2014-05-06 18:08:46 +08:00
|
|
|
//===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This contains code to emit OpenMP nodes as LLVM code.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "CGOpenMPRuntime.h"
|
|
|
|
#include "CodeGenFunction.h"
|
|
|
|
#include "CodeGenModule.h"
|
2015-01-14 19:29:14 +08:00
|
|
|
#include "TargetInfo.h"
|
2014-05-06 18:08:46 +08:00
|
|
|
#include "clang/AST/Stmt.h"
|
|
|
|
#include "clang/AST/StmtOpenMP.h"
|
|
|
|
using namespace clang;
|
|
|
|
using namespace CodeGen;
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// OpenMP Directive Emission
|
|
|
|
//===----------------------------------------------------------------------===//
|
2015-04-14 13:11:24 +08:00
|
|
|
void CodeGenFunction::EmitOMPAggregateAssign(
|
|
|
|
llvm::Value *DestAddr, llvm::Value *SrcAddr, QualType OriginalType,
|
|
|
|
const llvm::function_ref<void(llvm::Value *, llvm::Value *)> &CopyGen) {
|
|
|
|
// Perform element-by-element initialization.
|
|
|
|
QualType ElementTy;
|
|
|
|
auto SrcBegin = SrcAddr;
|
|
|
|
auto DestBegin = DestAddr;
|
|
|
|
auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
|
|
|
|
auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestBegin);
|
|
|
|
// Cast from pointer to array type to pointer to single element.
|
|
|
|
SrcBegin = Builder.CreatePointerBitCastOrAddrSpaceCast(SrcBegin,
|
|
|
|
DestBegin->getType());
|
|
|
|
auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
|
|
|
|
// The basic structure here is a while-do loop.
|
|
|
|
auto BodyBB = createBasicBlock("omp.arraycpy.body");
|
|
|
|
auto DoneBB = createBasicBlock("omp.arraycpy.done");
|
|
|
|
auto IsEmpty =
|
|
|
|
Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
|
|
|
|
Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
|
|
|
|
|
|
|
|
// Enter the loop body, making that address the current address.
|
|
|
|
auto EntryBB = Builder.GetInsertBlock();
|
|
|
|
EmitBlock(BodyBB);
|
|
|
|
auto SrcElementCurrent =
|
|
|
|
Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
|
|
|
|
SrcElementCurrent->addIncoming(SrcBegin, EntryBB);
|
|
|
|
auto DestElementCurrent = Builder.CreatePHI(DestBegin->getType(), 2,
|
|
|
|
"omp.arraycpy.destElementPast");
|
|
|
|
DestElementCurrent->addIncoming(DestBegin, EntryBB);
|
|
|
|
|
|
|
|
// Emit copy.
|
|
|
|
CopyGen(DestElementCurrent, SrcElementCurrent);
|
|
|
|
|
|
|
|
// Shift the address forward by one element.
|
|
|
|
auto DestElementNext = Builder.CreateConstGEP1_32(
|
|
|
|
DestElementCurrent, /*Idx0=*/1, "omp.arraycpy.dest.element");
|
|
|
|
auto SrcElementNext = Builder.CreateConstGEP1_32(
|
|
|
|
SrcElementCurrent, /*Idx0=*/1, "omp.arraycpy.src.element");
|
|
|
|
// Check whether we've reached the end.
|
|
|
|
auto Done =
|
|
|
|
Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
|
|
|
|
Builder.CreateCondBr(Done, DoneBB, BodyBB);
|
|
|
|
DestElementCurrent->addIncoming(DestElementNext, Builder.GetInsertBlock());
|
|
|
|
SrcElementCurrent->addIncoming(SrcElementNext, Builder.GetInsertBlock());
|
|
|
|
|
|
|
|
// Done.
|
|
|
|
EmitBlock(DoneBB, /*IsFinished=*/true);
|
|
|
|
}
|
2014-10-08 22:01:46 +08:00
|
|
|
|
2015-04-14 13:11:24 +08:00
|
|
|
void CodeGenFunction::EmitOMPCopy(CodeGenFunction &CGF,
|
|
|
|
QualType OriginalType, llvm::Value *DestAddr,
|
|
|
|
llvm::Value *SrcAddr, const VarDecl *DestVD,
|
|
|
|
const VarDecl *SrcVD, const Expr *Copy) {
|
|
|
|
if (OriginalType->isArrayType()) {
|
|
|
|
auto *BO = dyn_cast<BinaryOperator>(Copy);
|
|
|
|
if (BO && BO->getOpcode() == BO_Assign) {
|
|
|
|
// Perform simple memcpy for simple copying.
|
|
|
|
CGF.EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
|
|
|
|
} else {
|
|
|
|
// For arrays with complex element types perform element by element
|
|
|
|
// copying.
|
|
|
|
CGF.EmitOMPAggregateAssign(
|
|
|
|
DestAddr, SrcAddr, OriginalType,
|
|
|
|
[&CGF, Copy, SrcVD, DestVD](llvm::Value *DestElement,
|
|
|
|
llvm::Value *SrcElement) {
|
|
|
|
// Working with the single array element, so have to remap
|
|
|
|
// destination and source variables to corresponding array
|
|
|
|
// elements.
|
|
|
|
CodeGenFunction::OMPPrivateScope Remap(CGF);
|
|
|
|
Remap.addPrivate(DestVD, [DestElement]() -> llvm::Value *{
|
|
|
|
return DestElement;
|
|
|
|
});
|
|
|
|
Remap.addPrivate(
|
|
|
|
SrcVD, [SrcElement]() -> llvm::Value *{ return SrcElement; });
|
|
|
|
(void)Remap.Privatize();
|
|
|
|
CGF.EmitIgnoredExpr(Copy);
|
|
|
|
});
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Remap pseudo source variable to private copy.
|
|
|
|
CodeGenFunction::OMPPrivateScope Remap(CGF);
|
|
|
|
Remap.addPrivate(SrcVD, [SrcAddr]() -> llvm::Value *{ return SrcAddr; });
|
|
|
|
Remap.addPrivate(DestVD, [DestAddr]() -> llvm::Value *{ return DestAddr; });
|
|
|
|
(void)Remap.Privatize();
|
|
|
|
// Emit copying of the whole variable.
|
|
|
|
CGF.EmitIgnoredExpr(Copy);
|
2014-10-08 22:01:46 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-04-15 12:52:20 +08:00
|
|
|
bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
|
|
|
|
OMPPrivateScope &PrivateScope) {
|
|
|
|
llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
|
2015-04-27 16:00:32 +08:00
|
|
|
for (auto &&I = D.getClausesOfKind(OMPC_firstprivate); I; ++I) {
|
2014-10-08 22:01:46 +08:00
|
|
|
auto *C = cast<OMPFirstprivateClause>(*I);
|
|
|
|
auto IRef = C->varlist_begin();
|
|
|
|
auto InitsRef = C->inits().begin();
|
|
|
|
for (auto IInit : C->private_copies()) {
|
2014-10-10 17:48:26 +08:00
|
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
2015-04-15 12:52:20 +08:00
|
|
|
if (EmittedAsFirstprivate.count(OrigVD) == 0) {
|
|
|
|
EmittedAsFirstprivate.insert(OrigVD);
|
|
|
|
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
|
|
|
|
auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
|
|
|
|
bool IsRegistered;
|
|
|
|
DeclRefExpr DRE(
|
|
|
|
const_cast<VarDecl *>(OrigVD),
|
|
|
|
/*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
|
|
|
|
OrigVD) != nullptr,
|
|
|
|
(*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
|
|
|
|
auto *OriginalAddr = EmitLValue(&DRE).getAddress();
|
2015-05-19 20:31:28 +08:00
|
|
|
QualType Type = OrigVD->getType();
|
|
|
|
if (Type->isArrayType()) {
|
2015-04-15 12:52:20 +08:00
|
|
|
// Emit VarDecl with copy init for arrays.
|
|
|
|
// Get the address of the original variable captured in current
|
|
|
|
// captured region.
|
|
|
|
IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
|
|
|
|
auto Emission = EmitAutoVarAlloca(*VD);
|
|
|
|
auto *Init = VD->getInit();
|
|
|
|
if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
|
|
|
|
// Perform simple memcpy.
|
|
|
|
EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
|
2015-05-19 20:31:28 +08:00
|
|
|
Type);
|
2015-04-15 12:52:20 +08:00
|
|
|
} else {
|
|
|
|
EmitOMPAggregateAssign(
|
2015-05-19 20:31:28 +08:00
|
|
|
Emission.getAllocatedAddress(), OriginalAddr, Type,
|
2015-04-15 12:52:20 +08:00
|
|
|
[this, VDInit, Init](llvm::Value *DestElement,
|
|
|
|
llvm::Value *SrcElement) {
|
|
|
|
// Clean up any temporaries needed by the initialization.
|
|
|
|
RunCleanupsScope InitScope(*this);
|
|
|
|
// Emit initialization for single element.
|
|
|
|
LocalDeclMap[VDInit] = SrcElement;
|
|
|
|
EmitAnyExprToMem(Init, DestElement,
|
|
|
|
Init->getType().getQualifiers(),
|
|
|
|
/*IsInitializer*/ false);
|
|
|
|
LocalDeclMap.erase(VDInit);
|
|
|
|
});
|
|
|
|
}
|
|
|
|
EmitAutoVarCleanups(Emission);
|
|
|
|
return Emission.getAllocatedAddress();
|
|
|
|
});
|
|
|
|
} else {
|
|
|
|
IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
|
|
|
|
// Emit private VarDecl with copy init.
|
|
|
|
// Remap temp VDInit variable to the address of the original
|
|
|
|
// variable
|
|
|
|
// (for proper handling of captured global variables).
|
|
|
|
LocalDeclMap[VDInit] = OriginalAddr;
|
|
|
|
EmitDecl(*VD);
|
|
|
|
LocalDeclMap.erase(VDInit);
|
|
|
|
return GetAddrOfLocalVar(VD);
|
|
|
|
});
|
|
|
|
}
|
|
|
|
assert(IsRegistered &&
|
|
|
|
"firstprivate var already registered as private");
|
|
|
|
// Silence the warning about unused variable.
|
|
|
|
(void)IsRegistered;
|
|
|
|
}
|
2014-10-08 22:01:46 +08:00
|
|
|
++IRef, ++InitsRef;
|
|
|
|
}
|
|
|
|
}
|
2015-04-15 12:52:20 +08:00
|
|
|
return !EmittedAsFirstprivate.empty();
|
2014-10-08 22:01:46 +08:00
|
|
|
}
|
|
|
|
|
2014-10-21 11:16:40 +08:00
|
|
|
void CodeGenFunction::EmitOMPPrivateClause(
|
|
|
|
const OMPExecutableDirective &D,
|
|
|
|
CodeGenFunction::OMPPrivateScope &PrivateScope) {
|
2015-04-22 20:24:45 +08:00
|
|
|
llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
|
2015-04-27 16:00:32 +08:00
|
|
|
for (auto &&I = D.getClausesOfKind(OMPC_private); I; ++I) {
|
2014-10-21 11:16:40 +08:00
|
|
|
auto *C = cast<OMPPrivateClause>(*I);
|
|
|
|
auto IRef = C->varlist_begin();
|
|
|
|
for (auto IInit : C->private_copies()) {
|
|
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
2015-04-22 20:24:45 +08:00
|
|
|
if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
|
|
|
|
auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
|
|
|
|
bool IsRegistered =
|
|
|
|
PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
|
|
|
|
// Emit private VarDecl with copy init.
|
|
|
|
EmitDecl(*VD);
|
|
|
|
return GetAddrOfLocalVar(VD);
|
|
|
|
});
|
|
|
|
assert(IsRegistered && "private var already registered as private");
|
|
|
|
// Silence the warning about unused variable.
|
|
|
|
(void)IsRegistered;
|
|
|
|
}
|
2014-10-21 11:16:40 +08:00
|
|
|
++IRef;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-04-16 13:39:01 +08:00
|
|
|
bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
|
|
|
|
// threadprivate_var1 = master_threadprivate_var1;
|
|
|
|
// operator=(threadprivate_var2, master_threadprivate_var2);
|
|
|
|
// ...
|
|
|
|
// __kmpc_barrier(&loc, global_tid);
|
|
|
|
llvm::DenseSet<const VarDecl *> CopiedVars;
|
|
|
|
llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
|
2015-04-27 16:00:32 +08:00
|
|
|
for (auto &&I = D.getClausesOfKind(OMPC_copyin); I; ++I) {
|
2015-04-16 13:39:01 +08:00
|
|
|
auto *C = cast<OMPCopyinClause>(*I);
|
|
|
|
auto IRef = C->varlist_begin();
|
|
|
|
auto ISrcRef = C->source_exprs().begin();
|
|
|
|
auto IDestRef = C->destination_exprs().begin();
|
|
|
|
for (auto *AssignOp : C->assignment_ops()) {
|
|
|
|
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
2015-05-19 20:31:28 +08:00
|
|
|
QualType Type = VD->getType();
|
2015-04-16 13:39:01 +08:00
|
|
|
if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
|
|
|
|
// Get the address of the master variable.
|
|
|
|
auto *MasterAddr = VD->isStaticLocal()
|
|
|
|
? CGM.getStaticLocalDeclAddress(VD)
|
|
|
|
: CGM.GetAddrOfGlobal(VD);
|
|
|
|
// Get the address of the threadprivate variable.
|
|
|
|
auto *PrivateAddr = EmitLValue(*IRef).getAddress();
|
|
|
|
if (CopiedVars.size() == 1) {
|
|
|
|
// At first check if current thread is a master thread. If it is, no
|
|
|
|
// need to copy data.
|
|
|
|
CopyBegin = createBasicBlock("copyin.not.master");
|
|
|
|
CopyEnd = createBasicBlock("copyin.not.master.end");
|
|
|
|
Builder.CreateCondBr(
|
|
|
|
Builder.CreateICmpNE(
|
|
|
|
Builder.CreatePtrToInt(MasterAddr, CGM.IntPtrTy),
|
|
|
|
Builder.CreatePtrToInt(PrivateAddr, CGM.IntPtrTy)),
|
|
|
|
CopyBegin, CopyEnd);
|
|
|
|
EmitBlock(CopyBegin);
|
|
|
|
}
|
|
|
|
auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
|
|
|
|
auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
|
2015-05-19 20:31:28 +08:00
|
|
|
EmitOMPCopy(*this, Type, PrivateAddr, MasterAddr, DestVD, SrcVD,
|
|
|
|
AssignOp);
|
2015-04-16 13:39:01 +08:00
|
|
|
}
|
|
|
|
++IRef;
|
|
|
|
++ISrcRef;
|
|
|
|
++IDestRef;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (CopyEnd) {
|
|
|
|
// Exit out of copying procedure for non-master thread.
|
|
|
|
EmitBlock(CopyEnd, /*IsFinished=*/true);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2015-04-16 12:54:05 +08:00
|
|
|
bool CodeGenFunction::EmitOMPLastprivateClauseInit(
|
|
|
|
const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
|
|
|
|
bool HasAtLeastOneLastprivate = false;
|
|
|
|
llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
|
2015-04-27 16:00:32 +08:00
|
|
|
for (auto &&I = D.getClausesOfKind(OMPC_lastprivate); I; ++I) {
|
2015-05-13 18:23:02 +08:00
|
|
|
HasAtLeastOneLastprivate = true;
|
2015-04-16 12:54:05 +08:00
|
|
|
auto *C = cast<OMPLastprivateClause>(*I);
|
|
|
|
auto IRef = C->varlist_begin();
|
|
|
|
auto IDestRef = C->destination_exprs().begin();
|
|
|
|
for (auto *IInit : C->private_copies()) {
|
|
|
|
// Keep the address of the original variable for future update at the end
|
|
|
|
// of the loop.
|
|
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
|
|
if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
|
|
|
|
auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
|
|
|
|
PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> llvm::Value *{
|
|
|
|
DeclRefExpr DRE(
|
|
|
|
const_cast<VarDecl *>(OrigVD),
|
|
|
|
/*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
|
|
|
|
OrigVD) != nullptr,
|
|
|
|
(*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
|
|
|
|
return EmitLValue(&DRE).getAddress();
|
|
|
|
});
|
|
|
|
// Check if the variable is also a firstprivate: in this case IInit is
|
|
|
|
// not generated. Initialization of this variable will happen in codegen
|
|
|
|
// for 'firstprivate' clause.
|
2015-05-13 18:23:02 +08:00
|
|
|
if (IInit) {
|
|
|
|
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
|
|
|
|
bool IsRegistered =
|
|
|
|
PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
|
|
|
|
// Emit private VarDecl with copy init.
|
|
|
|
EmitDecl(*VD);
|
|
|
|
return GetAddrOfLocalVar(VD);
|
|
|
|
});
|
|
|
|
assert(IsRegistered &&
|
|
|
|
"lastprivate var already registered as private");
|
|
|
|
(void)IsRegistered;
|
|
|
|
}
|
2015-04-16 12:54:05 +08:00
|
|
|
}
|
|
|
|
++IRef, ++IDestRef;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return HasAtLeastOneLastprivate;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CodeGenFunction::EmitOMPLastprivateClauseFinal(
|
|
|
|
const OMPExecutableDirective &D, llvm::Value *IsLastIterCond) {
|
|
|
|
// Emit following code:
|
|
|
|
// if (<IsLastIterCond>) {
|
|
|
|
// orig_var1 = private_orig_var1;
|
|
|
|
// ...
|
|
|
|
// orig_varn = private_orig_varn;
|
|
|
|
// }
|
|
|
|
auto *ThenBB = createBasicBlock(".omp.lastprivate.then");
|
|
|
|
auto *DoneBB = createBasicBlock(".omp.lastprivate.done");
|
|
|
|
Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
|
|
|
|
EmitBlock(ThenBB);
|
2015-05-21 15:59:51 +08:00
|
|
|
llvm::DenseMap<const Decl *, const Expr *> LoopCountersAndUpdates;
|
|
|
|
const Expr *LastIterVal = nullptr;
|
|
|
|
const Expr *IVExpr = nullptr;
|
|
|
|
const Expr *IncExpr = nullptr;
|
|
|
|
if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
|
|
|
|
LastIterVal =
|
|
|
|
cast<VarDecl>(cast<DeclRefExpr>(LoopDirective->getUpperBoundVariable())
|
|
|
|
->getDecl())
|
|
|
|
->getAnyInitializer();
|
|
|
|
IVExpr = LoopDirective->getIterationVariable();
|
|
|
|
IncExpr = LoopDirective->getInc();
|
|
|
|
auto IUpdate = LoopDirective->updates().begin();
|
|
|
|
for (auto *E : LoopDirective->counters()) {
|
|
|
|
auto *D = cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
|
|
|
|
LoopCountersAndUpdates[D] = *IUpdate;
|
|
|
|
++IUpdate;
|
|
|
|
}
|
|
|
|
}
|
2015-04-16 12:54:05 +08:00
|
|
|
{
|
|
|
|
llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
|
2015-05-21 15:59:51 +08:00
|
|
|
bool FirstLCV = true;
|
2015-04-27 16:00:32 +08:00
|
|
|
for (auto &&I = D.getClausesOfKind(OMPC_lastprivate); I; ++I) {
|
2015-04-16 12:54:05 +08:00
|
|
|
auto *C = cast<OMPLastprivateClause>(*I);
|
|
|
|
auto IRef = C->varlist_begin();
|
|
|
|
auto ISrcRef = C->source_exprs().begin();
|
|
|
|
auto IDestRef = C->destination_exprs().begin();
|
|
|
|
for (auto *AssignOp : C->assignment_ops()) {
|
|
|
|
auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
2015-05-19 20:31:28 +08:00
|
|
|
QualType Type = PrivateVD->getType();
|
2015-05-21 15:59:51 +08:00
|
|
|
auto *CanonicalVD = PrivateVD->getCanonicalDecl();
|
|
|
|
if (AlreadyEmittedVars.insert(CanonicalVD).second) {
|
|
|
|
// If lastprivate variable is a loop control variable for loop-based
|
|
|
|
// directive, update its value before copyin back to original
|
|
|
|
// variable.
|
|
|
|
if (auto *UpExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) {
|
|
|
|
if (FirstLCV) {
|
|
|
|
EmitAnyExprToMem(LastIterVal, EmitLValue(IVExpr).getAddress(),
|
|
|
|
IVExpr->getType().getQualifiers(),
|
|
|
|
/*IsInitializer=*/false);
|
|
|
|
EmitIgnoredExpr(IncExpr);
|
|
|
|
FirstLCV = false;
|
|
|
|
}
|
|
|
|
EmitIgnoredExpr(UpExpr);
|
|
|
|
}
|
2015-04-16 12:54:05 +08:00
|
|
|
auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
|
|
|
|
auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
|
|
|
|
// Get the address of the original variable.
|
|
|
|
auto *OriginalAddr = GetAddrOfLocalVar(DestVD);
|
|
|
|
// Get the address of the private variable.
|
|
|
|
auto *PrivateAddr = GetAddrOfLocalVar(PrivateVD);
|
2015-05-19 20:31:28 +08:00
|
|
|
EmitOMPCopy(*this, Type, OriginalAddr, PrivateAddr, DestVD, SrcVD,
|
|
|
|
AssignOp);
|
2015-04-16 12:54:05 +08:00
|
|
|
}
|
|
|
|
++IRef;
|
|
|
|
++ISrcRef;
|
|
|
|
++IDestRef;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EmitBlock(DoneBB, /*IsFinished=*/true);
|
|
|
|
}
|
|
|
|
|
[OPENMP] Codegen for 'reduction' clause in 'parallel' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
...
