llvm-project/llvm/lib/Linker/LinkModules.cpp

1809 lines
63 KiB
C++
Raw Normal View History

2009-03-03 18:04:23 +08:00
//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LLVM module linker.
//
//===----------------------------------------------------------------------===//
#include "llvm/Linker/Linker.h"
#include "llvm-c/Linker.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <cctype>
#include <tuple>
using namespace llvm;
//===----------------------------------------------------------------------===//
// TypeMap implementation.
//===----------------------------------------------------------------------===//
namespace {
class TypeMapTy : public ValueMapTypeRemapper {
/// This is a mapping from a source type to a destination type to use.
DenseMap<Type*, Type*> MappedTypes;
/// When checking to see if two subgraphs are isomorphic, we speculatively
/// add types to MappedTypes, but keep track of them here in case we need to
/// roll back.
SmallVector<Type*, 16> SpeculativeTypes;
SmallVector<StructType*, 16> SpeculativeDstOpaqueTypes;
/// This is a list of non-opaque structs in the source module that are mapped
/// to an opaque struct in the destination module.
SmallVector<StructType*, 16> SrcDefinitionsToResolve;
/// This is the set of opaque types in the destination modules who are
/// getting a body from the source module.
SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
public:
TypeMapTy(Linker::IdentifiedStructTypeSet &DstStructTypesSet)
: DstStructTypesSet(DstStructTypesSet) {}
Linker::IdentifiedStructTypeSet &DstStructTypesSet;
/// Indicate that the specified type in the destination module is conceptually
/// equivalent to the specified type in the source module.
void addTypeMapping(Type *DstTy, Type *SrcTy);
/// Produce a body for an opaque type in the dest module from a type
/// definition in the source module.
void linkDefinedTypeBodies();
/// Return the mapped type to use for the specified input type from the
/// source module.
Type *get(Type *SrcTy);
Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
FunctionType *get(FunctionType *T) {
return cast<FunctionType>(get((Type *)T));
}
/// Dump out the type map for debugging purposes.
void dump() const {
for (auto &Pair : MappedTypes) {
dbgs() << "TypeMap: ";
Pair.first->print(dbgs());
dbgs() << " => ";
Pair.second->print(dbgs());
dbgs() << '\n';
}
}
private:
Type *remapType(Type *SrcTy) override { return get(SrcTy); }
bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
};
}
void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
assert(SpeculativeTypes.empty());
assert(SpeculativeDstOpaqueTypes.empty());
// Check to see if these types are recursively isomorphic and establish a
// mapping between them if so.
if (!areTypesIsomorphic(DstTy, SrcTy)) {
// Oops, they aren't isomorphic. Just discard this request by rolling out
// any speculative mappings we've established.
for (Type *Ty : SpeculativeTypes)
MappedTypes.erase(Ty);
SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
SpeculativeDstOpaqueTypes.size());
for (StructType *Ty : SpeculativeDstOpaqueTypes)
DstResolvedOpaqueTypes.erase(Ty);
} else {
for (Type *Ty : SpeculativeTypes)
if (auto *STy = dyn_cast<StructType>(Ty))
if (STy->hasName())
STy->setName("");
}
SpeculativeTypes.clear();
SpeculativeDstOpaqueTypes.clear();
}
/// Recursively walk this pair of types, returning true if they are isomorphic,
/// false if they are not.
bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
// Two types with differing kinds are clearly not isomorphic.
if (DstTy->getTypeID() != SrcTy->getTypeID())
return false;
// If we have an entry in the MappedTypes table, then we have our answer.
Type *&Entry = MappedTypes[SrcTy];
if (Entry)
return Entry == DstTy;
// Two identical types are clearly isomorphic. Remember this
// non-speculatively.
if (DstTy == SrcTy) {
Entry = DstTy;
return true;
}
// Okay, we have two types with identical kinds that we haven't seen before.
// If this is an opaque struct type, special case it.
if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
// Mapping an opaque type to any struct, just keep the dest struct.
if (SSTy->isOpaque()) {
Entry = DstTy;
SpeculativeTypes.push_back(SrcTy);
return true;
}
// Mapping a non-opaque source type to an opaque dest. If this is the first
// type that we're mapping onto this destination type then we succeed. Keep
// the dest, but fill it in later. If this is the second (different) type
// that we're trying to map onto the same opaque type then we fail.
if (cast<StructType>(DstTy)->isOpaque()) {
// We can only map one source type onto the opaque destination type.
if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
return false;
SrcDefinitionsToResolve.push_back(SSTy);
SpeculativeTypes.push_back(SrcTy);
SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
Entry = DstTy;
return true;
}
}
// If the number of subtypes disagree between the two types, then we fail.
if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
return false;
// Fail if any of the extra properties (e.g. array size) of the type disagree.
if (isa<IntegerType>(DstTy))
return false; // bitwidth disagrees.
if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
return false;
} else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
return false;
} else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
StructType *SSTy = cast<StructType>(SrcTy);
if (DSTy->isLiteral() != SSTy->isLiteral() ||
DSTy->isPacked() != SSTy->isPacked())
return false;
} else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
return false;
} else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
return false;
}
// Otherwise, we speculate that these two types will line up and recursively
// check the subelements.
