llvm-project/compiler-rt/lib/ubsan/ubsan_diag.cc

272 lines
7.8 KiB
C++
Raw Normal View History

//===-- ubsan_diag.cc -----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Diagnostic reporting for the UBSan runtime.
//
//===----------------------------------------------------------------------===//
#include "ubsan_diag.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "sanitizer_common/sanitizer_symbolizer.h"
#include <stdio.h>
using namespace __ubsan;
Location __ubsan::getCallerLocation(uptr CallerLoc) {
if (!CallerLoc)
return Location();
uptr Loc = StackTrace::GetPreviousInstructionPc(CallerLoc);
AddressInfo Info;
if (!SymbolizeCode(Loc, &Info, 1) || !Info.module || !*Info.module)
return Location(Loc);
if (!Info.function)
return ModuleLocation(Info.module, Info.module_offset);
return SourceLocation(Info.file, Info.line, Info.column);
}
Diag &Diag::operator<<(const TypeDescriptor &V) {
return AddArg(V.getTypeName());
}
Diag &Diag::operator<<(const Value &V) {
if (V.getType().isSignedIntegerTy())
AddArg(V.getSIntValue());
else if (V.getType().isUnsignedIntegerTy())
AddArg(V.getUIntValue());
else if (V.getType().isFloatTy())
AddArg(V.getFloatValue());
else
AddArg("<unknown>");
return *this;
}
/// Hexadecimal printing for numbers too large for Printf to handle directly.
static void PrintHex(UIntMax Val) {
#if HAVE_INT128_T
Printf("0x%08x%08x%08x%08x",
(unsigned int)(Val >> 96),
(unsigned int)(Val >> 64),
(unsigned int)(Val >> 32),
(unsigned int)(Val));
#else
UNREACHABLE("long long smaller than 64 bits?");
#endif
}
static void renderLocation(Location Loc) {
switch (Loc.getKind()) {
case Location::LK_Source: {
SourceLocation SLoc = Loc.getSourceLocation();
if (SLoc.isInvalid())
RawWrite("<unknown>:");
else {
Printf("%s:%d:", SLoc.getFilename(), SLoc.getLine());
if (SLoc.getColumn())
Printf("%d:", SLoc.getColumn());
}
break;
}
case Location::LK_Module:
Printf("%s:0x%zx:", Loc.getModuleLocation().getModuleName(),
Loc.getModuleLocation().getOffset());
break;
case Location::LK_Memory:
Printf("%p:", Loc.getMemoryLocation());
break;
case Location::LK_Null:
RawWrite("<unknown>:");
break;
}
}
static void renderText(const char *Message, const Diag::Arg *Args) {
for (const char *Msg = Message; *Msg; ++Msg) {
if (*Msg != '%') {
char Buffer[64];
unsigned I;
for (I = 0; Msg[I] && Msg[I] != '%' && I != 63; ++I)
Buffer[I] = Msg[I];
Buffer[I] = '\0';
RawWrite(Buffer);
Msg += I - 1;
} else {
const Diag::Arg &A = Args[*++Msg - '0'];
switch (A.Kind) {
case Diag::AK_String:
Printf("%s", A.String);
break;
case Diag::AK_Mangled: {
RawWrite("'");
RawWrite(Demangle(A.String));
RawWrite("'");
break;
}
case Diag::AK_SInt:
// 'long long' is guaranteed to be at least 64 bits wide.
if (A.SInt >= INT64_MIN && A.SInt <= INT64_MAX)
Printf("%lld", (long long)A.SInt);
else
PrintHex(A.SInt);
break;
case Diag::AK_UInt:
if (A.UInt <= UINT64_MAX)
Printf("%llu", (unsigned long long)A.UInt);
else
PrintHex(A.UInt);
break;
case Diag::AK_Float: {
// FIXME: Support floating-point formatting in sanitizer_common's
// printf, and stop using snprintf here.
char Buffer[32];
snprintf(Buffer, sizeof(Buffer), "%Lg", (long double)A.Float);
Printf("%s", Buffer);
break;
}
case Diag::AK_Pointer:
Printf("%p", A.Pointer);
break;
}
}
}
}
/// Find the earliest-starting range in Ranges which ends after Loc.