*(Type<i> *)lhs[i] = RedOp<i>(*(Type<i> *)lhs[i], *(Type<i> *)rhs[i]);
...
}
... void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n> - 1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
...
<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
...
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
...
Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
...
break;
default:
;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D8915
llvm-svn: 234583
2015-04-10 18:43:45 +08:00
|
|
|
void CodeGenFunction::EmitOMPReductionClauseInit(
|
|
|
|
const OMPExecutableDirective &D,
|
|
|
|
CodeGenFunction::OMPPrivateScope &PrivateScope) {
|
2015-04-27 16:00:32 +08:00
|
|
|
for (auto &&I = D.getClausesOfKind(OMPC_reduction); I; ++I) {
|
[OPENMP] Codegen for 'reduction' clause in 'parallel' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
...
*(Type<i> *)lhs[i] = RedOp<i>(*(Type<i> *)lhs[i], *(Type<i> *)rhs[i]);
...
}
... void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n> - 1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
...
<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
...
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
...
Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
...
break;
default:
;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D8915
llvm-svn: 234583
2015-04-10 18:43:45 +08:00
|
|
|
auto *C = cast<OMPReductionClause>(*I);
|
|
|
|
auto ILHS = C->lhs_exprs().begin();
|
|
|
|
auto IRHS = C->rhs_exprs().begin();
|
|
|
|
for (auto IRef : C->varlists()) {
|
|
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
|
|
|
|
auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
|
|
|
|
auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
|
|
|
|
// Store the address of the original variable associated with the LHS
|
|
|
|
// implicit variable.
|
|
|
|
PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef]() -> llvm::Value *{
|
|
|
|
DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
|
|
|
|
CapturedStmtInfo->lookup(OrigVD) != nullptr,
|
|
|
|
IRef->getType(), VK_LValue, IRef->getExprLoc());
|
|
|
|
return EmitLValue(&DRE).getAddress();
|
|
|
|
});
|
|
|
|
// Emit reduction copy.
|
|
|
|
bool IsRegistered =
|
|
|
|
PrivateScope.addPrivate(OrigVD, [this, PrivateVD]() -> llvm::Value *{
|
|
|
|
// Emit private VarDecl with reduction init.
|
|
|
|
EmitDecl(*PrivateVD);
|
|
|
|
return GetAddrOfLocalVar(PrivateVD);
|
|
|
|
});
|
|
|
|
assert(IsRegistered && "private var already registered as private");
|
|
|
|
// Silence the warning about unused variable.
|
|
|
|
(void)IsRegistered;
|
|
|
|
++ILHS, ++IRHS;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void CodeGenFunction::EmitOMPReductionClauseFinal(
|
|
|
|
const OMPExecutableDirective &D) {
|
|
|
|
llvm::SmallVector<const Expr *, 8> LHSExprs;
|
|
|
|
llvm::SmallVector<const Expr *, 8> RHSExprs;
|
|
|
|
llvm::SmallVector<const Expr *, 8> ReductionOps;
|
|
|
|
bool HasAtLeastOneReduction = false;
|
2015-04-27 16:00:32 +08:00
|
|
|
for (auto &&I = D.getClausesOfKind(OMPC_reduction); I; ++I) {
|
[OPENMP] Codegen for 'reduction' clause in 'parallel' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
...
*(Type<i> *)lhs[i] = RedOp<i>(*(Type<i> *)lhs[i], *(Type<i> *)rhs[i]);
...
}
... void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n> - 1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
...
<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
...
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
...
Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
...
break;
default:
;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D8915
llvm-svn: 234583
2015-04-10 18:43:45 +08:00
|
|
|
HasAtLeastOneReduction = true;
|
|
|
|
auto *C = cast<OMPReductionClause>(*I);
|
|
|
|
LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
|
|
|
|
RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
|
|
|
|
ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
|
|
|
|
}
|
|
|
|
if (HasAtLeastOneReduction) {
|
|
|
|
// Emit nowait reduction if nowait clause is present or directive is a
|
|
|
|
// parallel directive (it always has implicit barrier).
|
|
|
|
CGM.getOpenMPRuntime().emitReduction(
|
|
|
|
*this, D.getLocEnd(), LHSExprs, RHSExprs, ReductionOps,
|
|
|
|
D.getSingleClause(OMPC_nowait) ||
|
|
|
|
isOpenMPParallelDirective(D.getDirectiveKind()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
[OPENMP] Codegen for 'if' clause in 'task' directive.
If condition evaluates to true, the code executes task by calling @__kmpc_omp_task() runtime function.
If condition evaluates to false, the code executes serial version of the code by executing the following code:
call void @__kmpc_omp_task_begin_if0(<loc>, <threadid>, <task_t_ptr, returned by @__kmpc_omp_task_alloc()>);
proxy_task_entry(<gtid>, <task_t_ptr, returned by @__kmpc_omp_task_alloc()>);
call void @__kmpc_omp_task_complete_if0(<loc>, <threadid>, <task_t_ptr, returned by @__kmpc_omp_task_alloc()>);
Also it checks if the condition is constant and if it is constant it evaluates its value and then generates either parallel version of the code (if the condition evaluates to true), or the serial version of the code (if the condition evaluates to false).
Differential Revision: http://reviews.llvm.org/D9143
llvm-svn: 235507
2015-04-22 21:57:31 +08:00
|
|
|
static void emitCommonOMPParallelDirective(CodeGenFunction &CGF,
|
|
|
|
const OMPExecutableDirective &S,
|
|
|
|
const RegionCodeGenTy &CodeGen) {
|
|
|
|
auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
|
|
|
|
auto CapturedStruct = CGF.GenerateCapturedStmtArgument(*CS);
|
|
|
|
auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
|
|
|
|
S, *CS->getCapturedDecl()->param_begin(), CodeGen);
|
|
|
|
if (auto C = S.getSingleClause(OMPC_num_threads)) {
|
2014-10-13 16:23:51 +08:00
|
|
|
CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
|
|
|
|
auto NumThreadsClause = cast<OMPNumThreadsClause>(C);
|
|
|
|
auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
|
|
|
|
/*IgnoreResultAssign*/ true);
|
2015-02-25 16:32:46 +08:00
|
|
|
CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
|
2014-10-13 16:23:51 +08:00
|
|
|
CGF, NumThreads, NumThreadsClause->getLocStart());
|
|
|
|
}
|
[OPENMP] Codegen for 'if' clause in 'task' directive.
If condition evaluates to true, the code executes task by calling @__kmpc_omp_task() runtime function.
If condition evaluates to false, the code executes serial version of the code by executing the following code:
call void @__kmpc_omp_task_begin_if0(<loc>, <threadid>, <task_t_ptr, returned by @__kmpc_omp_task_alloc()>);
proxy_task_entry(<gtid>, <task_t_ptr, returned by @__kmpc_omp_task_alloc()>);
call void @__kmpc_omp_task_complete_if0(<loc>, <threadid>, <task_t_ptr, returned by @__kmpc_omp_task_alloc()>);
Also it checks if the condition is constant and if it is constant it evaluates its value and then generates either parallel version of the code (if the condition evaluates to true), or the serial version of the code (if the condition evaluates to false).
Differential Revision: http://reviews.llvm.org/D9143
llvm-svn: 235507
2015-04-22 21:57:31 +08:00
|
|
|
const Expr *IfCond = nullptr;
|
|
|
|
if (auto C = S.getSingleClause(OMPC_if)) {
|
|
|
|
IfCond = cast<OMPIfClause>(C)->getCondition();
|
|
|
|
}
|
2015-02-25 16:32:46 +08:00
|
|
|
CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
|
[OPENMP] Codegen for 'if' clause in 'task' directive.
If condition evaluates to true, the code executes task by calling @__kmpc_omp_task() runtime function.
If condition evaluates to false, the code executes serial version of the code by executing the following code:
call void @__kmpc_omp_task_begin_if0(<loc>, <threadid>, <task_t_ptr, returned by @__kmpc_omp_task_alloc()>);
proxy_task_entry(<gtid>, <task_t_ptr, returned by @__kmpc_omp_task_alloc()>);
call void @__kmpc_omp_task_complete_if0(<loc>, <threadid>, <task_t_ptr, returned by @__kmpc_omp_task_alloc()>);
Also it checks if the condition is constant and if it is constant it evaluates its value and then generates either parallel version of the code (if the condition evaluates to true), or the serial version of the code (if the condition evaluates to false).
Differential Revision: http://reviews.llvm.org/D9143
llvm-svn: 235507
2015-04-22 21:57:31 +08:00
|
|
|
CapturedStruct, IfCond);
|
2015-04-10 12:50:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
|
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
|
|
// Emit parallel region as a standalone region.
|
|
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
|
|
OMPPrivateScope PrivateScope(CGF);
|
2015-04-16 13:39:01 +08:00
|
|
|
bool Copyins = CGF.EmitOMPCopyinClause(S);
|
|
|
|
bool Firstprivates = CGF.EmitOMPFirstprivateClause(S, PrivateScope);
|
|
|
|
if (Copyins || Firstprivates) {
|
2015-04-15 12:52:20 +08:00
|
|
|
// Emit implicit barrier to synchronize threads and avoid data races on
|
2015-04-16 13:39:01 +08:00
|
|
|
// initialization of firstprivate variables or propagation master's thread
|
|
|
|
// values of threadprivate variables to local instances of that variables
|
|
|
|
// of all other implicit threads.
|
2015-04-10 12:50:10 +08:00
|
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
|
|
|
|
OMPD_unknown);
|
2015-04-15 12:52:20 +08:00
|
|
|
}
|
|
|
|
CGF.EmitOMPPrivateClause(S, PrivateScope);
|
|
|
|
CGF.EmitOMPReductionClauseInit(S, PrivateScope);
|
|
|
|
(void)PrivateScope.Privatize();
|
2015-04-10 12:50:10 +08:00
|
|
|
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
[OPENMP] Codegen for 'reduction' clause in 'parallel' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
...
*(Type<i> *)lhs[i] = RedOp<i>(*(Type<i> *)lhs[i], *(Type<i> *)rhs[i]);
...
}
... void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n> - 1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
...
<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
...
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
...
Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
...
break;
default:
;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D8915
llvm-svn: 234583
2015-04-10 18:43:45 +08:00
|
|
|
CGF.EmitOMPReductionClauseFinal(S);
|
2015-04-10 12:50:10 +08:00
|
|
|
// Emit implicit barrier at the end of the 'parallel' directive.
|
|
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
|
|
|
|
OMPD_unknown);
|
|
|
|
};
|
|
|
|
emitCommonOMPParallelDirective(*this, S, CodeGen);
|
2014-05-06 18:08:46 +08:00
|
|
|
}
|
2014-05-22 16:54:05 +08:00
|
|
|
|
2014-10-07 16:57:09 +08:00
|
|
|
void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &S,
|
2014-10-01 14:03:56 +08:00
|
|
|
bool SeparateIter) {
|
|
|
|
RunCleanupsScope BodyScope(*this);
|
|
|
|
// Update counters values on current iteration.
|
|
|
|
for (auto I : S.updates()) {
|
|
|
|
EmitIgnoredExpr(I);
|
|
|
|
}
|
2015-03-21 18:12:56 +08:00
|
|
|
// Update the linear variables.
|
2015-04-27 16:00:32 +08:00
|
|
|
for (auto &&I = S.getClausesOfKind(OMPC_linear); I; ++I) {
|
|
|
|
auto *C = cast<OMPLinearClause>(*I);
|
2015-03-21 18:12:56 +08:00
|
|
|
for (auto U : C->updates()) {
|
|
|
|
EmitIgnoredExpr(U);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-10-01 14:03:56 +08:00
|
|
|
// On a continue in the body, jump to the end.
|
2014-10-07 16:57:09 +08:00
|
|
|
auto Continue = getJumpDestInCurrentScope("omp.body.continue");
|
2014-10-01 14:03:56 +08:00
|
|
|
BreakContinueStack.push_back(BreakContinue(JumpDest(), Continue));
|
|
|
|
// Emit loop body.
|
|
|
|
EmitStmt(S.getBody());
|
|
|
|
// The end (updates/cleanups).
|
|
|
|
EmitBlock(Continue.getBlock());
|
|
|
|
BreakContinueStack.pop_back();
|
|
|
|
if (SeparateIter) {
|
|
|
|
// TODO: Update lastprivates if the SeparateIter flag is true.
|
|
|
|
// This will be implemented in a follow-up OMPLastprivateClause patch, but
|
|
|
|
// result should be still correct without it, as we do not make these
|
|
|
|
// variables private yet.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-04-10 12:50:10 +08:00
|
|
|
void CodeGenFunction::EmitOMPInnerLoop(
|
|
|
|
const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
|
|
|
|
const Expr *IncExpr,
|
2015-04-22 19:15:40 +08:00
|
|
|
const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
|
|
|
|
const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
|
2014-10-07 16:57:09 +08:00
|
|
|
auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
|
2014-10-01 14:03:56 +08:00
|
|
|
|
|
|
|
// Start the loop with a block that tests the condition.
|
2014-10-07 16:57:09 +08:00
|
|
|
auto CondBlock = createBasicBlock("omp.inner.for.cond");
|
2014-10-01 14:03:56 +08:00
|
|
|
EmitBlock(CondBlock);
|
|
|
|
LoopStack.push(CondBlock);
|
|
|
|
|
|
|
|
// If there are any cleanups between here and the loop-exit scope,
|
|
|
|
// create a block to stage a loop exit along.
|
|
|
|
auto ExitBlock = LoopExit.getBlock();
|
[OPENMP] Initial codegen for 'omp sections' and 'omp section' directives.
If only one section is found in the sections region, it is emitted just like single region.
Otherwise it is emitted as a static non-chunked loop.
#pragma omp sections
{
#pragma omp section
{1}
...
#pragma omp section
{n}
}
is translated to something like
i32 <iter_var>
i32 <last_iter> = 0
i32 <lower_bound> = 0
i32 <upper_bound> = n-1
i32 <stride> = 1
call void @__kmpc_for_static_init_4(<loc>, i32 <gtid>, i32 34/*static non-chunked*/, i32* <last_iter>, i32* <lower_bound>, i32* <upper_bound>, i32* <stride>, i32 1/*increment always 1*/, i32 1/*chunk always 1*/)
<upper_bound> = min(<upper_bound>, n-1)
<iter_var> = <lb>
check:
br <iter_var> <= <upper_bound>, label cont, label exit
continue:
switch (IV) {
case 0:
{1};
break;
...
case <NumSection> - 1:
{n};
break;
}
++<iter_var>
br label check
exit:
call void @__kmpc_for_static_fini(<loc>, i32 <gtid>)
Differential Revision: http://reviews.llvm.org/D8244
llvm-svn: 232021
2015-03-12 16:53:29 +08:00
|
|
|
if (RequiresCleanup)
|
2014-10-07 16:57:09 +08:00
|
|
|
ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
|
2014-10-01 14:03:56 +08:00
|
|
|
|
2014-10-07 16:57:09 +08:00
|
|
|
auto LoopBody = createBasicBlock("omp.inner.for.body");
|
2014-10-01 14:03:56 +08:00
|
|
|
|
[OPENMP] Initial codegen for 'omp sections' and 'omp section' directives.
If only one section is found in the sections region, it is emitted just like single region.
Otherwise it is emitted as a static non-chunked loop.
#pragma omp sections
{
#pragma omp section
{1}
...