Entry = DstTy;
SpeculativeTypes.push_back(SrcTy);
for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
if (!areTypesIsomorphic(DstTy->getContainedType(I),
SrcTy->getContainedType(I)))
return false;
// If everything seems to have lined up, then everything is great.
return true;
}
void TypeMapTy::linkDefinedTypeBodies() {
SmallVector<Type*, 16> Elements;
for (StructType *SrcSTy : SrcDefinitionsToResolve) {
StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
assert(DstSTy->isOpaque());
// Map the body of the source type over to a new body for the dest type.
Elements.resize(SrcSTy->getNumElements());
for (unsigned I = 0, E = Elements.size(); I != E; ++I)
Elements[I] = get(SrcSTy->getElementType(I));
DstSTy->setBody(Elements, SrcSTy->isPacked());
DstStructTypesSet.switchToNonOpaque(DstSTy);
}
SrcDefinitionsToResolve.clear();
DstResolvedOpaqueTypes.clear();
}
void TypeMapTy::finishType(StructType *DTy, StructType *STy,
ArrayRef<Type *> ETypes) {
DTy->setBody(ETypes, STy->isPacked());
// Steal STy's name.
if (STy->hasName()) {
SmallString<16> TmpName = STy->getName();
STy->setName("");
DTy->setName(TmpName);
}
DstStructTypesSet.addNonOpaque(DTy);
}
Type *TypeMapTy::get(Type *Ty) {
SmallPtrSet<StructType *, 8> Visited;
return get(Ty, Visited);
}
Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
// If we already have an entry for this type, return it.
Type **Entry = &MappedTypes[Ty];
if (*Entry)
return *Entry;
// These are types that LLVM itself will unique.
bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
#ifndef NDEBUG
if (!IsUniqued) {
for (auto &Pair : MappedTypes) {
assert(!(Pair.first != Ty && Pair.second == Ty) &&
"mapping to a source type");
}
}
#endif
if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
StructType *DTy = StructType::create(Ty->getContext());
return *Entry = DTy;
}
// If this is not a recursive type, then just map all of the elements and
// then rebuild the type from inside out.
SmallVector<Type *, 4> ElementTypes;
// If there are no element types to map, then the type is itself. This is
// true for the anonymous {} struct, things like 'float', integers, etc.
if (Ty->getNumContainedTypes() == 0 && IsUniqued)
return *Entry = Ty;
// Remap all of the elements, keeping track of whether any of them change.
bool AnyChange = false;
ElementTypes.resize(Ty->getNumContainedTypes());
for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
ElementTypes[I] = get(Ty->getContainedType(I), Visited);
AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
}
// If we found our type while recursively processing stuff, just use it.
Entry = &MappedTypes[Ty];
if (*Entry) {
if (auto *DTy = dyn_cast<StructType>(*Entry)) {
if (DTy->isOpaque()) {
auto *STy = cast<StructType>(Ty);
finishType(DTy, STy, ElementTypes);
}
}
return *Entry;
}
// If all of the element types mapped directly over and the type is not
// a nomed struct, then the type is usable as-is.
if (!AnyChange && IsUniqued)
return *Entry = Ty;
// Otherwise, rebuild a modified type.
switch (Ty->getTypeID()) {
default:
llvm_unreachable("unknown derived type to remap");
case Type::ArrayTyID:
return *Entry = ArrayType::get(ElementTypes[0],
cast<ArrayType>(Ty)->getNumElements());
case Type::VectorTyID:
return *Entry = VectorType::get(ElementTypes[0],
cast<VectorType>(Ty)->getNumElements());
case Type::PointerTyID:
return *Entry = PointerType::get(ElementTypes[0],
cast<PointerType>(Ty)->getAddressSpace());
case Type::FunctionTyID:
return *Entry = FunctionType::get(ElementTypes[0],
makeArrayRef(ElementTypes).slice(1),
cast<FunctionType>(Ty)->isVarArg());
case Type::StructTyID: {
auto *STy = cast<StructType>(Ty);
bool IsPacked = STy->isPacked();
if (IsUniqued)
return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
// If the type is opaque, we can just use it directly.
if (STy->isOpaque()) {
DstStructTypesSet.addOpaque(STy);
return *Entry = Ty;
}
if (StructType *OldT =
DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
STy->setName("");
return *Entry = OldT;
}
if (!AnyChange) {
DstStructTypesSet.addNonOpaque(STy);
return *Entry = Ty;
}
StructType *DTy = StructType::create(Ty->getContext());
finishType(DTy, STy, ElementTypes);
return *Entry = DTy;
}
}
}
//===----------------------------------------------------------------------===//
// ModuleLinker implementation.