static Range *upperBound(MemoryLocation Loc, Range *Ranges,
unsigned NumRanges) {
Range *Best = 0;
for (unsigned I = 0; I != NumRanges; ++I)
if (Ranges[I].getEnd().getMemoryLocation() > Loc &&
(!Best ||
Best->getStart().getMemoryLocation() >
Ranges[I].getStart().getMemoryLocation()))
Best = &Ranges[I];
return Best;
}
/// Render a snippet of the address space near a location.
static void renderMemorySnippet(MemoryLocation Loc,
Range *Ranges, unsigned NumRanges,
const Diag::Arg *Args) {
const unsigned BytesToShow = 32;
const unsigned MinBytesNearLoc = 4;
// Show at least the 8 bytes surrounding Loc.
MemoryLocation Min = Loc - MinBytesNearLoc, Max = Loc + MinBytesNearLoc;
for (unsigned I = 0; I < NumRanges; ++I) {
Min = __sanitizer::Min(Ranges[I].getStart().getMemoryLocation(), Min);
Max = __sanitizer::Max(Ranges[I].getEnd().getMemoryLocation(), Max);
}
// If we have too many interesting bytes, prefer to show bytes after Loc.
if (Max - Min > BytesToShow)
Min = __sanitizer::Min(Max - BytesToShow, Loc - MinBytesNearLoc);
Max = Min + BytesToShow;
// Emit data.
for (uptr P = Min; P != Max; ++P) {
// FIXME: Check that the address is readable before printing it.
unsigned char C = *reinterpret_cast<const unsigned char*>(P);
Printf("%s%02x", (P % 8 == 0) ? " " : " ", C);
}
RawWrite("\n");
// Emit highlights.
Range *InRange = upperBound(Min, Ranges, NumRanges);
for (uptr P = Min; P != Max; ++P) {
char Pad = ' ', Byte = ' ';
if (InRange && InRange->getEnd().getMemoryLocation() == P)
InRange = upperBound(P, Ranges, NumRanges);
if (!InRange && P > Loc)
break;
if (InRange && InRange->getStart().getMemoryLocation() < P)
Pad = '~';
if (InRange && InRange->getStart().getMemoryLocation() <= P)
Byte = '~';
char Buffer[] = { Pad, Pad, P == Loc ? '^' : Byte, Byte, 0 };
RawWrite((P % 8 == 0) ? Buffer : &Buffer[1]);
}
RawWrite("\n");
// Go over the line again, and print names for the ranges.
InRange = 0;
unsigned Spaces = 0;
for (uptr P = Min; P != Max; ++P) {
if (!InRange || InRange->getEnd().getMemoryLocation() == P)
InRange = upperBound(P, Ranges, NumRanges);
if (!InRange)
break;
Spaces += (P % 8) == 0 ? 2 : 1;
if (InRange && InRange->getStart().getMemoryLocation() == P) {
while (Spaces--)
RawWrite(" ");
renderText(InRange->getText(), Args);
RawWrite("\n");
// FIXME: We only support naming one range for now!
break;
}
Spaces += 2;
}
// FIXME: Print names for anything we can identify within the line:
//
// * If we can identify the memory itself as belonging to a particular
// global, stack variable, or dynamic allocation, then do so.
//
// * If we have a pointer-size, pointer-aligned range highlighted,
// determine whether the value of that range is a pointer to an
// entity which we can name, and if so, print that name.
//
// This needs an external symbolizer, or (preferably) ASan instrumentation.
}
Diag::~Diag() {
bool UseAnsiColor = PrintsToTty();
if (UseAnsiColor)
RawWrite("\033[1m");
renderLocation(Loc);
switch (Level) {
case DL_Error:
if (UseAnsiColor)
RawWrite("\033[31m");
RawWrite(" runtime error: ");
if (UseAnsiColor)
RawWrite("\033[0;1m");
break;
case DL_Note:
if (UseAnsiColor)
RawWrite("\033[30m");
RawWrite(" note: ");
if (UseAnsiColor)
RawWrite("\033[0m");
break;
}
renderText(Message, Args);
if (UseAnsiColor)
RawWrite("\033[0m");
RawWrite("\n");
if (Loc.isMemoryLocation())
renderMemorySnippet(Loc.getMemoryLocation(), Ranges, NumRanges, Args);
}