#pragma omp section
{n}
}
is translated to something like
i32 <iter_var>
i32 <last_iter> = 0
i32 <lower_bound> = 0
i32 <upper_bound> = n-1
i32 <stride> = 1
call void @__kmpc_for_static_init_4(<loc>, i32 <gtid>, i32 34/*static non-chunked*/, i32* <last_iter>, i32* <lower_bound>, i32* <upper_bound>, i32* <stride>, i32 1/*increment always 1*/, i32 1/*chunk always 1*/)
<upper_bound> = min(<upper_bound>, n-1)
<iter_var> = <lb>
check:
br <iter_var> <= <upper_bound>, label cont, label exit
continue:
switch (IV) {
case 0:
{1};
break;
...
case <NumSection> - 1:
{n};
break;
}
++<iter_var>
br label check
exit:
call void @__kmpc_for_static_fini(<loc>, i32 <gtid>)
Differential Revision: http://reviews.llvm.org/D8244
llvm-svn: 232021
2015-03-12 16:53:29 +08:00
|
|
|
// Emit condition.
|
2015-04-24 07:06:47 +08:00
|
|
|
EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
|
2014-10-01 14:03:56 +08:00
|
|
|
if (ExitBlock != LoopExit.getBlock()) {
|
|
|
|
EmitBlock(ExitBlock);
|
|
|
|
EmitBranchThroughCleanup(LoopExit);
|
|
|
|
}
|
|
|
|
|
|
|
|
EmitBlock(LoopBody);
|
2015-04-24 07:06:47 +08:00
|
|
|
incrementProfileCounter(&S);
|
2014-10-01 14:03:56 +08:00
|
|
|
|
|
|
|
// Create a block for the increment.
|
2014-10-07 16:57:09 +08:00
|
|
|
auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
|
2014-10-01 14:03:56 +08:00
|
|
|
BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
|
|
|
|
|
2015-04-10 12:50:10 +08:00
|
|
|
BodyGen(*this);
|
2014-10-01 14:03:56 +08:00
|
|
|
|
|
|
|
// Emit "IV = IV + 1" and a back-edge to the condition block.
|
|
|
|
EmitBlock(Continue.getBlock());
|
[OPENMP] Initial codegen for 'omp sections' and 'omp section' directives.
If only one section is found in the sections region, it is emitted just like single region.
Otherwise it is emitted as a static non-chunked loop.
#pragma omp sections
{
#pragma omp section
{1}
...
#pragma omp section
{n}
}
is translated to something like
i32 <iter_var>
i32 <last_iter> = 0
i32 <lower_bound> = 0
i32 <upper_bound> = n-1
i32 <stride> = 1
call void @__kmpc_for_static_init_4(<loc>, i32 <gtid>, i32 34/*static non-chunked*/, i32* <last_iter>, i32* <lower_bound>, i32* <upper_bound>, i32* <stride>, i32 1/*increment always 1*/, i32 1/*chunk always 1*/)
<upper_bound> = min(<upper_bound>, n-1)
<iter_var> = <lb>
check:
br <iter_var> <= <upper_bound>, label cont, label exit
continue:
switch (IV) {
case 0:
{1};
break;
...
case <NumSection> - 1:
{n};
break;
}
++<iter_var>
br label check
exit:
call void @__kmpc_for_static_fini(<loc>, i32 <gtid>)
Differential Revision: http://reviews.llvm.org/D8244
llvm-svn: 232021
2015-03-12 16:53:29 +08:00
|
|
|
EmitIgnoredExpr(IncExpr);
|
2015-04-22 19:15:40 +08:00
|
|
|
PostIncGen(*this);
|
2014-10-01 14:03:56 +08:00
|
|
|
BreakContinueStack.pop_back();
|
|
|
|
EmitBranch(CondBlock);
|
|
|
|
LoopStack.pop();
|
|
|
|
// Emit the fall-through block.
|
|
|
|
EmitBlock(LoopExit.getBlock());
|
|
|
|
}
|
|
|
|
|
|
|
|
void CodeGenFunction::EmitOMPSimdFinal(const OMPLoopDirective &S) {
|
|
|
|
auto IC = S.counters().begin();
|
|
|
|
for (auto F : S.finals()) {
|
2015-05-08 18:41:21 +08:00
|
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
|
|
|
|
if (LocalDeclMap.lookup(OrigVD)) {
|
|
|
|
DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
|
|
|
|
CapturedStmtInfo->lookup(OrigVD) != nullptr,
|
|
|
|
(*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
|
|
|
|
auto *OrigAddr = EmitLValue(&DRE).getAddress();
|
|
|
|
OMPPrivateScope VarScope(*this);
|
|
|
|
VarScope.addPrivate(OrigVD,
|
|
|
|
[OrigAddr]() -> llvm::Value *{ return OrigAddr; });
|
|
|
|
(void)VarScope.Privatize();
|
2014-10-01 14:03:56 +08:00
|
|
|
EmitIgnoredExpr(F);
|
|
|
|
}
|
|
|
|
++IC;
|
|
|
|
}
|
2015-03-21 18:12:56 +08:00
|
|
|
// Emit the final values of the linear variables.
|
2015-04-27 16:00:32 +08:00
|
|
|
for (auto &&I = S.getClausesOfKind(OMPC_linear); I; ++I) {
|
|
|
|
auto *C = cast<OMPLinearClause>(*I);
|
2015-05-08 18:41:21 +08:00
|
|
|
auto IC = C->varlist_begin();
|
2015-03-21 18:12:56 +08:00
|
|
|
for (auto F : C->finals()) {
|
2015-05-08 18:41:21 +08:00
|
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
|
|
|
|
DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
|
|
|
|
CapturedStmtInfo->lookup(OrigVD) != nullptr,
|
|
|
|
(*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
|
|
|
|
auto *OrigAddr = EmitLValue(&DRE).getAddress();
|
|
|
|
OMPPrivateScope VarScope(*this);
|
|
|
|
VarScope.addPrivate(OrigVD,
|
|
|
|
[OrigAddr]() -> llvm::Value *{ return OrigAddr; });
|
|
|
|
(void)VarScope.Privatize();
|
2015-03-21 18:12:56 +08:00
|
|
|
EmitIgnoredExpr(F);
|
2015-05-08 18:41:21 +08:00
|
|
|
++IC;
|
2015-03-21 18:12:56 +08:00
|
|
|
}
|
|
|
|
}
|
2014-10-01 14:03:56 +08:00
|
|
|
}
|
|
|
|
|
2014-09-30 13:29:28 +08:00
|
|
|
static void EmitOMPAlignedClause(CodeGenFunction &CGF, CodeGenModule &CGM,
|
|
|
|
const OMPAlignedClause &Clause) {
|
|
|
|
unsigned ClauseAlignment = 0;
|
|
|
|
if (auto AlignmentExpr = Clause.getAlignment()) {
|
|
|
|
auto AlignmentCI =
|
|
|
|
cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
|
|
|
|
ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
|
|
|
|
}
|
|
|
|
for (auto E : Clause.varlists()) {
|
|
|
|
unsigned Alignment = ClauseAlignment;
|
|
|
|
if (Alignment == 0) {
|
|
|
|
// OpenMP [2.8.1, Description]
|
2014-10-10 17:48:26 +08:00
|
|
|
// If no optional parameter is specified, implementation-defined default
|
2014-09-30 13:29:28 +08:00
|
|
|
// alignments for SIMD instructions on the target platforms are assumed.
|
|
|
|
Alignment = CGM.getTargetCodeGenInfo().getOpenMPSimdDefaultAlignment(
|
|
|
|
E->getType());
|
|
|
|
}
|
|
|
|
assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
|
|
|
|
"alignment is not power of 2");
|
|
|
|
if (Alignment != 0) {
|
|
|
|
llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
|
|
|
|
CGF.EmitAlignmentAssumption(PtrValue, Alignment);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-10-10 17:48:26 +08:00
|
|
|
static void EmitPrivateLoopCounters(CodeGenFunction &CGF,
|
|
|
|
CodeGenFunction::OMPPrivateScope &LoopScope,
|
|
|
|
ArrayRef<Expr *> Counters) {
|
|
|
|
for (auto *E : Counters) {
|
|
|
|
auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
2015-04-28 21:20:05 +08:00
|
|
|
(void)LoopScope.addPrivate(VD, [&]() -> llvm::Value *{
|
2014-10-10 17:48:26 +08:00
|
|
|
// Emit var without initialization.
|
|
|
|
auto VarEmission = CGF.EmitAutoVarAlloca(*VD);
|
|
|
|
CGF.EmitAutoVarCleanups(VarEmission);
|
|
|
|
return VarEmission.getAllocatedAddress();
|
|
|
|
});
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-04-22 19:59:37 +08:00
|
|
|
static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
|
|
|
|
const Expr *Cond, llvm::BasicBlock *TrueBlock,
|
|
|
|
llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
|
|
|
|
CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
|
|
|
|
EmitPrivateLoopCounters(CGF, PreCondScope, S.counters());
|
|
|
|
const VarDecl *IVDecl =
|
|
|
|
cast<VarDecl>(cast<DeclRefExpr>(S.getIterationVariable())->getDecl());
|
|
|
|
bool IsRegistered = PreCondScope.addPrivate(IVDecl, [&]() -> llvm::Value *{
|
|
|
|
// Emit var without initialization.
|
|
|
|
auto VarEmission = CGF.EmitAutoVarAlloca(*IVDecl);
|
|
|
|
CGF.EmitAutoVarCleanups(VarEmission);
|
|
|
|
return VarEmission.getAllocatedAddress();
|
|
|
|
});
|
|
|
|
assert(IsRegistered && "counter already registered as private");
|
|
|
|
// Silence the warning about unused variable.
|
|
|
|
(void)IsRegistered;
|
|
|
|
(void)PreCondScope.Privatize();
|
|
|
|
// Initialize internal counter to 0 to calculate initial values of real
|
|
|
|
// counters.
|
|
|
|
LValue IV = CGF.EmitLValue(S.getIterationVariable());
|
|
|
|
CGF.EmitStoreOfScalar(
|
|
|
|
llvm::ConstantInt::getNullValue(
|
|
|
|
IV.getAddress()->getType()->getPointerElementType()),
|
|
|
|
CGF.EmitLValue(S.getIterationVariable()), /*isInit=*/true);
|
|
|
|
// Get initial values of real counters.
|
|
|
|
for (auto I : S.updates()) {
|
|
|
|
CGF.EmitIgnoredExpr(I);
|
|
|
|
}
|
|
|
|
// Check that loop is executed at least one time.
|
|
|
|
CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
|
|
|
|
}
|
|
|
|
|
2015-03-21 18:12:56 +08:00
|
|
|
static void
|
|
|
|
EmitPrivateLinearVars(CodeGenFunction &CGF, const OMPExecutableDirective &D,
|
|
|
|
CodeGenFunction::OMPPrivateScope &PrivateScope) {
|
2015-04-27 16:00:32 +08:00
|
|
|
for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) {
|
|
|
|
auto *C = cast<OMPLinearClause>(*I);
|
|
|
|
for (auto *E : C->varlists()) {
|
2015-03-21 18:12:56 +08:00
|
|
|
auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
|
|
bool IsRegistered = PrivateScope.addPrivate(VD, [&]()->llvm::Value * {
|
|
|
|
// Emit var without initialization.
|
|
|
|
auto VarEmission = CGF.EmitAutoVarAlloca(*VD);
|
|
|
|
CGF.EmitAutoVarCleanups(VarEmission);
|
|
|
|
return VarEmission.getAllocatedAddress();
|
|
|
|
});
|
|
|
|
assert(IsRegistered && "linear var already registered as private");
|
|
|
|
// Silence the warning about unused variable.
|
|
|
|
(void)IsRegistered;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-05-22 16:54:05 +08:00
|
|
|
void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
|
2015-04-10 12:50:10 +08:00
|
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
|
|
// Pragma 'simd' code depends on presence of 'lastprivate'.
|
|
|
|
// If present, we have to separate last iteration of the loop:
|
|
|
|
//
|
2015-04-22 19:59:37 +08:00
|
|
|
// if (PreCond) {
|
2015-04-10 12:50:10 +08:00
|
|
|
// for (IV in 0..LastIteration-1) BODY;
|
|
|
|
// BODY with updates of lastprivate vars;
|
|
|
|
// <Final counter/linear vars updates>;
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// otherwise (when there's no lastprivate):
|
|
|
|
//
|
2015-04-22 19:59:37 +08:00
|
|
|
// if (PreCond) {
|
2015-04-10 12:50:10 +08:00
|
|
|
// for (IV in 0..LastIteration) BODY;
|
|
|
|
// <Final counter/linear vars updates>;
|
2015-04-22 19:59:37 +08:00
|
|
|
// }
|
2015-04-10 12:50:10 +08:00
|
|
|
//
|
|
|
|
|
2015-04-22 19:59:37 +08:00
|
|
|
// Emit: if (PreCond) - begin.
|
|
|
|
// If the condition constant folds and can be elided, avoid emitting the
|
|
|
|
// whole loop.
|
|
|
|
bool CondConstant;
|
|
|
|
llvm::BasicBlock *ContBlock = nullptr;
|
|
|
|
if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
|
|
|
|
if (!CondConstant)
|
|
|
|
return;
|
|
|
|
} else {
|
|
|
|
auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
|
|
|
|
ContBlock = CGF.createBasicBlock("simd.if.end");
|
2015-04-24 07:06:47 +08:00
|
|
|
emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
|
|
|
|
CGF.getProfileCount(&S));
|
2015-04-22 19:59:37 +08:00
|
|
|
CGF.EmitBlock(ThenBlock);
|
2015-04-24 07:06:47 +08:00
|
|
|
CGF.incrementProfileCounter(&S);
|
2015-04-22 19:59:37 +08:00
|
|
|
}
|
2015-04-10 12:50:10 +08:00
|
|
|
// Walk clauses and process safelen/lastprivate.
|
|
|
|
bool SeparateIter = false;
|
|
|
|
CGF.LoopStack.setParallel();
|
|
|
|
CGF.LoopStack.setVectorizerEnable(true);
|
|
|
|
for (auto C : S.clauses()) {
|
|
|
|
switch (C->getClauseKind()) {
|
|
|
|
case OMPC_safelen: {
|
|
|
|
RValue Len = CGF.EmitAnyExpr(cast<OMPSafelenClause>(C)->getSafelen(),
|
|
|
|
AggValueSlot::ignored(), true);
|
|
|
|
llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
|
|
|
|
CGF.LoopStack.setVectorizerWidth(Val->getZExtValue());
|
|
|
|
// In presence of finite 'safelen', it may be unsafe to mark all
|
|
|
|
// the memory instructions parallel, because loop-carried
|
|
|
|
// dependences of 'safelen' iterations are possible.
|
|
|
|
CGF.LoopStack.setParallel(false);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case OMPC_aligned:
|
|
|
|
EmitOMPAlignedClause(CGF, CGF.CGM, cast<OMPAlignedClause>(*C));
|
|
|
|
break;
|
|
|
|
case OMPC_lastprivate:
|
|
|
|
SeparateIter = true;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
// Not handled yet
|
|
|
|
;
|
|
|
|
}
|
2014-05-22 16:54:05 +08:00
|
|
|
}
|
2014-10-01 14:03:56 +08:00
|
|
|
|
2015-04-10 12:50:10 +08:00
|
|
|
// Emit inits for the linear variables.
|
2015-04-27 16:00:32 +08:00
|
|
|
for (auto &&I = S.getClausesOfKind(OMPC_linear); I; ++I) {
|
|
|
|
auto *C = cast<OMPLinearClause>(*I);
|
2015-04-10 12:50:10 +08:00
|
|
|
for (auto Init : C->inits()) {
|
|
|
|
auto *D = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
|
|
|
|
CGF.EmitVarDecl(*D);
|
|
|
|
}
|
2015-03-21 18:12:56 +08:00
|
|
|
}
|
|
|
|
|
2015-04-10 12:50:10 +08:00
|
|
|
// Emit the loop iteration variable.
|
|
|
|
const Expr *IVExpr = S.getIterationVariable();
|
|
|
|
const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
|
|
|
|
CGF.EmitVarDecl(*IVDecl);
|
|
|
|
CGF.EmitIgnoredExpr(S.getInit());
|
|
|
|
|
|
|
|
// Emit the iterations count variable.
|
|
|
|
// If it is not a variable, Sema decided to calculate iterations count on
|
2015-05-21 15:59:51 +08:00
|
|
|
// each iteration (e.g., it is foldable into a constant).
|
2015-04-10 12:50:10 +08:00
|
|
|
if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
|
|
|
|
CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
|
|
|
|
// Emit calculation of the iterations count.
|
|
|
|
CGF.EmitIgnoredExpr(S.getCalcLastIteration());
|
|
|
|
}
|
2014-10-01 14:03:56 +08:00
|
|
|
|
2015-04-10 12:50:10 +08:00
|
|
|
// Emit the linear steps for the linear clauses.
|
|
|
|
// If a step is not constant, it is pre-calculated before the loop.
|
2015-04-27 16:00:32 +08:00
|
|
|
for (auto &&I = S.getClausesOfKind(OMPC_linear); I; ++I) {
|
|
|
|
auto *C = cast<OMPLinearClause>(*I);
|
2015-04-10 12:50:10 +08:00
|
|
|
if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
|
|
|
|
if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
|
|
|
|
CGF.EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
|
|
|
|
// Emit calculation of the linear step.
|
|
|
|
CGF.EmitIgnoredExpr(CS);
|
|
|
|
}
|
|
|
|
}
|
2014-10-01 14:03:56 +08:00
|
|
|
|
2015-04-22 19:59:37 +08:00
|
|
|
{
|
|
|
|
OMPPrivateScope LoopScope(CGF);
|
|
|
|
EmitPrivateLoopCounters(CGF, LoopScope, S.counters());
|
|
|
|
EmitPrivateLinearVars(CGF, S, LoopScope);
|
|
|
|
CGF.EmitOMPPrivateClause(S, LoopScope);
|
|
|
|
(void)LoopScope.Privatize();
|
|
|
|
CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
|
|
|
|
S.getCond(SeparateIter), S.getInc(),
|
|
|
|
[&S](CodeGenFunction &CGF) {
|
|
|
|
CGF.EmitOMPLoopBody(S);
|
|
|
|
CGF.EmitStopPoint(&S);
|
|
|
|
},
|
|
|
|
[](CodeGenFunction &) {});
|
|
|
|
if (SeparateIter) {
|
|
|
|
CGF.EmitOMPLoopBody(S, /*SeparateIter=*/true);
|
2015-03-21 18:12:56 +08:00
|
|
|
}
|
2015-04-22 19:59:37 +08:00
|
|
|
}
|
|
|
|
CGF.EmitOMPSimdFinal(S);
|
|
|
|
// Emit: if (PreCond) - end.
|
|
|
|
if (ContBlock) {
|
2015-04-10 12:50:10 +08:00
|
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
CGF.EmitBlock(ContBlock, true);
|
2014-10-01 14:03:56 +08:00
|
|
|
}
|
2015-04-10 12:50:10 +08:00
|
|
|
};
|
|
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(*this, CodeGen);
|
2014-05-22 16:54:05 +08:00
|
|
|
}
|
|
|
|
|
2015-01-22 16:49:35 +08:00
|
|
|
void CodeGenFunction::EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
|
|
|
|
const OMPLoopDirective &S,
|
|
|
|
OMPPrivateScope &LoopScope,
|
2015-05-20 21:12:48 +08:00
|
|
|
bool Ordered, llvm::Value *LB,
|
|
|
|
llvm::Value *UB, llvm::Value *ST,
|
|
|
|
llvm::Value *IL, llvm::Value *Chunk) {
|
2015-01-22 16:49:35 +08:00
|
|
|
auto &RT = CGM.getOpenMPRuntime();
|
2015-03-12 21:37:50 +08:00
|
|
|
|
|
|
|
// Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
|
2015-05-20 21:12:48 +08:00
|
|
|
const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind);
|
2015-03-12 21:37:50 +08:00
|
|
|
|
2015-05-20 21:12:48 +08:00
|
|
|
assert((Ordered ||
|
|
|
|
!RT.isStaticNonchunked(ScheduleKind, /*Chunked=*/Chunk != nullptr)) &&
|
2015-01-22 16:49:35 +08:00
|
|
|
"static non-chunked schedule does not need outer loop");
|
|
|
|
|
|
|
|
// Emit outer loop.
