-1)] = FullHash;
|
2014-06-24 02:28:53 +08:00
|
|
|
if (I == BucketNo)
|
|
|
|
NewBucketNo = NewBucket;
|
2006-10-30 07:42:03 +08:00
|
|
|
continue;
|
|
|
|
}
|
2018-02-26 23:16:42 +08:00
|
|
|
|
2007-02-12 04:58:00 +08:00
|
|
|
// Otherwise probe for a spot.
|
2006-10-30 07:42:03 +08:00
|
|
|
unsigned ProbeSize = 1;
|
|
|
|
do {
|
|
|
|
NewBucket = (NewBucket + ProbeSize++) & (NewSize-1);
|
2011-12-28 04:35:07 +08:00
|
|
|
} while (NewTableArray[NewBucket]);
|
2018-02-26 23:16:42 +08:00
|
|
|
|
2006-10-30 07:42:03 +08:00
|
|
|
// Finally found a slot. Fill it in.
|
2011-12-28 04:35:07 +08:00
|
|
|
NewTableArray[NewBucket] = Bucket;
|
|
|
|
NewHashArray[NewBucket] = FullHash;
|
2014-06-24 02:28:53 +08:00
|
|
|
if (I == BucketNo)
|
|
|
|
NewBucketNo = NewBucket;
|
2006-10-30 07:42:03 +08:00
|
|
|
}
|
|
|
|
}
|
2018-02-26 23:16:42 +08:00
|
|
|
|
2007-04-05 01:24:28 +08:00
|
|
|
free(TheTable);
|
2018-02-26 23:16:42 +08:00
|
|
|
|
2006-10-30 07:42:03 +08:00
|
|
|
TheTable = NewTableArray;
|
|
|
|
NumBuckets = NewSize;
|
2011-03-31 02:32:51 +08:00
|
|
|
NumTombstones = 0;
|
2014-06-24 02:28:53 +08:00
|
|
|
return NewBucketNo;
|
2006-10-30 07:42:03 +08:00
|
|
|
}
|