//===----------------------------------------------------------------------===//
namespace {
class ModuleLinker;
/// Creates prototypes for functions that are lazily linked on the fly. This
/// speeds up linking for modules with many/ lazily linked functions of which
/// few get used.
class ValueMaterializerTy : public ValueMaterializer {
TypeMapTy &TypeMap;
Module *DstM;
std::vector<GlobalValue *> &LazilyLinkGlobalValues;
public:
ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
std::vector<GlobalValue *> &LazilyLinkGlobalValues)
: ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
LazilyLinkGlobalValues(LazilyLinkGlobalValues) {}
Value *materializeValueFor(Value *V) override;
};
class LinkDiagnosticInfo : public DiagnosticInfo {
const Twine &Msg;
public:
LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg);
void print(DiagnosticPrinter &DP) const override;
};
LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
const Twine &Msg)
: DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
/// This is an implementation class for the LinkModules function, which is the
/// entrypoint for this file.
class ModuleLinker {
Module *DstM, *SrcM;
TypeMapTy TypeMap;
ValueMaterializerTy ValMaterializer;
/// Mapping of values from what they used to be in Src, to what they are now
/// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
/// due to the use of Value handles which the Linker doesn't actually need,
/// but this allows us to reuse the ValueMapper code.
ValueToValueMapTy ValueMap;
struct AppendingVarInfo {
GlobalVariable *NewGV; // New aggregate global in dest module.
const Constant *DstInit; // Old initializer from dest module.
const Constant *SrcInit; // Old initializer from src module.
};
std::vector<AppendingVarInfo> AppendingVars;
// Set of items not to link in from source.
SmallPtrSet<const Value *, 16> DoNotLinkFromSource;
// Vector of GlobalValues to lazily link in.
std::vector<GlobalValue *> LazilyLinkGlobalValues;
/// Functions that have replaced other functions.
SmallPtrSet<const Function *, 16> OverridingFunctions;
Use the DiagnosticHandler to print diagnostics when reading bitcode. The bitcode reading interface used std::error_code to report an error to the callers and it is the callers job to print diagnostics. This is not ideal for error handling or diagnostic reporting: * For error handling, all that the callers care about is 3 possibilities: * It worked * The bitcode file is corrupted/invalid. * The file is not bitcode at all. * For diagnostic, it is user friendly to include far more information about the invalid case so the user can find out what is wrong with the bitcode file. This comes up, for example, when a developer introduces a bug while extending the format. The compromise we had was to have a lot of error codes. With this patch we use the DiagnosticHandler to communicate with the human and std::error_code to communicate with the caller. This allows us to have far fewer error codes and adds the infrastructure to print better diagnostics. This is so because the diagnostics are printed when he issue is found. The code that detected the problem in alive in the stack and can pass down as much context as needed. As an example the patch updates test/Bitcode/invalid.ll. Using a DiagnosticHandler also moves the fatal/non-fatal error decision to the caller. A simple one like llvm-dis can just use fatal errors. The gold plugin needs a bit more complex treatment because of being passed non-bitcode files. An hypothetical interactive tool would make all bitcode errors non-fatal. llvm-svn: 225562
2015-01-10 08:07:30 +08:00
DiagnosticHandlerFunction DiagnosticHandler;
/// For symbol clashes, prefer those from Src.
bool OverrideFromSrc;
public:
ModuleLinker(Module *dstM, Linker::IdentifiedStructTypeSet &Set, Module *srcM,
DiagnosticHandlerFunction DiagnosticHandler,
bool OverrideFromSrc)
: DstM(dstM), SrcM(srcM), TypeMap(Set),
ValMaterializer(TypeMap, DstM, LazilyLinkGlobalValues),
DiagnosticHandler(DiagnosticHandler), OverrideFromSrc(OverrideFromSrc) {
}
bool run();
private:
bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest,
const GlobalValue &Src);
/// Helper method for setting a message and returning an error code.
bool emitError(const Twine &Message) {
DiagnosticHandler(LinkDiagnosticInfo(DS_Error, Message));
return true;
}
void emitWarning(const Twine &Message) {
DiagnosticHandler(LinkDiagnosticInfo(DS_Warning, Message));
}
bool getComdatLeader(Module *M, StringRef ComdatName,
const GlobalVariable *&GVar);
bool computeResultingSelectionKind(StringRef ComdatName,
Comdat::SelectionKind Src,
Comdat::SelectionKind Dst,
Comdat::SelectionKind &Result,
bool &LinkFromSrc);
std::map<const Comdat *, std::pair<Comdat::SelectionKind, bool>>
ComdatsChosen;
bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK,
bool &LinkFromSrc);
/// Given a global in the source module, return the global in the
/// destination module that is being linked to, if any.
GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
// If the source has no name it can't link. If it has local linkage,
// there is no name match-up going on.
if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
return nullptr;
// Otherwise see if we have a match in the destination module's symtab.
GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
if (!DGV)
return nullptr;
// If we found a global with the same name in the dest module, but it has
// internal linkage, we are really not doing any linkage here.
if (DGV->hasLocalLinkage())
return nullptr;
// Otherwise, we do in fact link to the destination global.
return DGV;
}
void computeTypeMapping();
void upgradeMismatchedGlobalArray(StringRef Name);
void upgradeMismatchedGlobals();
bool linkAppendingVarProto(GlobalVariable *DstGV,
const GlobalVariable *SrcGV);
bool linkGlobalValueProto(GlobalValue *GV);
bool linkModuleFlagsMetadata();
void linkAppendingVarInit(const AppendingVarInfo &AVI);
void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src);
bool linkFunctionBody(Function &Dst, Function &Src);
void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
bool linkGlobalValueBody(GlobalValue &Src);
void linkNamedMDNodes();
void stripReplacedSubprograms();
};
}
/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
/// table. This is good for all clients except for us. Go through the trouble
/// to force this back.
static void forceRenaming(GlobalValue *GV, StringRef Name) {
// If the global doesn't force its name or if it already has the right name,
// there is nothing for us to do.
if (GV->hasLocalLinkage() || GV->getName() == Name)
return;
Module *M = GV->getParent();
// If there is a conflict, rename the conflict.
if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
GV->takeName(ConflictGV);
ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
} else {
GV->setName(Name); // Force the name back
}
}
/// copy additional attributes (those not needed to construct a GlobalValue)
/// from the SrcGV to the DestGV.
static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
DestGV->copyAttributesFrom(SrcGV);
forceRenaming(DestGV, SrcGV->getName());
}
static bool isLessConstraining(GlobalValue::VisibilityTypes a,
GlobalValue::VisibilityTypes b) {
if (a == GlobalValue::HiddenVisibility)
return false;
if (b == GlobalValue::HiddenVisibility)
return true;
if (a == GlobalValue::ProtectedVisibility)
return false;
if (b == GlobalValue::ProtectedVisibility)
return true;
return false;
}
/// Loop through the global variables in the src module and merge them into the
/// dest module.
static GlobalVariable *copyGlobalVariableProto(TypeMapTy &TypeMap, Module &DstM,
const GlobalVariable *SGVar) {
// No linking to be performed or linking from the source: simply create an
// identical version of the symbol over in the dest module... the
// initializer will be filled in later by LinkGlobalInits.
GlobalVariable *NewDGV = new GlobalVariable(
DstM, TypeMap.get(SGVar->getType()->getElementType()),
SGVar->isConstant(), SGVar->getLinkage(), /*init*/ nullptr,
SGVar->getName(), /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
SGVar->getType()->getAddressSpace());
return NewDGV;
}
/// Link the function in the source module into the destination module if
/// needed, setting up mapping information.
static Function *copyFunctionProto(TypeMapTy &TypeMap, Module &DstM,
const Function *SF) {
// If there is no linkage to be performed or we are linking from the source,
// bring SF over.
return Function::Create(TypeMap.get(SF->getFunctionType()), SF->getLinkage(),
SF->getName(), &DstM);
}
/// Set up prototypes for any aliases that come over from the source module.
static GlobalAlias *copyGlobalAliasProto(TypeMapTy &TypeMap, Module &DstM,
const GlobalAlias *SGA) {
// If there is no linkage to be performed or we're linking from the source,
// bring over SGA.
auto *PTy = cast<PointerType>(TypeMap.get(SGA->getType()));
return GlobalAlias::create(PTy, SGA->getLinkage(), SGA->getName(), &DstM);
}
static GlobalValue *copyGlobalValueProto(TypeMapTy &TypeMap, Module &DstM,
const GlobalValue *SGV) {
GlobalValue *NewGV;
if (auto *SGVar = dyn_cast<GlobalVariable>(SGV))
NewGV = copyGlobalVariableProto(TypeMap, DstM, SGVar);
else if (auto *SF = dyn_cast<Function>(SGV))
NewGV = copyFunctionProto(TypeMap, DstM, SF);
else
NewGV = copyGlobalAliasProto(TypeMap, DstM, cast<GlobalAlias>(SGV));
copyGVAttributes(NewGV, SGV);
return NewGV;
}
Value *ValueMaterializerTy::materializeValueFor(Value *V) {
auto *SGV = dyn_cast<GlobalValue>(V);
if (!SGV)
return nullptr;
GlobalValue *DGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
if (Comdat *SC = SGV->getComdat()) {
if (auto *DGO = dyn_cast<GlobalObject>(DGV)) {
Comdat *DC = DstM->getOrInsertComdat(SC->getName());
DGO->setComdat(DC);
}
}
LazilyLinkGlobalValues.push_back(SGV);
return DGV;
}
bool ModuleLinker::getComdatLeader(Module *M, StringRef ComdatName,
const GlobalVariable *&GVar) {
const GlobalValue *GVal = M->getNamedValue(ComdatName);
if (const auto *GA = dyn_cast_or_null<GlobalAlias>(GVal)) {
GVal = GA->getBaseObject();
if (!GVal)
// We cannot resolve the size of the aliasee yet.