|
|
|
|
//
|
|
|
|
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
|
2015-03-12 21:37:50 +08:00
|
|
|
// When schedule(dynamic,chunk_size) is specified, the iterations are
|
|
|
|
// distributed to threads in the team in chunks as the threads request them.
|
|
|
|
// Each thread executes a chunk of iterations, then requests another chunk,
|
|
|
|
// until no chunks remain to be distributed. Each chunk contains chunk_size
|
|
|
|
// iterations, except for the last chunk to be distributed, which may have
|
|
|
|
// fewer iterations. When no chunk_size is specified, it defaults to 1.
|
|
|
|
//
|
|
|
|
// When schedule(guided,chunk_size) is specified, the iterations are assigned
|
|
|
|
// to threads in the team in chunks as the executing threads request them.
|
|
|
|
// Each thread executes a chunk of iterations, then requests another chunk,
|
|
|
|
// until no chunks remain to be assigned. For a chunk_size of 1, the size of
|
|
|
|
// each chunk is proportional to the number of unassigned iterations divided
|
|
|
|
// by the number of threads in the team, decreasing to 1. For a chunk_size
|
|
|
|
// with value k (greater than 1), the size of each chunk is determined in the
|
|
|
|
// same way, with the restriction that the chunks do not contain fewer than k
|
|
|
|
// iterations (except for the last chunk to be assigned, which may have fewer
|
|
|
|
// than k iterations).
|
|
|
|
//
|
|
|
|
// When schedule(auto) is specified, the decision regarding scheduling is
|
|
|
|
// delegated to the compiler and/or runtime system. The programmer gives the
|
|
|
|
// implementation the freedom to choose any possible mapping of iterations to
|
|
|
|
// threads in the team.
|
|
|
|
//
|
|
|
|
// When schedule(runtime) is specified, the decision regarding scheduling is
|
|
|
|
// deferred until run time, and the schedule and chunk size are taken from the
|
|
|
|
// run-sched-var ICV. If the ICV is set to auto, the schedule is
|
|
|
|
// implementation defined
|
|
|
|
//
|
|
|
|
// while(__kmpc_dispatch_next(&LB, &UB)) {
|
|
|
|
// idx = LB;
|
2015-04-22 19:15:40 +08:00
|
|
|
// while (idx <= UB) { BODY; ++idx;
|
|
|
|
// __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
|
|
|
|
// } // inner loop
|
2015-03-12 21:37:50 +08:00
|
|
|
// }
|
|
|
|
//
|
|
|
|
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
|
2015-01-22 16:49:35 +08:00
|
|
|
// When schedule(static, chunk_size) is specified, iterations are divided into
|
|
|
|
// chunks of size chunk_size, and the chunks are assigned to the threads in
|
|
|
|
// the team in a round-robin fashion in the order of the thread number.
|
|
|
|
//
|
|
|
|
// while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
|
|
|
|
// while (idx <= UB) { BODY; ++idx; } // inner loop
|
|
|
|
// LB = LB + ST;
|
|
|
|
// UB = UB + ST;
|
|
|
|
// }
|
|
|
|
//
|
2015-03-12 21:37:50 +08:00
|
|
|
|
2015-01-22 16:49:35 +08:00
|
|
|
const Expr *IVExpr = S.getIterationVariable();
|
|
|
|
const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
|
|
|
|
const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
|
|
|
|
|
2015-03-12 21:37:50 +08:00
|
|
|
RT.emitForInit(
|
2015-05-20 21:12:48 +08:00
|
|
|
*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, Ordered, IL, LB,
|
|
|
|
(DynamicOrOrdered ? EmitAnyExpr(S.getLastIteration()).getScalarVal()
|
|
|
|
: UB),
|
|
|
|
ST, Chunk);
|
2015-03-12 21:37:50 +08:00
|
|
|
|
2015-01-22 16:49:35 +08:00
|
|
|
auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
|
|
|
|
|
|
|
|
// Start the loop with a block that tests the condition.
|
|
|
|
auto CondBlock = createBasicBlock("omp.dispatch.cond");
|
|
|
|
EmitBlock(CondBlock);
|
|
|
|
LoopStack.push(CondBlock);
|
|
|
|
|
|
|
|
llvm::Value *BoolCondVal = nullptr;
|
2015-05-20 21:12:48 +08:00
|
|
|
if (!DynamicOrOrdered) {
|
2015-03-12 21:37:50 +08:00
|
|
|
// UB = min(UB, GlobalUB)
|
|
|
|
EmitIgnoredExpr(S.getEnsureUpperBound());
|
|
|
|
// IV = LB
|
|
|
|
EmitIgnoredExpr(S.getInit());
|
|
|
|
// IV < UB
|
|
|
|
BoolCondVal = EvaluateExprAsBool(S.getCond(false));
|
|
|
|
} else {
|
|
|
|
BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned,
|
|
|
|
IL, LB, UB, ST);
|
|
|
|
}
|
2015-01-22 16:49:35 +08:00
|
|
|
|
|
|
|
// If there are any cleanups between here and the loop-exit scope,
|
|
|
|
// create a block to stage a loop exit along.
|
|
|
|
auto ExitBlock = LoopExit.getBlock();
|
|
|
|
if (LoopScope.requiresCleanups())
|
|
|
|
ExitBlock = createBasicBlock("omp.dispatch.cleanup");
|
|
|
|
|
|
|
|
auto LoopBody = createBasicBlock("omp.dispatch.body");
|
|
|
|
Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
|
|
|
|
if (ExitBlock != LoopExit.getBlock()) {
|
|
|
|
EmitBlock(ExitBlock);
|
|
|
|
EmitBranchThroughCleanup(LoopExit);
|
|
|
|
}
|
|
|
|
EmitBlock(LoopBody);
|
|
|
|
|
2015-03-12 21:37:50 +08:00
|
|
|
// Emit "IV = LB" (in case of static schedule, we have already calculated new
|
|
|
|
// LB for loop condition and emitted it above).
|
2015-05-20 21:12:48 +08:00
|
|
|
if (DynamicOrOrdered)
|
2015-03-12 21:37:50 +08:00
|
|
|
EmitIgnoredExpr(S.getInit());
|
|
|
|
|
2015-01-22 16:49:35 +08:00
|
|
|
// Create a block for the increment.
|
|
|
|
auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
|
|
|
|
BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
|
|
|
|
|
2015-04-22 19:15:40 +08:00
|
|
|
SourceLocation Loc = S.getLocStart();
|
2015-05-07 12:25:17 +08:00
|
|
|
// Generate !llvm.loop.parallel metadata for loads and stores for loops with
|
|
|
|
// dynamic/guided scheduling and without ordered clause.
|
|
|
|
LoopStack.setParallel((ScheduleKind == OMPC_SCHEDULE_dynamic ||
|
|
|
|
ScheduleKind == OMPC_SCHEDULE_guided) &&
|
2015-05-20 21:12:48 +08:00
|
|
|
!Ordered);
|
2015-04-22 19:15:40 +08:00
|
|
|
EmitOMPInnerLoop(
|
|
|
|
S, LoopScope.requiresCleanups(), S.getCond(/*SeparateIter=*/false),
|
|
|
|
S.getInc(),
|
|
|
|
[&S](CodeGenFunction &CGF) {
|
|
|
|
CGF.EmitOMPLoopBody(S);
|
|
|
|
CGF.EmitStopPoint(&S);
|
|
|
|
},
|
2015-05-20 21:12:48 +08:00
|
|
|
[Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) {
|
|
|
|
if (Ordered) {
|
|
|
|
CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(
|
2015-04-22 19:15:40 +08:00
|
|
|
CGF, Loc, IVSize, IVSigned);
|
|
|
|
}
|
|
|
|
});
|
2015-01-22 16:49:35 +08:00
|
|
|
|
|
|
|
EmitBlock(Continue.getBlock());
|
|
|
|
BreakContinueStack.pop_back();
|
2015-05-20 21:12:48 +08:00
|
|
|
if (!DynamicOrOrdered) {
|
2015-03-12 21:37:50 +08:00
|
|
|
// Emit "LB = LB + Stride", "UB = UB + Stride".
|
|
|
|
EmitIgnoredExpr(S.getNextLowerBound());
|
|
|
|
EmitIgnoredExpr(S.getNextUpperBound());
|
|
|
|
}
|
2015-01-22 16:49:35 +08:00
|
|
|
|
|
|
|
EmitBranch(CondBlock);
|
|
|
|
LoopStack.pop();
|
|
|
|
// Emit the fall-through block.
|
|
|
|
EmitBlock(LoopExit.getBlock());
|
|
|
|
|
|
|
|
// Tell the runtime we are done.
|
2015-05-20 21:12:48 +08:00
|
|
|
if (!DynamicOrOrdered)
|
2015-04-22 19:15:40 +08:00
|
|
|
RT.emitForStaticFinish(*this, S.getLocEnd());
|
2015-01-22 16:49:35 +08:00
|
|
|
}
|
|
|
|
|
2014-12-15 15:07:06 +08:00
|
|
|
/// \brief Emit a helper variable and return corresponding lvalue.
|
|
|
|
static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
|
|
|
|
const DeclRefExpr *Helper) {
|
|
|
|
auto VDecl = cast<VarDecl>(Helper->getDecl());
|
|
|
|
CGF.EmitVarDecl(*VDecl);
|
|
|
|
return CGF.EmitLValue(Helper);
|
|
|
|
}
|
|
|
|
|
2015-05-12 16:35:28 +08:00
|
|
|
static std::pair<llvm::Value * /*Chunk*/, OpenMPScheduleClauseKind>
|
|
|
|
emitScheduleClause(CodeGenFunction &CGF, const OMPLoopDirective &S,
|
|
|
|
bool OuterRegion) {
|
|
|
|
// Detect the loop schedule kind and chunk.
|
|
|
|
auto ScheduleKind = OMPC_SCHEDULE_unknown;
|
|
|
|
llvm::Value *Chunk = nullptr;
|
|
|
|
if (auto *C =
|
|
|
|
cast_or_null<OMPScheduleClause>(S.getSingleClause(OMPC_schedule))) {
|
|
|
|
ScheduleKind = C->getScheduleKind();
|
|
|
|
if (const auto *Ch = C->getChunkSize()) {
|
|
|
|
if (auto *ImpRef = cast_or_null<DeclRefExpr>(C->getHelperChunkSize())) {
|
|
|
|
if (OuterRegion) {
|
|
|
|
const VarDecl *ImpVar = cast<VarDecl>(ImpRef->getDecl());
|
|
|
|
CGF.EmitVarDecl(*ImpVar);
|
|
|
|
CGF.EmitStoreThroughLValue(
|
|
|
|
CGF.EmitAnyExpr(Ch),
|
|
|
|
CGF.MakeNaturalAlignAddrLValue(CGF.GetAddrOfLocalVar(ImpVar),
|
|
|
|
ImpVar->getType()));
|
|
|
|
} else {
|
|
|
|
Ch = ImpRef;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!C->getHelperChunkSize() || !OuterRegion) {
|
|
|
|
Chunk = CGF.EmitScalarExpr(Ch);
|
|
|
|
Chunk = CGF.EmitScalarConversion(Chunk, Ch->getType(),
|
|
|
|
S.getIterationVariable()->getType());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return std::make_pair(Chunk, ScheduleKind);
|
|
|
|
}
|
|
|
|
|
2015-04-16 12:54:05 +08:00
|
|
|
bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
|
2014-12-15 15:07:06 +08:00
|
|
|
// Emit the loop iteration variable.
|
|
|
|
auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
|
|
|
|
auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
|
|
|
|
EmitVarDecl(*IVDecl);
|
|
|
|
|
|
|
|
// Emit the iterations count variable.
|
|
|
|
// If it is not a variable, Sema decided to calculate iterations count on each
|
|
|
|
// iteration (e.g., it is foldable into a constant).
|
|
|
|
if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
|
|
|
|
EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
|
|
|
|
// Emit calculation of the iterations count.
|
|
|
|
EmitIgnoredExpr(S.getCalcLastIteration());
|
|
|
|
}
|
|
|
|
|
|
|
|
auto &RT = CGM.getOpenMPRuntime();
|
|
|
|
|
2015-04-16 12:54:05 +08:00
|
|
|
bool HasLastprivateClause;
|
2014-12-15 15:07:06 +08:00
|
|
|
// Check pre-condition.
|
|
|
|
{
|
|
|
|
// Skip the entire loop if we don't meet the precondition.
|
2015-04-22 19:59:37 +08:00
|
|
|
// If the condition constant folds and can be elided, avoid emitting the
|
|
|
|
// whole loop.
|
|
|
|
bool CondConstant;
|
|
|
|
llvm::BasicBlock *ContBlock = nullptr;
|
|
|
|
if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
|
|
|
|
if (!CondConstant)
|
|
|
|
return false;
|
|
|
|
} else {
|
|
|
|
auto *ThenBlock = createBasicBlock("omp.precond.then");
|
|
|
|
ContBlock = createBasicBlock("omp.precond.end");
|
|
|
|
emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
|
2015-04-24 07:06:47 +08:00
|
|
|
getProfileCount(&S));
|
2015-04-22 19:59:37 +08:00
|
|
|
EmitBlock(ThenBlock);
|
2015-04-24 07:06:47 +08:00
|
|
|
incrementProfileCounter(&S);
|
2015-04-22 19:59:37 +08:00
|
|
|
}
|
2014-12-15 15:07:06 +08:00
|
|
|
// Emit 'then' code.
|
|
|
|
{
|
|
|
|
// Emit helper vars inits.
|
|
|
|
LValue LB =
|
|
|
|
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
|
|
|
|
LValue UB =
|
|
|
|
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
|
|
|
|
LValue ST =
|
|
|
|
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
|
|
|
|
LValue IL =
|
|
|
|
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
|
|
|
|
|
|
|
|
OMPPrivateScope LoopScope(*this);
|
2015-04-15 12:52:20 +08:00
|
|
|
if (EmitOMPFirstprivateClause(S, LoopScope)) {
|
|
|
|
// Emit implicit barrier to synchronize threads and avoid data races on
|
|
|
|
// initialization of firstprivate variables.
|
|
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
|
|
|
|
OMPD_unknown);
|
|
|
|
}
|
2015-04-22 20:24:45 +08:00
|
|
|
EmitOMPPrivateClause(S, LoopScope);
|
2015-04-16 12:54:05 +08:00
|
|
|
HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
EmitOMPReductionClauseInit(S, LoopScope);
|
2014-12-15 15:07:06 +08:00
|
|
|
EmitPrivateLoopCounters(*this, LoopScope, S.counters());
|
2015-03-16 15:14:41 +08:00
|
|
|
(void)LoopScope.Privatize();
|
2014-12-15 15:07:06 +08:00
|
|
|
|
|
|
|
// Detect the loop schedule kind and chunk.
|
2015-05-12 16:35:28 +08:00
|
|
|
llvm::Value *Chunk;
|
|
|
|
OpenMPScheduleClauseKind ScheduleKind;
|
|
|
|
auto ScheduleInfo =
|
|
|
|
emitScheduleClause(*this, S, /*OuterRegion=*/false);
|
|
|
|
Chunk = ScheduleInfo.first;
|
|
|
|
ScheduleKind = ScheduleInfo.second;
|
2014-12-15 15:07:06 +08:00
|
|
|
const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
|
|
|
|
const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
|
2015-05-20 21:12:48 +08:00
|
|
|
const bool Ordered = S.getSingleClause(OMPC_ordered) != nullptr;
|
2014-12-15 15:07:06 +08:00
|
|
|
if (RT.isStaticNonchunked(ScheduleKind,
|
2015-05-20 21:12:48 +08:00
|
|
|
/* Chunked */ Chunk != nullptr) &&
|
|
|
|
!Ordered) {
|
2014-12-15 15:07:06 +08:00
|
|
|
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
|
|
|
|
// When no chunk_size is specified, the iteration space is divided into
|
|
|
|
// chunks that are approximately equal in size, and at most one chunk is
|
|
|
|
// distributed to each thread. Note that the size of the chunks is
|
|
|
|
// unspecified in this case.
|
2015-02-25 16:32:46 +08:00
|
|
|
RT.emitForInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned,
|
2015-05-20 21:12:48 +08:00
|
|
|
Ordered, IL.getAddress(), LB.getAddress(),
|
|
|
|
UB.getAddress(), ST.getAddress());
|
2014-12-15 15:07:06 +08:00
|
|
|
// UB = min(UB, GlobalUB);
|
|
|
|
EmitIgnoredExpr(S.getEnsureUpperBound());
|
|
|
|
// IV = LB;
|
|
|
|
EmitIgnoredExpr(S.getInit());
|
|
|
|
// while (idx <= UB) { BODY; ++idx; }
|
[OPENMP] Initial codegen for 'omp sections' and 'omp section' directives.
If only one section is found in the sections region, it is emitted just like single region.
Otherwise it is emitted as a static non-chunked loop.
#pragma omp sections
{
#pragma omp section
{1}
...
#pragma omp section
{n}
}
is translated to something like
i32 <iter_var>
i32 <last_iter> = 0
i32 <lower_bound> = 0
i32 <upper_bound> = n-1
i32 <stride> = 1
call void @__kmpc_for_static_init_4(<loc>, i32 <gtid>, i32 34/*static non-chunked*/, i32* <last_iter>, i32* <lower_bound>, i32* <upper_bound>, i32* <stride>, i32 1/*increment always 1*/, i32 1/*chunk always 1*/)
<upper_bound> = min(<upper_bound>, n-1)
<iter_var> = <lb>
check:
br <iter_var> <= <upper_bound>, label cont, label exit
continue:
switch (IV) {
case 0:
{1};
break;
...
case <NumSection> - 1:
{n};
break;
}
++<iter_var>
br label check
exit:
call void @__kmpc_for_static_fini(<loc>, i32 <gtid>)
Differential Revision: http://reviews.llvm.org/D8244
llvm-svn: 232021
2015-03-12 16:53:29 +08:00
|
|
|
EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
|
|
|
|
S.getCond(/*SeparateIter=*/false), S.getInc(),
|
2015-04-10 12:50:10 +08:00
|
|
|
[&S](CodeGenFunction &CGF) {
|
|
|
|
CGF.EmitOMPLoopBody(S);
|
|
|
|
CGF.EmitStopPoint(&S);
|
2015-04-22 19:15:40 +08:00
|
|
|
},
|
|
|
|
[](CodeGenFunction &) {});
|
2014-12-15 15:07:06 +08:00
|
|
|
// Tell the runtime we are done.
|
2015-04-22 19:15:40 +08:00
|
|
|
RT.emitForStaticFinish(*this, S.getLocStart());
|
2015-01-22 16:49:35 +08:00
|
|
|
} else {
|
|
|
|
// Emit the outer loop, which requests its work chunk [LB..UB] from
|
|
|
|
// runtime and runs the inner loop to process it.
|
2015-05-20 21:12:48 +08:00
|
|
|
EmitOMPForOuterLoop(ScheduleKind, S, LoopScope, Ordered,
|
|
|
|
LB.getAddress(), UB.getAddress(), ST.getAddress(),
|
|
|
|
IL.getAddress(), Chunk);
|
2015-01-22 16:49:35 +08:00
|
|
|
}
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
EmitOMPReductionClauseFinal(S);
|
2015-04-16 12:54:05 +08:00
|
|
|
// Emit final copy of the lastprivate variables if IsLastIter != 0.
|
|
|
|
if (HasLastprivateClause)
|
|
|
|
EmitOMPLastprivateClauseFinal(
|
|
|
|
S, Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
|
2014-12-15 15:07:06 +08:00
|
|
|
}
|
|
|
|
// We're now done with the loop, so jump to the continuation block.
|
2015-04-22 19:59:37 +08:00
|
|
|
if (ContBlock) {
|
|
|
|
EmitBranch(ContBlock);
|
|
|
|
EmitBlock(ContBlock, true);
|
|
|
|
}
|
2014-12-15 15:07:06 +08:00
|
|
|
}
|
2015-04-16 12:54:05 +08:00
|
|
|
return HasLastprivateClause;
|
2014-12-15 15:07:06 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
|
2015-04-10 12:50:10 +08:00
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
2015-04-16 12:54:05 +08:00
|
|
|
bool HasLastprivates = false;
|
|
|
|
auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) {
|
|
|
|
HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
|
|
|
|
};
|
2015-04-10 12:50:10 +08:00
|
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(*this, CodeGen);
|
2014-12-15 15:07:06 +08:00
|
|
|
|
|
|
|
// Emit an implicit barrier at the end.
|
2015-04-16 12:54:05 +08:00
|
|
|
if (!S.getSingleClause(OMPC_nowait) || HasLastprivates) {
|
2015-03-30 12:30:22 +08:00
|
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
|
|
|
|
}
|
2014-06-18 12:14:57 +08:00
|
|
|
}
|
2014-06-25 19:44:49 +08:00
|
|
|
|
2014-09-18 13:12:34 +08:00
|
|
|
void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &) {
|
|
|
|
llvm_unreachable("CodeGen for 'omp for simd' is not supported yet.");
|
|
|
|
}
|
|
|
|
|
[OPENMP] Initial codegen for 'omp sections' and 'omp section' directives.
If only one section is found in the sections region, it is emitted just like single region.
Otherwise it is emitted as a static non-chunked loop.
#pragma omp sections
{
#pragma omp section
{1}
...
#pragma omp section
{n}
}
is translated to something like
i32 <iter_var>
i32 <last_iter> = 0
i32 <lower_bound> = 0
i32 <upper_bound> = n-1
i32 <stride> = 1
call void @__kmpc_for_static_init_4(<loc>, i32 <gtid>, i32 34/*static non-chunked*/, i32* <last_iter>, i32* <lower_bound>, i32* <upper_bound>, i32* <stride>, i32 1/*increment always 1*/, i32 1/*chunk always 1*/)
<upper_bound> = min(<upper_bound>, n-1)
<iter_var> = <lb>
check:
br <iter_var> <= <upper_bound>, label cont, label exit
continue:
switch (IV) {
case 0:
{1};
break;
...
case <NumSection> - 1:
{n};
break;
}
++<iter_var>
br label check
exit:
call void @__kmpc_for_static_fini(<loc>, i32 <gtid>)
Differential Revision: http://reviews.llvm.org/D8244
llvm-svn: 232021
2015-03-12 16:53:29 +08:00
|
|
|
static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
|
|
|
|
const Twine &Name,
|
|
|
|
llvm::Value *Init = nullptr) {
|
|
|
|
auto LVal = CGF.MakeNaturalAlignAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
|
|
|
|
if (Init)
|
|
|
|
CGF.EmitScalarInit(Init, LVal);
|
|
|
|
return LVal;
|
|
|
|
}
|
|
|
|
|
2015-04-14 11:29:22 +08:00
|
|
|
static OpenMPDirectiveKind emitSections(CodeGenFunction &CGF,
|
|
|
|
const OMPExecutableDirective &S) {
|
[OPENMP] Initial codegen for 'omp sections' and 'omp section' directives.
If only one section is found in the sections region, it is emitted just like single region.
Otherwise it is emitted as a static non-chunked loop.
#pragma omp sections
{
#pragma omp section
{1}
...
#pragma omp section
{n}
}
is translated to something like
i32 <iter_var>
i32 <last_iter> = 0
i32 <lower_bound> = 0
i32 <upper_bound> = n-1
i32 <stride> = 1
call void @__kmpc_for_static_init_4(<loc>, i32 <gtid>, i32 34/*static non-chunked*/, i32* <last_iter>, i32* <lower_bound>, i32* <upper_bound>, i32* <stride>, i32 1/*increment always 1*/, i32 1/*chunk always 1*/)
<upper_bound> = min(<upper_bound>, n-1)
<iter_var> = <lb>
check:
br <iter_var> <= <upper_bound>, label cont, label exit
continue:
switch (IV) {
case 0:
{1};
break;
...
case <NumSection> - 1:
{n};
break;
}
++<iter_var>
br label check
exit:
call void @__kmpc_for_static_fini(<loc>, i32 <gtid>)
Differential Revision: http://reviews.llvm.org/D8244
llvm-svn: 232021
2015-03-12 16:53:29 +08:00
|
|
|
auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
|
|
|
|
auto *CS = dyn_cast<CompoundStmt>(Stmt);
|
|
|
|
if (CS && CS->size() > 1) {
|
2015-04-27 12:34:03 +08:00
|
|
|
bool HasLastprivates = false;
|
|
|
|
auto &&CodeGen = [&S, CS, &HasLastprivates](CodeGenFunction &CGF) {
|
2015-04-10 12:50:10 +08:00
|
|
|
auto &C = CGF.CGM.getContext();
|
|
|
|
auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
|
|
|
|
// Emit helper vars inits.
|
|
|
|
LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
|
|
|
|
CGF.Builder.getInt32(0));
|
|
|
|
auto *GlobalUBVal = CGF.Builder.getInt32(CS->size() - 1);
|
|
|
|
LValue UB =
|
|
|
|
createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
|
|
|
|
LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
|
|
|
|
CGF.Builder.getInt32(1));
|
|
|
|
LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
|
|
|
|
CGF.Builder.getInt32(0));
|
|
|
|
// Loop counter.
|
|
|
|
LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
|
|
|
|
OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
|
2015-04-14 11:29:22 +08:00
|
|
|
CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
|
2015-04-10 12:50:10 +08:00
|
|
|
OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
|
2015-04-14 11:29:22 +08:00
|
|
|
CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
|
2015-04-10 12:50:10 +08:00
|
|
|
// Generate condition for loop.
|
|
|
|
BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
|
|
|
|
OK_Ordinary, S.getLocStart(),
|
|
|
|
/*fpContractable=*/false);
|
|
|
|
// Increment for loop counter.
|
|
|
|
UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue,
|
|
|
|
OK_Ordinary, S.getLocStart());
|
|
|
|
auto BodyGen = [CS, &S, &IV](CodeGenFunction &CGF) {
|
|
|
|
// Iterate through all sections and emit a switch construct:
|
|
|
|
// switch (IV) {
|
|
|
|
// case 0:
|
|
|
|
// <SectionStmt[0]>;
|
|
|
|
// break;
|
|
|
|
// ...
|
|
|
|
// case <NumSection> - 1:
|
|
|
|
// <SectionStmt[<NumSection> - 1]>;
|
|
|
|
// break;
|
|
|
|
// }
|
|
|
|
// .omp.sections.exit:
|
|
|
|
auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
|
|
|
|
auto *SwitchStmt = CGF.Builder.CreateSwitch(
|
|
|
|
CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
|
|
|
|
CS->size());
|
|
|
|
unsigned CaseNumber = 0;
|
|
|
|
for (auto C = CS->children(); C; ++C, ++CaseNumber) {
|
|
|
|
auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
|
|
|
|
CGF.EmitBlock(CaseBB);
|
|
|
|
SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
|
|
|
|
CGF.EmitStmt(*C);
|
|
|
|
CGF.EmitBranch(ExitBB);
|
|
|
|
}
|
|
|
|
CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
|
|
|
|
};
|
2015-04-24 11:37:03 +08:00
|
|
|
|
|
|
|
CodeGenFunction::OMPPrivateScope LoopScope(CGF);
|
|
|
|
if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
|
|
|
|
// Emit implicit barrier to synchronize threads and avoid data races on
|
|
|
|
// initialization of firstprivate variables.
|
|
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
|
|
|
|
OMPD_unknown);
|
|
|
|
}
|
2015-04-27 12:12:12 +08:00
|
|
|
CGF.EmitOMPPrivateClause(S, LoopScope);
|
2015-04-27 12:34:03 +08:00
|
|
|
HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
CGF.EmitOMPReductionClauseInit(S, LoopScope);
|
2015-04-24 11:37:03 +08:00
|
|
|
(void)LoopScope.Privatize();
|
|
|
|
|
2015-04-10 12:50:10 +08:00
|
|
|
// Emit static non-chunked loop.
|
|
|
|
CGF.CGM.getOpenMPRuntime().emitForInit(
|
|
|
|
CGF, S.getLocStart(), OMPC_SCHEDULE_static, /*IVSize=*/32,
|
2015-05-20 21:12:48 +08:00
|
|
|
/*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(),
|
|
|
|
LB.getAddress(), UB.getAddress(), ST.getAddress());
|
2015-04-10 12:50:10 +08:00
|
|
|
// UB = min(UB, GlobalUB);
|
|
|
|
auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
|
|
|
|
auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
|
|
|
|
CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
|
|
|
|
CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
|
|
|
|
// IV = LB;
|
|
|
|
CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
|
|
|
|
// while (idx <= UB) { BODY; ++idx; }
|
2015-04-22 19:15:40 +08:00
|
|
|
CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
|
|
|
|
[](CodeGenFunction &) {});
|
2015-04-10 12:50:10 +08:00
|
|
|
// Tell the runtime we are done.
|
2015-04-22 19:15:40 +08:00
|
|
|
CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart());
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
CGF.EmitOMPReductionClauseFinal(S);
|
2015-04-27 12:34:03 +08:00
|
|
|
|
|
|
|
// Emit final copy of the lastprivate variables if IsLastIter != 0.
|
|
|
|
if (HasLastprivates)
|
|
|
|
CGF.EmitOMPLastprivateClauseFinal(
|
|
|
|
S, CGF.Builder.CreateIsNotNull(
|
|
|
|
CGF.EmitLoadOfScalar(IL, S.getLocStart())));
|
[OPENMP] Initial codegen for 'omp sections' and 'omp section' directives.
If only one section is found in the sections region, it is emitted just like single region.
Otherwise it is emitted as a static non-chunked loop.
#pragma omp sections
{
#pragma omp section
{1}
...
#pragma omp section
{n}
}
is translated to something like
i32 <iter_var>
i32 <last_iter> = 0
i32 <lower_bound> = 0
i32 <upper_bound> = n-1
i32 <stride> = 1
call void @__kmpc_for_static_init_4(<loc>, i32 <gtid>, i32 34/*static non-chunked*/, i32* <last_iter>, i32* <lower_bound>, i32* <upper_bound>, i32* <stride>, i32 1/*increment always 1*/, i32 1/*chunk always 1*/)
<upper_bound> = min(<upper_bound>, n-1)
<iter_var> = <lb>
check:
br <iter_var> <= <upper_bound>, label cont, label exit
continue:
switch (IV) {
case 0:
{1};
break;
...
case <NumSection> - 1:
{n};
break;
}
++<iter_var>
br label check
exit:
call void @__kmpc_for_static_fini(<loc>, i32 <gtid>)
Differential Revision: http://reviews.llvm.org/D8244
llvm-svn: 232021
2015-03-12 16:53:29 +08:00
|
|
|
};
|
2015-04-10 12:50:10 +08:00
|
|
|
|
2015-04-14 11:29:22 +08:00
|
|
|
CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, CodeGen);
|
2015-04-27 12:34:03 +08:00
|
|
|
// Emit barrier for lastprivates only if 'sections' directive has 'nowait'
|
|
|
|
// clause. Otherwise the barrier will be generated by the codegen for the
|
|
|
|
// directive.
|
|
|
|
if (HasLastprivates && S.getSingleClause(OMPC_nowait)) {
|
|
|
|
// Emit implicit barrier to synchronize threads and avoid data races on
|
|
|
|
// initialization of firstprivate variables.
|
|
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
|
|
|
|
OMPD_unknown);
|
|
|
|
}
|
2015-04-14 11:29:22 +08:00
|
|
|
return OMPD_sections;
|
[OPENMP] Initial codegen for 'omp sections' and 'omp section' directives.
If only one section is found in the sections region, it is emitted just like single region.
Otherwise it is emitted as a static non-chunked loop.
#pragma omp sections
{
#pragma omp section
{1}
...
#pragma omp section
{n}
}
is translated to something like
i32 <iter_var>
i32 <last_iter> = 0
i32 <lower_bound> = 0
i32 <upper_bound> = n-1
i32 <stride> = 1
call void @__kmpc_for_static_init_4(<loc>, i32 <gtid>, i32 34/*static non-chunked*/, i32* <last_iter>, i32* <lower_bound>, i32* <upper_bound>, i32* <stride>, i32 1/*increment always 1*/, i32 1/*chunk always 1*/)
<upper_bound> = min(<upper_bound>, n-1)
<iter_var> = <lb>
check:
br <iter_var> <= <upper_bound>, label cont, label exit
continue:
switch (IV) {
case 0:
{1};
break;
...
case <NumSection> - 1:
{n};
break;
}
++<iter_var>
br label check
exit:
call void @__kmpc_for_static_fini(<loc>, i32 <gtid>)
Differential Revision: http://reviews.llvm.org/D8244
llvm-svn: 232021
2015-03-12 16:53:29 +08:00
|
|
|
}
|
2015-04-14 11:29:22 +08:00
|
|
|
// If only one section is found - no need to generate loop, emit as a single
|
|
|
|
// region.
|
2015-04-24 11:37:03 +08:00
|
|
|
bool HasFirstprivates;
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// No need to generate reductions for sections with single section region, we
|
|
|
|
// can use original shared variables for all operations.
|
2015-04-27 16:00:32 +08:00
|
|
|
bool HasReductions = !S.getClausesOfKind(OMPC_reduction).empty();
|
2015-04-27 12:34:03 +08:00
|
|
|
// No need to generate lastprivates for sections with single section region,
|
|
|
|
// we can use original shared variable for all calculations with barrier at
|
|
|
|
// the end of the sections.
|
2015-04-27 16:00:32 +08:00
|
|
|
bool HasLastprivates = !S.getClausesOfKind(OMPC_lastprivate).empty();
|
2015-04-24 11:37:03 +08:00
|
|
|
auto &&CodeGen = [Stmt, &S, &HasFirstprivates](CodeGenFunction &CGF) {
|
|
|
|
CodeGenFunction::OMPPrivateScope SingleScope(CGF);
|
|
|
|
HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope);
|
2015-04-27 12:12:12 +08:00
|
|
|
CGF.EmitOMPPrivateClause(S, SingleScope);
|
2015-04-24 11:37:03 +08:00
|
|
|
(void)SingleScope.Privatize();
|
|
|
|
|
2015-04-14 11:29:22 +08:00
|
|
|
CGF.EmitStmt(Stmt);
|
|
|
|
CGF.EnsureInsertPoint();
|
|
|
|
};
|
|
|
|
CGF.CGM.getOpenMPRuntime().emitSingleRegion(CGF, CodeGen, S.getLocStart(),
|
|
|
|
llvm::None, llvm::None,
|
|
|
|
llvm::None, llvm::None);
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// Emit barrier for firstprivates, lastprivates or reductions only if
|
|
|
|
// 'sections' directive has 'nowait' clause. Otherwise the barrier will be
|
|
|
|
// generated by the codegen for the directive.
|
|
|
|
if ((HasFirstprivates || HasLastprivates || HasReductions) &&
|
|
|
|
S.getSingleClause(OMPC_nowait)) {
|
2015-04-24 11:37:03 +08:00
|
|
|
// Emit implicit barrier to synchronize threads and avoid data races on
|
|
|
|
// initialization of firstprivate variables.
|
|
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
|
|
|
|
OMPD_unknown);
|
|
|
|
}
|
2015-04-14 11:29:22 +08:00
|
|
|
return OMPD_single;
|
|
|
|
}
|
[OPENMP] Initial codegen for 'omp sections' and 'omp section' directives.
If only one section is found in the sections region, it is emitted just like single region.
Otherwise it is emitted as a static non-chunked loop.
#pragma omp sections
{
#pragma omp section
{1}
...
#pragma omp section
{n}
}
is translated to something like
i32 <iter_var>
i32 <last_iter> = 0
i32 <lower_bound> = 0
i32 <upper_bound> = n-1
i32 <stride> = 1
call void @__kmpc_for_static_init_4(<loc>, i32 <gtid>, i32 34/*static non-chunked*/, i32* <last_iter>, i32* <lower_bound>, i32* <upper_bound>, i32* <stride>, i32 1/*increment always 1*/, i32 1/*chunk always 1*/)
<upper_bound> = min(<upper_bound>, n-1)
<iter_var> = <lb>
check:
br <iter_var> <= <upper_bound>, label cont, label exit
continue:
switch (IV) {
case 0:
{1};
break;
...
case <NumSection> - 1:
{n};
break;
}
++<iter_var>
br label check
exit:
call void @__kmpc_for_static_fini(<loc>, i32 <gtid>)
Differential Revision: http://reviews.llvm.org/D8244
llvm-svn: 232021
2015-03-12 16:53:29 +08:00
|
|
|
|
2015-04-14 11:29:22 +08:00
|
|
|
void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
|
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
|
|
OpenMPDirectiveKind EmittedAs = emitSections(*this, S);
|
[OPENMP] Initial codegen for 'omp sections' and 'omp section' directives.
If only one section is found in the sections region, it is emitted just like single region.
Otherwise it is emitted as a static non-chunked loop.
#pragma omp sections
{
#pragma omp section
{1}
...