return emitError("Linking COMDATs named '" + ComdatName +
"': COMDAT key involves incomputable alias size.");
}
GVar = dyn_cast_or_null<GlobalVariable>(GVal);
if (!GVar)
return emitError(
"Linking COMDATs named '" + ComdatName +
"': GlobalVariable required for data dependent selection!");
return false;
}
bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName,
Comdat::SelectionKind Src,
Comdat::SelectionKind Dst,
Comdat::SelectionKind &Result,
bool &LinkFromSrc) {
// The ability to mix Comdat::SelectionKind::Any with
// Comdat::SelectionKind::Largest is a behavior that comes from COFF.
bool DstAnyOrLargest = Dst == Comdat::SelectionKind::Any ||
Dst == Comdat::SelectionKind::Largest;
bool SrcAnyOrLargest = Src == Comdat::SelectionKind::Any ||
Src == Comdat::SelectionKind::Largest;
if (DstAnyOrLargest && SrcAnyOrLargest) {
if (Dst == Comdat::SelectionKind::Largest ||
Src == Comdat::SelectionKind::Largest)
Result = Comdat::SelectionKind::Largest;
else
Result = Comdat::SelectionKind::Any;
} else if (Src == Dst) {
Result = Dst;
} else {
return emitError("Linking COMDATs named '" + ComdatName +
"': invalid selection kinds!");
}
switch (Result) {
case Comdat::SelectionKind::Any:
// Go with Dst.
LinkFromSrc = false;
break;
case Comdat::SelectionKind::NoDuplicates:
return emitError("Linking COMDATs named '" + ComdatName +
"': noduplicates has been violated!");
case Comdat::SelectionKind::ExactMatch:
case Comdat::SelectionKind::Largest:
case Comdat::SelectionKind::SameSize: {
const GlobalVariable *DstGV;
const GlobalVariable *SrcGV;
if (getComdatLeader(DstM, ComdatName, DstGV) ||
getComdatLeader(SrcM, ComdatName, SrcGV))
return true;
const DataLayout &DstDL = DstM->getDataLayout();
const DataLayout &SrcDL = SrcM->getDataLayout();
uint64_t DstSize =
DstDL.getTypeAllocSize(DstGV->getType()->getPointerElementType());
uint64_t SrcSize =
SrcDL.getTypeAllocSize(SrcGV->getType()->getPointerElementType());
if (Result == Comdat::SelectionKind::ExactMatch) {
if (SrcGV->getInitializer() != DstGV->getInitializer())
return emitError("Linking COMDATs named '" + ComdatName +
"': ExactMatch violated!");
LinkFromSrc = false;
} else if (Result == Comdat::SelectionKind::Largest) {
LinkFromSrc = SrcSize > DstSize;
} else if (Result == Comdat::SelectionKind::SameSize) {
if (SrcSize != DstSize)
return emitError("Linking COMDATs named '" + ComdatName +
"': SameSize violated!");
LinkFromSrc = false;
} else {
llvm_unreachable("unknown selection kind");
}
break;
}
}
return false;
}
bool ModuleLinker::getComdatResult(const Comdat *SrcC,
Comdat::SelectionKind &Result,
bool &LinkFromSrc) {
Comdat::SelectionKind SSK = SrcC->getSelectionKind();
StringRef ComdatName = SrcC->getName();
Module::ComdatSymTabType &ComdatSymTab = DstM->getComdatSymbolTable();
Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName);
if (DstCI == ComdatSymTab.end()) {
// Use the comdat if it is only available in one of the modules.
LinkFromSrc = true;
Result = SSK;
return false;
}
const Comdat *DstC = &DstCI->second;
Comdat::SelectionKind DSK = DstC->getSelectionKind();
return computeResultingSelectionKind(ComdatName, SSK, DSK, Result,
LinkFromSrc);
}
bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc,
const GlobalValue &Dest,
const GlobalValue &Src) {
// Should we unconditionally use the Src?
if (OverrideFromSrc) {
LinkFromSrc = true;
return false;
}
// We always have to add Src if it has appending linkage.
if (Src.hasAppendingLinkage()) {
LinkFromSrc = true;
return false;
}
bool SrcIsDeclaration = Src.isDeclarationForLinker();
bool DestIsDeclaration = Dest.isDeclarationForLinker();
if (SrcIsDeclaration) {
// If Src is external or if both Src & Dest are external.. Just link the
// external globals, we aren't adding anything.
if (Src.hasDLLImportStorageClass()) {
// If one of GVs is marked as DLLImport, result should be dllimport'ed.
LinkFromSrc = DestIsDeclaration;
return false;
}
// If the Dest is weak, use the source linkage.