#pragma omp section
{n}
}
is translated to something like
i32 <iter_var>
i32 <last_iter> = 0
i32 <lower_bound> = 0
i32 <upper_bound> = n-1
i32 <stride> = 1
call void @__kmpc_for_static_init_4(<loc>, i32 <gtid>, i32 34/*static non-chunked*/, i32* <last_iter>, i32* <lower_bound>, i32* <upper_bound>, i32* <stride>, i32 1/*increment always 1*/, i32 1/*chunk always 1*/)
<upper_bound> = min(<upper_bound>, n-1)
<iter_var> = <lb>
check:
br <iter_var> <= <upper_bound>, label cont, label exit
continue:
switch (IV) {
case 0:
{1};
break;
...
case <NumSection> - 1:
{n};
break;
}
++<iter_var>
br label check
exit:
call void @__kmpc_for_static_fini(<loc>, i32 <gtid>)
Differential Revision: http://reviews.llvm.org/D8244
llvm-svn: 232021
2015-03-12 16:53:29 +08:00
|
|
|
// Emit an implicit barrier at the end.
|
2015-03-30 12:30:22 +08:00
|
|
|
if (!S.getSingleClause(OMPC_nowait)) {
|
2015-04-14 11:29:22 +08:00
|
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), EmittedAs);
|
2015-03-30 12:30:22 +08:00
|
|
|
}
|
2014-06-25 19:44:49 +08:00
|
|
|
}
|
|
|
|
|
[OPENMP] Initial codegen for 'omp sections' and 'omp section' directives.
If only one section is found in the sections region, it is emitted just like single region.
Otherwise it is emitted as a static non-chunked loop.
#pragma omp sections
{
#pragma omp section
{1}
...
#pragma omp section
{n}
}
is translated to something like
i32 <iter_var>
i32 <last_iter> = 0
i32 <lower_bound> = 0
i32 <upper_bound> = n-1
i32 <stride> = 1
call void @__kmpc_for_static_init_4(<loc>, i32 <gtid>, i32 34/*static non-chunked*/, i32* <last_iter>, i32* <lower_bound>, i32* <upper_bound>, i32* <stride>, i32 1/*increment always 1*/, i32 1/*chunk always 1*/)
<upper_bound> = min(<upper_bound>, n-1)
<iter_var> = <lb>
check:
br <iter_var> <= <upper_bound>, label cont, label exit
continue:
switch (IV) {
case 0:
{1};
break;
...
case <NumSection> - 1:
{n};
break;
}
++<iter_var>
br label check
exit:
call void @__kmpc_for_static_fini(<loc>, i32 <gtid>)
Differential Revision: http://reviews.llvm.org/D8244
llvm-svn: 232021
2015-03-12 16:53:29 +08:00
|
|
|
void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
|
2015-04-10 12:50:10 +08:00
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
|
|
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
|
|
|
CGF.EnsureInsertPoint();
|
|
|
|
};
|
|
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(*this, CodeGen);
|
2014-06-26 16:21:58 +08:00
|
|
|
}
|
|
|
|
|
2015-02-05 14:35:41 +08:00
|
|
|
void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
|
2015-03-23 14:18:07 +08:00
|
|
|
llvm::SmallVector<const Expr *, 8> CopyprivateVars;
|
2015-04-14 13:11:24 +08:00
|
|
|
llvm::SmallVector<const Expr *, 8> DestExprs;
|
2015-03-23 14:18:07 +08:00
|
|
|
llvm::SmallVector<const Expr *, 8> SrcExprs;
|
|
|
|
llvm::SmallVector<const Expr *, 8> AssignmentOps;
|
2015-04-10 12:50:10 +08:00
|
|
|
// Check if there are any 'copyprivate' clauses associated with this
|
|
|
|
// 'single'
|
2015-03-23 14:18:07 +08:00
|
|
|
// construct.
|
|
|
|
// Build a list of copyprivate variables along with helper expressions
|
|
|
|
// (<source>, <destination>, <destination>=<source> expressions)
|
2015-04-27 16:00:32 +08:00
|
|
|
for (auto &&I = S.getClausesOfKind(OMPC_copyprivate); I; ++I) {
|
2015-03-23 14:18:07 +08:00
|
|
|
auto *C = cast<OMPCopyprivateClause>(*I);
|
|
|
|
CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
|
2015-04-14 13:11:24 +08:00
|
|
|
DestExprs.append(C->destination_exprs().begin(),
|
|
|
|
C->destination_exprs().end());
|
2015-03-23 14:18:07 +08:00
|
|
|
SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
|
|
|
|
AssignmentOps.append(C->assignment_ops().begin(),
|
|
|
|
C->assignment_ops().end());
|
|
|
|
}
|
2015-04-10 12:50:10 +08:00
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
2015-03-23 14:18:07 +08:00
|
|
|
// Emit code for 'single' region along with 'copyprivate' clauses
|
2015-04-24 12:21:15 +08:00
|
|
|
bool HasFirstprivates;
|
|
|
|
auto &&CodeGen = [&S, &HasFirstprivates](CodeGenFunction &CGF) {
|
|
|
|
CodeGenFunction::OMPPrivateScope SingleScope(CGF);
|
|
|
|
HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope);
|
2015-04-27 11:48:52 +08:00
|
|
|
CGF.EmitOMPPrivateClause(S, SingleScope);
|
2015-04-24 12:21:15 +08:00
|
|
|
(void)SingleScope.Privatize();
|
|
|
|
|
2015-04-10 12:50:10 +08:00
|
|
|
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
|
|
|
CGF.EnsureInsertPoint();
|
|
|
|
};
|
|
|
|
CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
|
2015-04-14 13:11:24 +08:00
|
|
|
CopyprivateVars, DestExprs, SrcExprs,
|
2015-04-10 12:50:10 +08:00
|
|
|
AssignmentOps);
|
2015-04-24 12:21:15 +08:00
|
|
|
// Emit an implicit barrier at the end (to avoid data race on firstprivate
|
|
|
|
// init or if no 'nowait' clause was specified and no 'copyprivate' clause).
|
|
|
|
if ((!S.getSingleClause(OMPC_nowait) || HasFirstprivates) &&
|
|
|
|
CopyprivateVars.empty()) {
|
|
|
|
CGM.getOpenMPRuntime().emitBarrierCall(
|
|
|
|
*this, S.getLocStart(),
|
|
|
|
S.getSingleClause(OMPC_nowait) ? OMPD_unknown : OMPD_single);
|
2015-03-30 12:30:22 +08:00
|
|
|
}
|
2014-06-26 20:05:45 +08:00
|
|
|
}
|
|
|
|
|
2014-12-04 15:23:53 +08:00
|
|
|
void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
|
2015-04-10 12:50:10 +08:00
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
|
|
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
|
|
|
CGF.EnsureInsertPoint();
|
|
|
|
};
|
|
|
|
CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
|
2014-07-17 16:54:58 +08:00
|
|
|
}
|
|
|
|
|
2014-09-22 18:01:53 +08:00
|
|
|
void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
|
2015-04-10 12:50:10 +08:00
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
|
|
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
|
|
|
CGF.EnsureInsertPoint();
|
|
|
|
};
|
2015-02-25 16:32:46 +08:00
|
|
|
CGM.getOpenMPRuntime().emitCriticalRegion(
|
2015-04-10 12:50:10 +08:00
|
|
|
*this, S.getDirectiveName().getAsString(), CodeGen, S.getLocStart());
|
2014-07-21 17:42:05 +08:00
|
|
|
}
|
|
|
|
|
2015-04-13 13:28:11 +08:00
|
|
|
void CodeGenFunction::EmitOMPParallelForDirective(
|
|
|
|
const OMPParallelForDirective &S) {
|
|
|
|
// Emit directive as a combined directive that consists of two implicit
|
|
|
|
// directives: 'parallel' with 'for' directive.
|
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
2015-05-12 16:35:28 +08:00
|
|
|
(void)emitScheduleClause(*this, S, /*OuterRegion=*/true);
|
2015-04-13 13:28:11 +08:00
|
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
|
|
CGF.EmitOMPWorksharingLoop(S);
|
|
|
|
// Emit implicit barrier at the end of parallel region, but this barrier
|
|
|
|
// is at the end of 'for' directive, so emit it as the implicit barrier for
|
|
|
|
// this 'for' directive.
|
|
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
|
|
|
|
OMPD_parallel);
|
|
|
|
};
|
|
|
|
emitCommonOMPParallelDirective(*this, S, CodeGen);
|
2014-07-07 21:01:15 +08:00
|
|
|
}
|
|
|
|
|
2014-09-23 17:33:00 +08:00
|
|
|
void CodeGenFunction::EmitOMPParallelForSimdDirective(
|
|
|
|
const OMPParallelForSimdDirective &) {
|
|
|
|
llvm_unreachable("CodeGen for 'omp parallel for simd' is not supported yet.");
|
|
|
|
}
|
|
|
|
|
2014-07-08 16:12:03 +08:00
|
|
|
void CodeGenFunction::EmitOMPParallelSectionsDirective(
|
2015-04-14 11:29:22 +08:00
|
|
|
const OMPParallelSectionsDirective &S) {
|
|
|
|
// Emit directive as a combined directive that consists of two implicit
|
|
|
|
// directives: 'parallel' with 'sections' directive.
|
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
|
|
(void)emitSections(CGF, S);
|
|
|
|
// Emit implicit barrier at the end of parallel region.
|
|
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
|
|
|
|
OMPD_parallel);
|
|
|
|
};
|
|
|
|
emitCommonOMPParallelDirective(*this, S, CodeGen);
|
2014-07-08 16:12:03 +08:00
|
|
|
}
|
|
|
|
|
[OPENMP] Initial codegen for 'omp task' directive.
The task region is emmitted in several steps:
Emit a call to kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, kmp_routine_entry_t *task_entry).
Here task_entry is a pointer to the function:
kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
TaskFunction(gtid, tt->part_id, tt->shareds);
return 0;
}
Copy a list of shared variables to field shareds of the resulting structure kmp_task_t returned by the previous call (if any).
Copy a pointer to destructions function to field destructions of the resulting structure kmp_task_t.
Emit a call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *new_task), where new_task is a resulting structure from previous items.
Differential Revision: http://reviews.llvm.org/D7560
llvm-svn: 231762
2015-03-10 15:28:44 +08:00
|
|
|
void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
|
|
|
|
// Emit outlined function for task construct.
|
2015-04-10 12:50:10 +08:00
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
[OPENMP] Initial codegen for 'omp task' directive.
The task region is emmitted in several steps:
Emit a call to kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, kmp_routine_entry_t *task_entry).
Here task_entry is a pointer to the function:
kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
TaskFunction(gtid, tt->part_id, tt->shareds);
return 0;
}
Copy a list of shared variables to field shareds of the resulting structure kmp_task_t returned by the previous call (if any).
Copy a pointer to destructions function to field destructions of the resulting structure kmp_task_t.
Emit a call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *new_task), where new_task is a resulting structure from previous items.
Differential Revision: http://reviews.llvm.org/D7560
llvm-svn: 231762
2015-03-10 15:28:44 +08:00
|
|
|
auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
|
|
|
|
auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
|
|
|
|
auto *I = CS->getCapturedDecl()->param_begin();
|
2015-04-10 12:50:10 +08:00
|
|
|
auto *PartId = std::next(I);
|
[OPENMP] Initial codegen for 'omp task' directive.
The task region is emmitted in several steps:
Emit a call to kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, kmp_routine_entry_t *task_entry).
Here task_entry is a pointer to the function:
kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
TaskFunction(gtid, tt->part_id, tt->shareds);
return 0;
}
Copy a list of shared variables to field shareds of the resulting structure kmp_task_t returned by the previous call (if any).
Copy a pointer to destructions function to field destructions of the resulting structure kmp_task_t.
Emit a call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *new_task), where new_task is a resulting structure from previous items.
Differential Revision: http://reviews.llvm.org/D7560
llvm-svn: 231762
2015-03-10 15:28:44 +08:00
|
|
|
// The first function argument for tasks is a thread id, the second one is a
|
|
|
|
// part id (0 for tied tasks, >=0 for untied task).
|
[OPENMP] Codegen for 'firstprivate' clause in 'task' directive.
For tasks codegen for private/firstprivate variables are different rather than for other directives.
1. Build an internal structure of privates for each private variable:
struct .kmp_privates_t. {
Ty1 var1;
...
Tyn varn;
};
2. Add a new field to kmp_task_t type with list of privates.
struct kmp_task_t {
void * shareds;
kmp_routine_entry_t routine;
kmp_int32 part_id;
kmp_routine_entry_t destructors;
.kmp_privates_t. privates;
};
3. Create a function with destructors calls for all privates after end of task region.
kmp_int32 .omp_task_destructor.(kmp_int32 gtid, kmp_task_t *tt) {
~Destructor(&tt->privates.var1);
...
~Destructor(&tt->privates.varn);
return 0;
}
4. Perform initialization of all firstprivate fields (by simple copying for POD data, copy constructor calls for classes) + provide address of a destructor function after kmpc_omp_task_alloc() and before kmpc_omp_task() calls.
kmp_task_t *new_task = __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, kmp_routine_entry_t *task_entry);
CopyConstructor(new_task->privates.var1, *new_task->shareds.var1_ref);
new_task->shareds.var1_ref = &new_task->privates.var1;
...
CopyConstructor(new_task->privates.varn, *new_task->shareds.varn_ref);
new_task->shareds.varn_ref = &new_task->privates.varn;
new_task->destructors = .omp_task_destructor.;
kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *new_task)
Differential Revision: http://reviews.llvm.org/D9370
llvm-svn: 236479
2015-05-05 12:05:12 +08:00
|
|
|
llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
|
2015-04-30 14:51:57 +08:00
|
|
|
// Get list of private variables.
|
[OPENMP] Prepare codegen for privates in tasks for non-capturing of privates in CapturedStmt.
Reworked codegen for privates in tasks:
call @kmpc_omp_task_alloc();
...
call @kmpc_omp_task(task_proxy);
void map_privates(.privates_rec. *privs, type1 ** priv1_ref, ..., typen **privn_ref) {
*priv1_ref = &privs->private1;
...
*privn_ref = &privs->privaten;
ret void
}
i32 task_entry(i32 ThreadId, i32 PartId, void* privs, void (void*, ...) map_privates, shareds* captures) {
type1 **priv1;
...
typen **privn;
call map_privates(privs, priv1, ..., privn);
<Task body with priv1, .., privn instead of the captured variables>.
ret i32
}
i32 task_proxy(i32 ThreadId, kmp_task_t_with_privates *tt) {
call task_entry(ThreadId, tt->task_data.PartId, &tt->privates, map_privates, tt->task_data.shareds);
}
llvm-svn: 238010
2015-05-22 16:56:35 +08:00
|
|
|
llvm::SmallVector<const Expr *, 8> PrivateVars;
|
2015-04-30 14:51:57 +08:00
|
|
|
llvm::SmallVector<const Expr *, 8> PrivateCopies;
|
|
|
|
for (auto &&I = S.getClausesOfKind(OMPC_private); I; ++I) {
|
|
|
|
auto *C = cast<OMPPrivateClause>(*I);
|
|
|
|
auto IRef = C->varlist_begin();
|
|
|
|
for (auto *IInit : C->private_copies()) {
|
|
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
|
|
if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
|
[OPENMP] Prepare codegen for privates in tasks for non-capturing of privates in CapturedStmt.
Reworked codegen for privates in tasks:
call @kmpc_omp_task_alloc();
...
call @kmpc_omp_task(task_proxy);
void map_privates(.privates_rec. *privs, type1 ** priv1_ref, ..., typen **privn_ref) {
*priv1_ref = &privs->private1;
...
*privn_ref = &privs->privaten;
ret void
}
i32 task_entry(i32 ThreadId, i32 PartId, void* privs, void (void*, ...) map_privates, shareds* captures) {
type1 **priv1;
...
typen **privn;
call map_privates(privs, priv1, ..., privn);
<Task body with priv1, .., privn instead of the captured variables>.
ret i32
}
i32 task_proxy(i32 ThreadId, kmp_task_t_with_privates *tt) {
call task_entry(ThreadId, tt->task_data.PartId, &tt->privates, map_privates, tt->task_data.shareds);
}
llvm-svn: 238010
2015-05-22 16:56:35 +08:00
|
|
|
PrivateVars.push_back(*IRef);
|
2015-04-30 14:51:57 +08:00
|
|
|
PrivateCopies.push_back(IInit);
|
|
|
|
}
|
|
|
|
++IRef;
|
|
|
|
}
|
|
|
|
}
|
[OPENMP] Codegen for 'firstprivate' clause in 'task' directive.
For tasks codegen for private/firstprivate variables are different rather than for other directives.
1. Build an internal structure of privates for each private variable:
struct .kmp_privates_t. {
Ty1 var1;
...
Tyn varn;
};
2. Add a new field to kmp_task_t type with list of privates.
struct kmp_task_t {
void * shareds;
kmp_routine_entry_t routine;
kmp_int32 part_id;
kmp_routine_entry_t destructors;
.kmp_privates_t. privates;
};
3. Create a function with destructors calls for all privates after end of task region.
kmp_int32 .omp_task_destructor.(kmp_int32 gtid, kmp_task_t *tt) {
~Destructor(&tt->privates.var1);
...
~Destructor(&tt->privates.varn);
return 0;
}
4. Perform initialization of all firstprivate fields (by simple copying for POD data, copy constructor calls for classes) + provide address of a destructor function after kmpc_omp_task_alloc() and before kmpc_omp_task() calls.
kmp_task_t *new_task = __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, kmp_routine_entry_t *task_entry);
CopyConstructor(new_task->privates.var1, *new_task->shareds.var1_ref);
new_task->shareds.var1_ref = &new_task->privates.var1;
...
CopyConstructor(new_task->privates.varn, *new_task->shareds.varn_ref);
new_task->shareds.varn_ref = &new_task->privates.varn;
new_task->destructors = .omp_task_destructor.;
kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *new_task)
Differential Revision: http://reviews.llvm.org/D9370
llvm-svn: 236479
2015-05-05 12:05:12 +08:00
|
|
|
EmittedAsPrivate.clear();
|
|
|
|
// Get list of firstprivate variables.
|
|
|
|
llvm::SmallVector<const Expr *, 8> FirstprivateVars;
|
|
|
|
llvm::SmallVector<const Expr *, 8> FirstprivateCopies;
|
|
|
|
llvm::SmallVector<const Expr *, 8> FirstprivateInits;
|
|
|
|
for (auto &&I = S.getClausesOfKind(OMPC_firstprivate); I; ++I) {
|
|
|
|
auto *C = cast<OMPFirstprivateClause>(*I);
|
|
|
|
auto IRef = C->varlist_begin();
|
|
|
|
auto IElemInitRef = C->inits().begin();
|
|
|
|
for (auto *IInit : C->private_copies()) {
|
|
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
|
|
if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
|
|
|
|
FirstprivateVars.push_back(*IRef);
|
|
|
|
FirstprivateCopies.push_back(IInit);
|
|
|
|
FirstprivateInits.push_back(*IElemInitRef);
|
|
|
|
}
|
|
|
|
++IRef, ++IElemInitRef;
|
|
|
|
}
|
|
|
|
}
|
[OPENMP] Prepare codegen for privates in tasks for non-capturing of privates in CapturedStmt.
Reworked codegen for privates in tasks:
call @kmpc_omp_task_alloc();
...
call @kmpc_omp_task(task_proxy);
void map_privates(.privates_rec. *privs, type1 ** priv1_ref, ..., typen **privn_ref) {
*priv1_ref = &privs->private1;
...
*privn_ref = &privs->privaten;
ret void
}
i32 task_entry(i32 ThreadId, i32 PartId, void* privs, void (void*, ...) map_privates, shareds* captures) {
type1 **priv1;
...
typen **privn;
call map_privates(privs, priv1, ..., privn);
<Task body with priv1, .., privn instead of the captured variables>.
ret i32
}
i32 task_proxy(i32 ThreadId, kmp_task_t_with_privates *tt) {
call task_entry(ThreadId, tt->task_data.PartId, &tt->privates, map_privates, tt->task_data.shareds);
}
llvm-svn: 238010
2015-05-22 16:56:35 +08:00
|
|
|
auto &&CodeGen = [PartId, &S, &PrivateVars, &FirstprivateVars](
|
|
|
|
CodeGenFunction &CGF) {
|
|
|
|
// Set proper addresses for generated private copies.
|
|
|
|
auto *CS = cast<CapturedStmt>(S.getAssociatedStmt());
|
|
|
|
OMPPrivateScope Scope(CGF);
|
|
|
|
if (!PrivateVars.empty() || !FirstprivateVars.empty()) {
|
|
|
|
auto *CopyFn = CGF.Builder.CreateAlignedLoad(
|
|
|
|
CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)),
|
|
|
|
CGF.PointerAlignInBytes);
|
|
|
|
auto *PrivatesPtr = CGF.Builder.CreateAlignedLoad(
|
|
|
|
CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)),
|
|
|
|
CGF.PointerAlignInBytes);
|
|
|
|
// Map privates.
|
|
|
|
llvm::SmallVector<std::pair<const VarDecl *, llvm::Value *>, 16>
|
|
|
|
PrivatePtrs;
|
|
|
|
llvm::SmallVector<llvm::Value *, 16> CallArgs;
|
|
|
|
CallArgs.push_back(PrivatesPtr);
|
|
|
|
for (auto *E : PrivateVars) {
|
|
|
|
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
|
|
auto *PrivatePtr =
|
|
|
|
CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()));
|
|
|
|
PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
|
|
|
|
CallArgs.push_back(PrivatePtr);
|
|
|
|
}
|
|
|
|
for (auto *E : FirstprivateVars) {
|
|
|
|
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
|
|
auto *PrivatePtr =
|
|
|
|
CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()));
|
|
|
|
PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
|
|
|
|
CallArgs.push_back(PrivatePtr);
|
|
|
|
}
|
|
|
|
CGF.EmitRuntimeCall(CopyFn, CallArgs);
|
|
|
|
for (auto &&Pair : PrivatePtrs) {
|
|
|
|
auto *Replacement =
|
|
|
|
CGF.Builder.CreateAlignedLoad(Pair.second, CGF.PointerAlignInBytes);
|
|
|
|
Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
|
|
|
|
}
|
|
|
|
}
|
|
|
|
(void)Scope.Privatize();
|
|
|
|
if (*PartId) {
|
|
|
|
// TODO: emit code for untied tasks.
|
|
|
|
}
|
|
|
|
CGF.EmitStmt(CS->getCapturedStmt());
|
|
|
|
};
|
|
|
|
auto OutlinedFn =
|
|
|
|
CGM.getOpenMPRuntime().emitTaskOutlinedFunction(S, *I, CodeGen);
|
|
|
|
// Check if we should emit tied or untied task.
|
|
|
|
bool Tied = !S.getSingleClause(OMPC_untied);
|
|
|
|
// Check if the task is final
|
|
|
|
llvm::PointerIntPair<llvm::Value *, 1, bool> Final;
|
|
|
|
if (auto *Clause = S.getSingleClause(OMPC_final)) {
|
|
|
|
// If the condition constant folds and can be elided, try to avoid emitting
|
|
|
|
// the condition and the dead arm of the if/else.
|
|
|
|
auto *Cond = cast<OMPFinalClause>(Clause)->getCondition();
|
|
|
|
bool CondConstant;
|
|
|
|
if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
|
|
|
|
Final.setInt(CondConstant);
|
|
|
|
else
|
|
|
|
Final.setPointer(EvaluateExprAsBool(Cond));
|
|
|
|
} else {
|
|
|
|
// By default the task is not final.
|
|
|
|
Final.setInt(/*IntVal=*/false);
|
|
|
|
}
|
|
|
|
auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
|
|
|
|
const Expr *IfCond = nullptr;
|
|
|
|
if (auto C = S.getSingleClause(OMPC_if)) {
|
|
|
|
IfCond = cast<OMPIfClause>(C)->getCondition();
|
|
|
|
}
|
[OPENMP] Codegen for 'firstprivate' clause in 'task' directive.
For tasks codegen for private/firstprivate variables are different rather than for other directives.
1. Build an internal structure of privates for each private variable:
struct .kmp_privates_t. {
Ty1 var1;
...
Tyn varn;
};
2. Add a new field to kmp_task_t type with list of privates.
struct kmp_task_t {
void * shareds;
kmp_routine_entry_t routine;
kmp_int32 part_id;
kmp_routine_entry_t destructors;
.kmp_privates_t. privates;
};
3. Create a function with destructors calls for all privates after end of task region.
kmp_int32 .omp_task_destructor.(kmp_int32 gtid, kmp_task_t *tt) {
~Destructor(&tt->privates.var1);
...
~Destructor(&tt->privates.varn);
return 0;
}
4. Perform initialization of all firstprivate fields (by simple copying for POD data, copy constructor calls for classes) + provide address of a destructor function after kmpc_omp_task_alloc() and before kmpc_omp_task() calls.
kmp_task_t *new_task = __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, kmp_routine_entry_t *task_entry);
CopyConstructor(new_task->privates.var1, *new_task->shareds.var1_ref);
new_task->shareds.var1_ref = &new_task->privates.var1;
...
CopyConstructor(new_task->privates.varn, *new_task->shareds.varn_ref);
new_task->shareds.varn_ref = &new_task->privates.varn;
new_task->destructors = .omp_task_destructor.;
kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *new_task)
Differential Revision: http://reviews.llvm.org/D9370
llvm-svn: 236479
2015-05-05 12:05:12 +08:00
|
|
|
CGM.getOpenMPRuntime().emitTaskCall(
|
|
|
|
*this, S.getLocStart(), S, Tied, Final, OutlinedFn, SharedsTy,
|
[OPENMP] Prepare codegen for privates in tasks for non-capturing of privates in CapturedStmt.
Reworked codegen for privates in tasks:
call @kmpc_omp_task_alloc();
...
call @kmpc_omp_task(task_proxy);
void map_privates(.privates_rec. *privs, type1 ** priv1_ref, ..., typen **privn_ref) {
*priv1_ref = &privs->private1;
...
*privn_ref = &privs->privaten;
ret void
}
i32 task_entry(i32 ThreadId, i32 PartId, void* privs, void (void*, ...) map_privates, shareds* captures) {
type1 **priv1;
...
typen **privn;
call map_privates(privs, priv1, ..., privn);
<Task body with priv1, .., privn instead of the captured variables>.
ret i32
}
i32 task_proxy(i32 ThreadId, kmp_task_t_with_privates *tt) {
call task_entry(ThreadId, tt->task_data.PartId, &tt->privates, map_privates, tt->task_data.shareds);
}
llvm-svn: 238010
2015-05-22 16:56:35 +08:00
|
|
|
CapturedStruct, IfCond, PrivateVars, PrivateCopies, FirstprivateVars,
|
[OPENMP] Codegen for 'firstprivate' clause in 'task' directive.
For tasks codegen for private/firstprivate variables are different rather than for other directives.
1. Build an internal structure of privates for each private variable:
struct .kmp_privates_t. {
Ty1 var1;
...
Tyn varn;
};
2. Add a new field to kmp_task_t type with list of privates.
struct kmp_task_t {
void * shareds;
kmp_routine_entry_t routine;
kmp_int32 part_id;
kmp_routine_entry_t destructors;
.kmp_privates_t. privates;
};
3. Create a function with destructors calls for all privates after end of task region.
kmp_int32 .omp_task_destructor.(kmp_int32 gtid, kmp_task_t *tt) {
~Destructor(&tt->privates.var1);
...
~Destructor(&tt->privates.varn);
return 0;
}
4. Perform initialization of all firstprivate fields (by simple copying for POD data, copy constructor calls for classes) + provide address of a destructor function after kmpc_omp_task_alloc() and before kmpc_omp_task() calls.
kmp_task_t *new_task = __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, kmp_routine_entry_t *task_entry);
CopyConstructor(new_task->privates.var1, *new_task->shareds.var1_ref);
new_task->shareds.var1_ref = &new_task->privates.var1;
...
CopyConstructor(new_task->privates.varn, *new_task->shareds.varn_ref);
new_task->shareds.varn_ref = &new_task->privates.varn;
new_task->destructors = .omp_task_destructor.;
kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *new_task)
Differential Revision: http://reviews.llvm.org/D9370
llvm-svn: 236479
2015-05-05 12:05:12 +08:00
|
|
|
FirstprivateCopies, FirstprivateInits);
|
2014-07-11 19:25:16 +08:00
|
|
|
}
|
|
|
|
|
2015-02-05 13:57:51 +08:00
|
|
|
void CodeGenFunction::EmitOMPTaskyieldDirective(
|
|
|
|
const OMPTaskyieldDirective &S) {
|
2015-02-25 16:32:46 +08:00
|
|
|
CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
|
2014-07-18 15:47:19 +08:00
|
|
|
}
|
|
|
|
|
2014-12-05 12:09:23 +08:00
|
|
|
void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
|
2015-03-30 12:30:22 +08:00
|
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
|
2014-07-18 17:11:51 +08:00
|
|
|
}
|
|
|
|
|
2015-04-27 13:22:09 +08:00
|
|
|
void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
|
|
|
|
CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
|
2014-07-18 18:17:07 +08:00
|
|
|
}
|
|
|
|
|
2014-11-20 12:34:54 +08:00
|
|
|
void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
|
2015-02-25 16:32:46 +08:00
|
|
|
CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
|
|
|
|
if (auto C = S.getSingleClause(/*K*/ OMPC_flush)) {
|
|
|
|
auto FlushClause = cast<OMPFlushClause>(C);
|
|
|
|
return llvm::makeArrayRef(FlushClause->varlist_begin(),
|
|
|
|
FlushClause->varlist_end());
|
|
|
|
}
|
|
|
|
return llvm::None;
|
|
|
|
}(), S.getLocStart());
|
2014-07-21 19:26:11 +08:00
|
|
|
}
|
|
|
|
|
2015-04-22 19:15:40 +08:00
|
|
|
void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
|
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
|
|
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
|
|
|
CGF.EnsureInsertPoint();
|
|
|
|
};
|
|
|
|
CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart());
|
2014-07-22 14:45:04 +08:00
|
|
|
}
|
|
|
|
|
2015-01-22 14:17:56 +08:00
|
|
|
static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
|
|
|
|
QualType SrcType, QualType DestType) {
|
|
|
|
assert(CGF.hasScalarEvaluationKind(DestType) &&
|
|
|
|
"DestType must have scalar evaluation kind.");
|
|
|
|
assert(!Val.isAggregate() && "Must be a scalar or complex.");
|
|
|
|
return Val.isScalar()
|
|
|
|
? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType)
|
|
|
|
: CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
|
|
|
|
DestType);
|
|
|
|
}
|
|
|
|
|
|
|
|
static CodeGenFunction::ComplexPairTy
|
|
|
|
convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
|
|
|
|
QualType DestType) {
|
|
|
|
assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
|
|
|
|
"DestType must have complex evaluation kind.");
|
|
|
|
CodeGenFunction::ComplexPairTy ComplexVal;
|
|
|
|
if (Val.isScalar()) {
|
|
|
|
// Convert the input element to the element type of the complex.
|
|
|
|
auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
|
|
|
|
auto ScalarVal =
|
|
|
|
CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestElementType);
|
|
|
|
ComplexVal = CodeGenFunction::ComplexPairTy(
|
|
|
|
ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
|
|
|
|
} else {
|
|
|
|
assert(Val.isComplex() && "Must be a scalar or complex.");
|
|
|
|
auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
|
|
|
|
auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
|
|
|
|
ComplexVal.first = CGF.EmitScalarConversion(
|
|
|
|
Val.getComplexVal().first, SrcElementType, DestElementType);
|
|
|
|
ComplexVal.second = CGF.EmitScalarConversion(
|
|
|
|
Val.getComplexVal().second, SrcElementType, DestElementType);
|
|
|
|
}
|
|
|
|
return ComplexVal;
|
|
|
|
}
|
|
|
|
|
2015-04-23 14:35:10 +08:00
|
|
|
static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
|
|
|
|
LValue LVal, RValue RVal) {
|
|
|
|
if (LVal.isGlobalReg()) {
|
|
|
|
CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
|
|
|
|
} else {
|
|
|
|
CGF.EmitAtomicStore(RVal, LVal, IsSeqCst ? llvm::SequentiallyConsistent
|
|
|
|
: llvm::Monotonic,
|
|
|
|
LVal.isVolatile(), /*IsInit=*/false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emitSimpleStore(CodeGenFunction &CGF, LValue LVal, RValue RVal,
|
|
|
|
QualType RValTy) {
|
|
|
|
switch (CGF.getEvaluationKind(LVal.getType())) {
|
|
|
|
case TEK_Scalar:
|
|
|
|
CGF.EmitStoreThroughLValue(
|
|
|
|
RValue::get(convertToScalarValue(CGF, RVal, RValTy, LVal.getType())),
|
|
|
|
LVal);
|
|
|
|
break;
|
|
|
|
case TEK_Complex:
|
|
|
|
CGF.EmitStoreOfComplex(
|
|
|
|
convertToComplexValue(CGF, RVal, RValTy, LVal.getType()), LVal,
|
|
|
|
/*isInit=*/false);
|
|
|
|
break;
|
|
|
|
case TEK_Aggregate:
|
|
|
|
llvm_unreachable("Must be a scalar or complex.");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-01-22 14:17:56 +08:00
|
|
|
static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
|
|
|
|
const Expr *X, const Expr *V,
|
|
|
|
SourceLocation Loc) {
|
|
|
|
// v = x;
|
|
|
|
assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
|
|
|
|
assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
|
|
|
|
LValue XLValue = CGF.EmitLValue(X);
|
|
|
|
LValue VLValue = CGF.EmitLValue(V);
|
2015-02-14 09:35:12 +08:00
|
|
|
RValue Res = XLValue.isGlobalReg()
|
|
|
|
? CGF.EmitLoadOfLValue(XLValue, Loc)
|
|
|
|
: CGF.EmitAtomicLoad(XLValue, Loc,
|
|
|
|
IsSeqCst ? llvm::SequentiallyConsistent
|
2015-02-27 14:33:30 +08:00
|
|
|
: llvm::Monotonic,
|
|
|
|
XLValue.isVolatile());
|
2015-01-22 14:17:56 +08:00
|
|
|
// OpenMP, 2.12.6, atomic Construct
|
|
|
|
// Any atomic construct with a seq_cst clause forces the atomically
|
|
|
|
// performed operation to include an implicit flush operation without a
|
|
|
|
// list.
|
|
|
|
if (IsSeqCst)
|
2015-02-25 16:32:46 +08:00
|
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
|
2015-04-23 14:35:10 +08:00
|
|
|
emitSimpleStore(CGF,VLValue, Res, X->getType().getNonReferenceType());
|
2015-01-22 14:17:56 +08:00
|
|
|
}
|
|
|
|
|
2015-02-27 14:33:30 +08:00
|
|
|
static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
|
|
|
|
const Expr *X, const Expr *E,
|
|
|
|
SourceLocation Loc) {
|
|
|
|
// x = expr;
|
|
|
|
assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
|
2015-04-23 14:35:10 +08:00
|
|
|
emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
|
2015-02-27 14:33:30 +08:00
|
|
|
// OpenMP, 2.12.6, atomic Construct
|
|
|
|
// Any atomic construct with a seq_cst clause forces the atomically
|
|
|
|
// performed operation to include an implicit flush operation without a
|
|
|
|
// list.
|
|
|
|
if (IsSeqCst)
|
|
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
|
|
|
|
}
|
|
|
|
|
2015-05-01 21:59:53 +08:00
|
|
|
static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
|
|
|
|
RValue Update,
|
|
|
|
BinaryOperatorKind BO,
|
|
|
|
llvm::AtomicOrdering AO,
|
|
|
|
bool IsXLHSInRHSPart) {
|
[OPENMP] Codegen for 'reduction' clause in 'parallel' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
...
*(Type<i> *)lhs[i] = RedOp<i>(*(Type<i> *)lhs[i], *(Type<i> *)rhs[i]);
...
}
... void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n> - 1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
...
<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
...
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
...
Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
...
break;
default:
;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D8915
llvm-svn: 234583
2015-04-10 18:43:45 +08:00
|
|
|
auto &Context = CGF.CGM.getContext();
|
|
|
|
// Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
|
2015-03-30 13:20:59 +08:00
|
|
|
// expression is simple and atomic is allowed for the given type for the
|
|
|
|
// target platform.
|
[OPENMP] Codegen for 'reduction' clause in 'parallel' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
...
*(Type<i> *)lhs[i] = RedOp<i>(*(Type<i> *)lhs[i], *(Type<i> *)rhs[i]);
...
}
... void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n> - 1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
...
<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
...
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
...
Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
...
break;
default:
;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D8915
llvm-svn: 234583
2015-04-10 18:43:45 +08:00
|
|
|
if (BO == BO_Comma || !Update.isScalar() ||
|
2015-05-08 19:47:16 +08:00
|
|
|
!Update.getScalarVal()->getType()->isIntegerTy() ||
|
|
|
|
!X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
|
|
|
|
(Update.getScalarVal()->getType() !=
|
|
|
|
X.getAddress()->getType()->getPointerElementType())) ||
|
|
|
|
!X.getAddress()->getType()->getPointerElementType()->isIntegerTy() ||
|
[OPENMP] Codegen for 'reduction' clause in 'parallel' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
...
*(Type<i> *)lhs[i] = RedOp<i>(*(Type<i> *)lhs[i], *(Type<i> *)rhs[i]);
...
}
... void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n> - 1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
...
<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
...
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
...
Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
...
break;
default:
;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D8915
llvm-svn: 234583
2015-04-10 18:43:45 +08:00
|
|
|
!Context.getTargetInfo().hasBuiltinAtomic(
|
|
|
|
Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
|
2015-04-23 14:35:10 +08:00
|
|
|
return std::make_pair(false, RValue::get(nullptr));
|
[OPENMP] Codegen for 'reduction' clause in 'parallel' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
...
*(Type<i> *)lhs[i] = RedOp<i>(*(Type<i> *)lhs[i], *(Type<i> *)rhs[i]);
...