LinkFromSrc = Dest.hasExternalWeakLinkage();
return false;
}
if (DestIsDeclaration) {
// If Dest is external but Src is not:
LinkFromSrc = true;
return false;
}
if (Src.hasCommonLinkage()) {
if (Dest.hasLinkOnceLinkage() || Dest.hasWeakLinkage()) {
LinkFromSrc = true;
return false;
}
if (!Dest.hasCommonLinkage()) {
LinkFromSrc = false;
return false;
}
const DataLayout &DL = Dest.getParent()->getDataLayout();
uint64_t DestSize = DL.getTypeAllocSize(Dest.getType()->getElementType());
uint64_t SrcSize = DL.getTypeAllocSize(Src.getType()->getElementType());
LinkFromSrc = SrcSize > DestSize;
return false;
}
if (Src.isWeakForLinker()) {
assert(!Dest.hasExternalWeakLinkage());
assert(!Dest.hasAvailableExternallyLinkage());
if (Dest.hasLinkOnceLinkage() && Src.hasWeakLinkage()) {
LinkFromSrc = true;
return false;
}
LinkFromSrc = false;
return false;
}
if (Dest.isWeakForLinker()) {
assert(Src.hasExternalLinkage());
LinkFromSrc = true;
return false;
}
assert(!Src.hasExternalWeakLinkage());
assert(!Dest.hasExternalWeakLinkage());
assert(Dest.hasExternalLinkage() && Src.hasExternalLinkage() &&
"Unexpected linkage type!");
return emitError("Linking globals named '" + Src.getName() +
"': symbol multiply defined!");
}
/// Loop over all of the linked values to compute type mappings. For example,
/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
/// types 'Foo' but one got renamed when the module was loaded into the same
/// LLVMContext.
void ModuleLinker::computeTypeMapping() {
2014-11-25 12:26:19 +08:00
for (GlobalValue &SGV : SrcM->globals()) {
GlobalValue *DGV = getLinkedToGlobal(&SGV);
if (!DGV)
continue;
if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
continue;
}
// Unify the element type of appending arrays.
ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
2014-11-25 12:26:19 +08:00
ArrayType *SAT = cast<ArrayType>(SGV.getType()->getElementType());
TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
2009-08-12 02:01:24 +08:00
}
2014-11-25 12:26:19 +08:00
for (GlobalValue &SGV : *SrcM) {
if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
}
for (GlobalValue &SGV : SrcM->aliases()) {
if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
}
// Incorporate types by name, scanning all the types in the source module.
// At this point, the destination module may have a type "%foo = { i32 }" for
// example. When the source module got loaded into the same LLVMContext, if
// it had the same type, it would have been renamed to "%foo.42 = { i32 }".
Ask the module for its the identified types. When lazy reading a module, the types used in a function will not be visible to a TypeFinder until the body is read. This patch fixes that by asking the module for its identified struct types. If a materializer is present, the module asks it. If not, it uses a TypeFinder. This fixes pr21374. I will be the first to say that this is ugly, but it was the best I could find. Some of the options I looked at: * Asking the LLVMContext. This could be made to work for gold, but not currently for ld64. ld64 will load multiple modules into a single context before merging them. This causes us to see types from future merges. Unfortunately, MappedTypes is not just a cache when it comes to opaque types. Once the mapping has been made, we have to remember it for as long as the key may be used. This would mean moving MappedTypes to the Linker class and having to drop the Linker::LinkModules static methods, which are visible from C. * Adding an option to ignore function bodies in the TypeFinder. This would fix the PR by picking the worst result. It would work, but unfortunately we are currently quite dependent on the upfront type merging. I will try to reduce our dependency, but it is not clear that we will be able to get rid of it for now. The only clean solution I could think of is making the Module own the types. This would have other advantages, but it is a much bigger change. I will propose it, but it is nice to have this fixed while that is discussed. With the gold plugin, this patch takes the number of types in the LTO clang binary from 52817 to 49669. llvm-svn: 223215
2014-12-03 15:18:23 +08:00
std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
for (StructType *ST : Types) {
if (!ST->hasName())
continue;
// Check to see if there is a dot in the name followed by a digit.
size_t DotPos = ST->getName().rfind('.');
if (DotPos == 0 || DotPos == StringRef::npos ||
ST->getName().back() == '.' ||
!isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
continue;
// Check to see if the destination module has a struct with the prefix name.
StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos));
if (!DST)
continue;
// Don't use it if this actually came from the source module. They're in
// the same LLVMContext after all. Also don't use it unless the type is
// actually used in the destination module. This can happen in situations
// like this:
//
// Module A Module B
// -------- --------
// %Z = type { %A } %B = type { %C.1 }
// %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
// %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
// %C = type { i8* } %B.3 = type { %C.1 }
//
// When we link Module B with Module A, the '%B' in Module B is
// used. However, that would then use '%C.1'. But when we process '%C.1',
// we prefer to take the '%C' version. So we are then left with both
// '%C.1' and '%C' being used for the same types. This leads to some
// variables using one type and some using the other.
if (TypeMap.DstStructTypesSet.hasType(DST))
TypeMap.addTypeMapping(DST, ST);
}
// Now that we have discovered all of the type equivalences, get a body for
// any 'opaque' types in the dest module that are now resolved.
TypeMap.linkDefinedTypeBodies();
2009-08-12 02:01:24 +08:00
}
static void upgradeGlobalArray(GlobalVariable *GV) {
ArrayType *ATy = cast<ArrayType>(GV->getType()->getElementType());
StructType *OldTy = cast<StructType>(ATy->getElementType());
assert(OldTy->getNumElements() == 2 && "Expected to upgrade from 2 elements");
// Get the upgraded 3 element type.