}
... void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n> - 1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
...
<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
...
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
...
Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
...
break;
default:
;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D8915
llvm-svn: 234583
2015-04-10 18:43:45 +08:00
|
|
|
|
|
|
|
llvm::AtomicRMWInst::BinOp RMWOp;
|
|
|
|
switch (BO) {
|
|
|
|
case BO_Add:
|
|
|
|
RMWOp = llvm::AtomicRMWInst::Add;
|
|
|
|
break;
|
|
|
|
case BO_Sub:
|
|
|
|
if (!IsXLHSInRHSPart)
|
2015-04-23 14:35:10 +08:00
|
|
|
return std::make_pair(false, RValue::get(nullptr));
|
[OPENMP] Codegen for 'reduction' clause in 'parallel' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
...
*(Type<i> *)lhs[i] = RedOp<i>(*(Type<i> *)lhs[i], *(Type<i> *)rhs[i]);
...
}
... void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n> - 1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
...
<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
...
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
...
Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
...
break;
default:
;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D8915
llvm-svn: 234583
2015-04-10 18:43:45 +08:00
|
|
|
RMWOp = llvm::AtomicRMWInst::Sub;
|
|
|
|
break;
|
|
|
|
case BO_And:
|
|
|
|
RMWOp = llvm::AtomicRMWInst::And;
|
|
|
|
break;
|
|
|
|
case BO_Or:
|
|
|
|
RMWOp = llvm::AtomicRMWInst::Or;
|
|
|
|
break;
|
|
|
|
case BO_Xor:
|
|
|
|
RMWOp = llvm::AtomicRMWInst::Xor;
|
|
|
|
break;
|
|
|
|
case BO_LT:
|
|
|
|
RMWOp = X.getType()->hasSignedIntegerRepresentation()
|
|
|
|
? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
|
|
|
|
: llvm::AtomicRMWInst::Max)
|
|
|
|
: (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
|
|
|
|
: llvm::AtomicRMWInst::UMax);
|
|
|
|
break;
|
|
|
|
case BO_GT:
|
|
|
|
RMWOp = X.getType()->hasSignedIntegerRepresentation()
|
|
|
|
? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
|
|
|
|
: llvm::AtomicRMWInst::Min)
|
|
|
|
: (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
|
|
|
|
: llvm::AtomicRMWInst::UMin);
|
|
|
|
break;
|
2015-04-23 14:35:10 +08:00
|
|
|
case BO_Assign:
|
|
|
|
RMWOp = llvm::AtomicRMWInst::Xchg;
|
|
|
|
break;
|
[OPENMP] Codegen for 'reduction' clause in 'parallel' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
...
*(Type<i> *)lhs[i] = RedOp<i>(*(Type<i> *)lhs[i], *(Type<i> *)rhs[i]);
...
}
... void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n> - 1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
...
<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
...
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
...
Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
...
break;
default:
;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D8915
llvm-svn: 234583
2015-04-10 18:43:45 +08:00
|
|
|
case BO_Mul:
|
|
|
|
case BO_Div:
|
|
|
|
case BO_Rem:
|
|
|
|
case BO_Shl:
|
|
|
|
case BO_Shr:
|
|
|
|
case BO_LAnd:
|
|
|
|
case BO_LOr:
|
2015-04-23 14:35:10 +08:00
|
|
|
return std::make_pair(false, RValue::get(nullptr));
|
[OPENMP] Codegen for 'reduction' clause in 'parallel' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
...
*(Type<i> *)lhs[i] = RedOp<i>(*(Type<i> *)lhs[i], *(Type<i> *)rhs[i]);
...
}
... void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n> - 1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
...
<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
...
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
...
Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
...
break;
default:
;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D8915
llvm-svn: 234583
2015-04-10 18:43:45 +08:00
|
|
|
case BO_PtrMemD:
|
|
|
|
case BO_PtrMemI:
|
|
|
|
case BO_LE:
|
|
|
|
case BO_GE:
|
|
|
|
case BO_EQ:
|
|
|
|
case BO_NE:
|
|
|
|
case BO_AddAssign:
|
|
|
|
case BO_SubAssign:
|
|
|
|
case BO_AndAssign:
|
|
|
|
case BO_OrAssign:
|
|
|
|
case BO_XorAssign:
|
|
|
|
case BO_MulAssign:
|
|
|
|
case BO_DivAssign:
|
|
|
|
case BO_RemAssign:
|
|
|
|
case BO_ShlAssign:
|
|
|
|
case BO_ShrAssign:
|
|
|
|
case BO_Comma:
|
|
|
|
llvm_unreachable("Unsupported atomic update operation");
|
|
|
|
}
|
|
|
|
auto *UpdateVal = Update.getScalarVal();
|
|
|
|
if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
|
|
|
|
UpdateVal = CGF.Builder.CreateIntCast(
|
|
|
|
IC, X.getAddress()->getType()->getPointerElementType(),
|
|
|
|
X.getType()->hasSignedIntegerRepresentation());
|
|
|
|
}
|
2015-04-23 14:35:10 +08:00
|
|
|
auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getAddress(), UpdateVal, AO);
|
|
|
|
return std::make_pair(true, RValue::get(Res));
|
[OPENMP] Codegen for 'reduction' clause in 'parallel' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
...
*(Type<i> *)lhs[i] = RedOp<i>(*(Type<i> *)lhs[i], *(Type<i> *)rhs[i]);
...
}
... void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n> - 1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
...
<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
...
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
...
Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
...
break;
default:
;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D8915
llvm-svn: 234583
2015-04-10 18:43:45 +08:00
|
|
|
}
|
|
|
|
|
2015-04-23 14:35:10 +08:00
|
|
|
std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
|
[OPENMP] Codegen for 'reduction' clause in 'parallel' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
...
*(Type<i> *)lhs[i] = RedOp<i>(*(Type<i> *)lhs[i], *(Type<i> *)rhs[i]);
...
}
... void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n> - 1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
...
<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
...
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
...
Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
...
break;
default:
;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D8915
llvm-svn: 234583
2015-04-10 18:43:45 +08:00
|
|
|
LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
|
|
|
|
llvm::AtomicOrdering AO, SourceLocation Loc,
|
|
|
|
const llvm::function_ref<RValue(RValue)> &CommonGen) {
|
|
|
|
// Update expressions are allowed to have the following forms:
|
|
|
|
// x binop= expr; -> xrval + expr;
|
|
|
|
// x++, ++x -> xrval + 1;
|
|
|
|
// x--, --x -> xrval - 1;
|
|
|
|
// x = x binop expr; -> xrval binop expr
|
|
|
|
// x = expr Op x; - > expr binop xrval;
|
2015-04-23 14:35:10 +08:00
|
|
|
auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
|
|
|
|
if (!Res.first) {
|
[OPENMP] Codegen for 'reduction' clause in 'parallel' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
...
*(Type<i> *)lhs[i] = RedOp<i>(*(Type<i> *)lhs[i], *(Type<i> *)rhs[i]);
...
}
... void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n> - 1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
...
<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
...
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
...
Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
...
break;
default:
;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D8915
llvm-svn: 234583
2015-04-10 18:43:45 +08:00
|
|
|
if (X.isGlobalReg()) {
|
|
|
|
// Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
|
|
|
|
// 'xrval'.
|
|
|
|
EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
|
|
|
|
} else {
|
|
|
|
// Perform compare-and-swap procedure.
|
|
|
|
EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
|
2015-03-30 13:20:59 +08:00
|
|
|
}
|
|
|
|
}
|
2015-04-23 14:35:10 +08:00
|
|
|
return Res;
|
2015-03-30 13:20:59 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
|
|
|
|
const Expr *X, const Expr *E,
|
|
|
|
const Expr *UE, bool IsXLHSInRHSPart,
|
|
|
|
SourceLocation Loc) {
|
|
|
|
assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
|
|
|
|
"Update expr in 'atomic update' must be a binary operator.");
|
|
|
|
auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
|
|
|
|
// Update expressions are allowed to have the following forms:
|
|
|
|
// x binop= expr; -> xrval + expr;
|
|
|
|
// x++, ++x -> xrval + 1;
|
|
|
|
// x--, --x -> xrval - 1;
|
|
|
|
// x = x binop expr; -> xrval binop expr
|
|
|
|
// x = expr Op x; - > expr binop xrval;
|
[OPENMP] Codegen for 'reduction' clause in 'parallel' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
...
*(Type<i> *)lhs[i] = RedOp<i>(*(Type<i> *)lhs[i], *(Type<i> *)rhs[i]);
...
}
... void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n> - 1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
...
<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
...
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
...
Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
...
break;
default:
;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D8915
llvm-svn: 234583
2015-04-10 18:43:45 +08:00
|
|
|
assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
|
2015-03-30 13:20:59 +08:00
|
|
|
LValue XLValue = CGF.EmitLValue(X);
|
|
|
|
RValue ExprRValue = CGF.EmitAnyExpr(E);
|
|
|
|
auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
|
[OPENMP] Codegen for 'reduction' clause in 'parallel' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
...
*(Type<i> *)lhs[i] = RedOp<i>(*(Type<i> *)lhs[i], *(Type<i> *)rhs[i]);
...
}
... void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n> - 1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
...
<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
...
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
...
Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
...
break;
default:
;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D8915
llvm-svn: 234583
2015-04-10 18:43:45 +08:00
|
|
|
auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
|
|
|
|
auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
|
|
|
|
auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
|
|
|
|
auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
|
|
|
|
auto Gen =
|
|
|
|
[&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
|
|
|
|
CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
|
|
|
|
CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
|
|
|
|
return CGF.EmitAnyExpr(UE);
|
|
|
|
};
|
2015-04-23 14:35:10 +08:00
|
|
|
(void)CGF.EmitOMPAtomicSimpleUpdateExpr(
|
|
|
|
XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
|
|
|
|
// OpenMP, 2.12.6, atomic Construct
|
|
|
|
// Any atomic construct with a seq_cst clause forces the atomically
|
|
|
|
// performed operation to include an implicit flush operation without a
|
|
|
|
// list.
|
|
|
|
if (IsSeqCst)
|
|
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static RValue convertToType(CodeGenFunction &CGF, RValue Value,
|
|
|
|
QualType SourceType, QualType ResType) {
|
|
|
|
switch (CGF.getEvaluationKind(ResType)) {
|
|
|
|
case TEK_Scalar:
|
|
|
|
return RValue::get(convertToScalarValue(CGF, Value, SourceType, ResType));
|
|
|
|
case TEK_Complex: {
|
|
|
|
auto Res = convertToComplexValue(CGF, Value, SourceType, ResType);
|
|
|
|
return RValue::getComplex(Res.first, Res.second);
|
|
|
|
}
|
|
|
|
case TEK_Aggregate:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
llvm_unreachable("Must be a scalar or complex.");
|
|
|
|
}
|
|
|
|
|
|
|
|
static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
|
|
|
|
bool IsPostfixUpdate, const Expr *V,
|
|
|
|
const Expr *X, const Expr *E,
|
|
|
|
const Expr *UE, bool IsXLHSInRHSPart,
|
|
|
|
SourceLocation Loc) {
|
|
|
|
assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
|
|
|
|
assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
|
|
|
|
RValue NewVVal;
|
|
|
|
LValue VLValue = CGF.EmitLValue(V);
|
|
|
|
LValue XLValue = CGF.EmitLValue(X);
|
|
|
|
RValue ExprRValue = CGF.EmitAnyExpr(E);
|
|
|
|
auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
|
|
|
|
QualType NewVValType;
|
|
|
|
if (UE) {
|
|
|
|
// 'x' is updated with some additional value.
|
|
|
|
assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
|
|
|
|
"Update expr in 'atomic capture' must be a binary operator.");
|
|
|
|
auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
|
|
|
|
// Update expressions are allowed to have the following forms:
|
|
|
|
// x binop= expr; -> xrval + expr;
|
|
|
|
// x++, ++x -> xrval + 1;
|
|
|
|
// x--, --x -> xrval - 1;
|
|
|
|
// x = x binop expr; -> xrval binop expr
|
|
|
|
// x = expr Op x; - > expr binop xrval;
|
|
|
|
auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
|
|
|
|
auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
|
|
|
|
auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
|
|
|
|
NewVValType = XRValExpr->getType();
|
|
|
|
auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
|
|
|
|
auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
|
|
|
|
IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue {
|
|
|
|
CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
|
|
|
|
CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
|
|
|
|
RValue Res = CGF.EmitAnyExpr(UE);
|
|
|
|
NewVVal = IsPostfixUpdate ? XRValue : Res;
|
|
|
|
return Res;
|
|
|
|
};
|
|
|
|
auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
|
|
|
|
XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
|
|
|
|
if (Res.first) {
|
|
|
|
// 'atomicrmw' instruction was generated.
|
|
|
|
if (IsPostfixUpdate) {
|
|
|
|
// Use old value from 'atomicrmw'.
|
|
|
|
NewVVal = Res.second;
|
|
|
|
} else {
|
|
|
|
// 'atomicrmw' does not provide new value, so evaluate it using old
|
|
|
|
// value of 'x'.
|
|
|
|
CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
|
|
|
|
CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
|
|
|
|
NewVVal = CGF.EmitAnyExpr(UE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// 'x' is simply rewritten with some 'expr'.
|
|
|
|
NewVValType = X->getType().getNonReferenceType();
|
|
|
|
ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
|
|
|
|
X->getType().getNonReferenceType());
|
|
|
|
auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue {
|
|
|
|
NewVVal = XRValue;
|
|
|
|
return ExprRValue;
|
|
|
|
};
|
|
|
|
// Try to perform atomicrmw xchg, otherwise simple exchange.
|
|
|
|
auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
|
|
|
|
XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
|
|
|
|
Loc, Gen);
|
|
|
|
if (Res.first) {
|
|
|
|
// 'atomicrmw' instruction was generated.
|
|
|
|
NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Emit post-update store to 'v' of old/new 'x' value.
|
|
|
|
emitSimpleStore(CGF, VLValue, NewVVal, NewVValType);
|
2015-03-30 13:20:59 +08:00
|
|
|
// OpenMP, 2.12.6, atomic Construct
|
|
|
|
// Any atomic construct with a seq_cst clause forces the atomically
|
|
|
|
// performed operation to include an implicit flush operation without a
|
|
|
|
// list.
|
|
|
|
if (IsSeqCst)
|
|
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
|
|
|
|
}
|
|
|
|
|
2015-01-22 14:17:56 +08:00
|
|
|
static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
|
2015-04-23 14:35:10 +08:00
|
|
|
bool IsSeqCst, bool IsPostfixUpdate,
|
|
|
|
const Expr *X, const Expr *V, const Expr *E,
|
|
|
|
const Expr *UE, bool IsXLHSInRHSPart,
|
|
|
|
SourceLocation Loc) {
|
2015-01-22 14:17:56 +08:00
|
|
|
switch (Kind) {
|
|
|
|
case OMPC_read:
|
|
|
|
EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
|
|
|
|
break;
|
|
|
|
case OMPC_write:
|
2015-02-27 14:33:30 +08:00
|
|
|
EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
|
|
|
|
break;
|
2015-03-30 13:20:59 +08:00
|
|
|
case OMPC_unknown:
|
2015-01-22 14:17:56 +08:00
|
|
|
case OMPC_update:
|
2015-03-30 13:20:59 +08:00
|
|
|
EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
|
|
|
|
break;
|
2015-01-22 14:17:56 +08:00
|
|
|
case OMPC_capture:
|
2015-04-23 14:35:10 +08:00
|
|
|
EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
|
|
|
|
IsXLHSInRHSPart, Loc);
|
|
|
|
break;
|
2015-01-22 14:17:56 +08:00
|
|
|
case OMPC_if:
|
|
|
|
case OMPC_final:
|
|
|
|
case OMPC_num_threads:
|
|
|
|
case OMPC_private:
|
|
|
|
case OMPC_firstprivate:
|
|
|
|
case OMPC_lastprivate:
|
|
|
|
case OMPC_reduction:
|
|
|
|
case OMPC_safelen:
|
|
|
|
case OMPC_collapse:
|
|
|
|
case OMPC_default:
|
|
|
|
case OMPC_seq_cst:
|
|
|
|
case OMPC_shared:
|
|
|
|
case OMPC_linear:
|
|
|
|
case OMPC_aligned:
|
|
|
|
case OMPC_copyin:
|
|
|
|
case OMPC_copyprivate:
|
|
|
|
case OMPC_flush:
|
|
|
|
case OMPC_proc_bind:
|
|
|
|
case OMPC_schedule:
|
|
|
|
case OMPC_ordered:
|
|
|
|
case OMPC_nowait:
|
|
|
|
case OMPC_untied:
|
|
|
|
case OMPC_threadprivate:
|
|
|
|
case OMPC_mergeable:
|
|
|
|
llvm_unreachable("Clause is not allowed in 'omp atomic'.");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
|
|
|
|
bool IsSeqCst = S.getSingleClause(/*K=*/OMPC_seq_cst);
|
|
|
|
OpenMPClauseKind Kind = OMPC_unknown;
|
|
|
|
for (auto *C : S.clauses()) {
|
|
|
|
// Find first clause (skip seq_cst clause, if it is first).
|
|
|
|
if (C->getClauseKind() != OMPC_seq_cst) {
|
|
|
|
Kind = C->getClauseKind();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2015-03-11 12:48:56 +08:00
|
|
|
|
|
|
|
const auto *CS =
|
|
|
|
S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
|
2015-04-23 14:35:10 +08:00
|
|
|
if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
|
2015-03-11 12:48:56 +08:00
|
|
|
enterFullExpression(EWC);
|
2015-04-23 14:35:10 +08:00
|
|
|
}
|
|
|
|
// Processing for statements under 'atomic capture'.
|
|
|
|
if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
|
|
|
|
for (const auto *C : Compound->body()) {
|
|
|
|
if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
|
|
|
|
enterFullExpression(EWC);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2015-03-11 12:48:56 +08:00
|
|
|
|
2015-04-10 12:50:10 +08:00
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
|
|
auto &&CodeGen = [&S, Kind, IsSeqCst](CodeGenFunction &CGF) {
|
2015-04-23 14:35:10 +08:00
|
|
|
EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
|
|
|
|
S.getV(), S.getExpr(), S.getUpdateExpr(),
|
|
|
|
S.isXLHSInRHSPart(), S.getLocStart());
|
2015-04-10 12:50:10 +08:00
|
|
|
};
|
|
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(*this, CodeGen);
|
2014-07-22 18:10:35 +08:00
|
|
|
}
|
|
|
|
|
2014-09-19 16:19:49 +08:00
|
|
|
void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &) {
|
|
|
|
llvm_unreachable("CodeGen for 'omp target' is not supported yet.");
|
|
|
|
}
|
|
|
|
|
2014-10-09 12:18:56 +08:00
|
|
|
void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &) {
|
|
|
|
llvm_unreachable("CodeGen for 'omp teams' is not supported yet.");
|
|
|
|
}
|