PointerType *VoidPtrTy = Type::getInt8Ty(GV->getContext())->getPointerTo();
Type *Tys[3] = {OldTy->getElementType(0), OldTy->getElementType(1),
VoidPtrTy};
StructType *NewTy = StructType::get(GV->getContext(), Tys, false);
// Build new constants with a null third field filled in.
Constant *OldInitC = GV->getInitializer();
ConstantArray *OldInit = dyn_cast<ConstantArray>(OldInitC);
if (!OldInit && !isa<ConstantAggregateZero>(OldInitC))
// Invalid initializer; give up.
return;
std::vector<Constant *> Initializers;
if (OldInit && OldInit->getNumOperands()) {
Value *Null = Constant::getNullValue(VoidPtrTy);
for (Use &U : OldInit->operands()) {
ConstantStruct *Init = cast<ConstantStruct>(U.get());
Initializers.push_back(ConstantStruct::get(
NewTy, Init->getOperand(0), Init->getOperand(1), Null, nullptr));
}
}
assert(Initializers.size() == ATy->getNumElements() &&
"Failed to copy all array elements");
// Replace the old GV with a new one.
ATy = ArrayType::get(NewTy, Initializers.size());
Constant *NewInit = ConstantArray::get(ATy, Initializers);
GlobalVariable *NewGV = new GlobalVariable(
*GV->getParent(), ATy, GV->isConstant(), GV->getLinkage(), NewInit, "",
GV, GV->getThreadLocalMode(), GV->getType()->getAddressSpace(),
GV->isExternallyInitialized());
NewGV->copyAttributesFrom(GV);
NewGV->takeName(GV);
assert(GV->use_empty() && "program cannot use initializer list");
GV->eraseFromParent();
}
void ModuleLinker::upgradeMismatchedGlobalArray(StringRef Name) {
// Look for the global arrays.
auto *DstGV = dyn_cast_or_null<GlobalVariable>(DstM->getNamedValue(Name));
if (!DstGV)
return;
auto *SrcGV = dyn_cast_or_null<GlobalVariable>(SrcM->getNamedValue(Name));
if (!SrcGV)
return;
// Check if the types already match.
auto *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
auto *SrcTy =
cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
if (DstTy == SrcTy)
return;
// Grab the element types. We can only upgrade an array of a two-field
// struct. Only bother if the other one has three-fields.
auto *DstEltTy = cast<StructType>(DstTy->getElementType());
auto *SrcEltTy = cast<StructType>(SrcTy->getElementType());
if (DstEltTy->getNumElements() == 2 && SrcEltTy->getNumElements() == 3) {
upgradeGlobalArray(DstGV);
return;
}
if (DstEltTy->getNumElements() == 3 && SrcEltTy->getNumElements() == 2)
upgradeGlobalArray(SrcGV);
// We can't upgrade any other differences.
}
void ModuleLinker::upgradeMismatchedGlobals() {
upgradeMismatchedGlobalArray("llvm.global_ctors");
upgradeMismatchedGlobalArray("llvm.global_dtors");
}
/// If there were any appending global variables, link them together now.
/// Return true on error.
bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
const GlobalVariable *SrcGV) {
if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
return emitError("Linking globals named '" + SrcGV->getName() +
"': can only link appending global with another appending global!");
ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
ArrayType *SrcTy =
cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
Type *EltTy = DstTy->getElementType();
// Check to see that they two arrays agree on type.
if (EltTy != SrcTy->getElementType())
return emitError("Appending variables with different element types!");
if (DstGV->isConstant() != SrcGV->isConstant())
return emitError("Appending variables linked with different const'ness!");
if (DstGV->getAlignment() != SrcGV->getAlignment())
return emitError(
"Appending variables with different alignment need to be linked!");
if (DstGV->getVisibility() != SrcGV->getVisibility())
return emitError(
"Appending variables with different visibility need to be linked!");
if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr())
return emitError(
"Appending variables with different unnamed_addr need to be linked!");
if (StringRef(DstGV->getSection()) != SrcGV->getSection())
return emitError(
"Appending variables with different section name need to be linked!");
uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
ArrayType *NewType = ArrayType::get(EltTy, NewSize);
// Create the new global variable.
GlobalVariable *NG =
new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
DstGV->getLinkage(), /*init*/nullptr, /*name*/"", DstGV,
DstGV->getThreadLocalMode(),
DstGV->getType()->getAddressSpace());
// Propagate alignment, visibility and section info.
copyGVAttributes(NG, DstGV);
AppendingVarInfo AVI;
AVI.NewGV = NG;
AVI.DstInit = DstGV->getInitializer();
AVI.SrcInit = SrcGV->getInitializer();
AppendingVars.push_back(AVI);
// Replace any uses of the two global variables with uses of the new
// global.
ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
DstGV->eraseFromParent();
// Track the source variable so we don't try to link it.
DoNotLinkFromSource.insert(SrcGV);
return false;
}
bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
GlobalValue *DGV = getLinkedToGlobal(SGV);
// Handle the ultra special appending linkage case first.
if (DGV && DGV->hasAppendingLinkage())
return linkAppendingVarProto(cast<GlobalVariable>(DGV),
cast<GlobalVariable>(SGV));
bool LinkFromSrc = true;
Comdat *C = nullptr;
GlobalValue::VisibilityTypes Visibility = SGV->getVisibility();
bool HasUnnamedAddr = SGV->hasUnnamedAddr();
if (const Comdat *SC = SGV->getComdat()) {
Comdat::SelectionKind SK;
std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
C = DstM->getOrInsertComdat(SC->getName());
C->setSelectionKind(SK);
} else if (DGV) {
if (shouldLinkFromSource(LinkFromSrc, *DGV, *SGV))
return true;
}
if (!LinkFromSrc) {
// Track the source global so that we don't attempt to copy it over when
// processing global initializers.
DoNotLinkFromSource.insert(SGV);
if (DGV)
// Make sure to remember this mapping.
ValueMap[SGV] =
ConstantExpr::getBitCast(DGV, TypeMap.get(SGV->getType()));
}
Revert r221014: "Refactor duplicated code in liking GlobalValues." This commit introduces heap-use-after-free detected by ASan. Here is the output for one of several tests that detect it: ******************** TEST 'LLVM :: Linker/AppendingLinkage.ll' FAILED ******************** Command Output (stderr): -- ================================================================= ==2122==ERROR: AddressSanitizer: heap-use-after-free on address 0x60c00000b9c8 at pc 0x0000005d05d1 bp 0x7fff64ed27c0 sp 0x7fff64ed27b8 READ of size 4 at 0x60c00000b9c8 thread T0 #0 0x5d05d0 in llvm::GlobalValue::setUnnamedAddr(bool) /usr/local/google/home/chandlerc/src/llvm/build/../include/llvm/IR/GlobalValue.h:115:35 #1 0x69fff1 in (anonymous namespace)::ModuleLinker::linkGlobalValueProto(llvm::GlobalValue*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1041:5 #2 0x697229 in (anonymous namespace)::ModuleLinker::run() /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1485:9 #3 0x696542 in llvm::Linker::linkInModule(llvm::Module*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1621:10 #4 0x4a2db7 in main /usr/local/google/home/chandlerc/src/llvm/build/../tools/llvm-link/llvm-link.cpp:116:9 #5 0x7f4ae61e5ec4 in __libc_start_main /build/buildd/eglibc-2.19/csu/libc-start.c:287 #6 0x41eb71 in _start (/usr/local/google/home/chandlerc/src/llvm/build/bin/llvm-link+0x41eb71) 0x60c00000b9c8 is located 72 bytes inside of 128-byte region [0x60c00000b980,0x60c00000ba00) freed by thread T0 here: #0 0x4a1e6b in operator delete(void*) /usr/local/google/home/chandlerc/src/llvm/opt-build/../projects/compiler-rt/lib/asan/asan_new_delete.cc:94:3 #1 0x5d1a7a in llvm::iplist<llvm::GlobalVariable, llvm::ilist_traits<llvm::GlobalVariable> >::erase(llvm::ilist_iterator<llvm::GlobalVariable>) /usr/local/google/home/chandlerc/src/llvm/build/../inclu de/llvm/ADT/ilist.h:466:5 #2 0x5d1980 in llvm::GlobalVariable::eraseFromParent() /usr/local/google/home/chandlerc/src/llvm/build/../lib/IR/Globals.cpp:204:3 #3 0x6a8a4d in (anonymous namespace)::ModuleLinker::linkAppendingVarProto(llvm::GlobalVariable*, llvm::GlobalVariable const*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules. cpp:980:3 #4 0x6a7403 in (anonymous namespace)::ModuleLinker::linkGlobalVariableProto(llvm::GlobalVariable const*, llvm::GlobalValue*, bool) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkMod ules.cpp:1074:11 #5 0x69ff4e in (anonymous namespace)::ModuleLinker::linkGlobalValueProto(llvm::GlobalValue*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1028:13 #6 0x697229 in (anonymous namespace)::ModuleLinker::run() /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1485:9 #7 0x696542 in llvm::Linker::linkInModule(llvm::Module*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1621:10 #8 0x4a2db7 in main /usr/local/google/home/chandlerc/src/llvm/build/../tools/llvm-link/llvm-link.cpp:116:9 #9 0x7f4ae61e5ec4 in __libc_start_main /build/buildd/eglibc-2.19/csu/libc-start.c:287 previously allocated by thread T0 here: #0 0x4a192b in operator new(unsigned long) /usr/local/google/home/chandlerc/src/llvm/opt-build/../projects/compiler-rt/lib/asan/asan_new_delete.cc:62:35 #1 0x61d85c in llvm::User::operator new(unsigned long, unsigned int) /usr/local/google/home/chandlerc/src/llvm/build/../lib/IR/User.cpp:57:19 #2 0x6a7525 in (anonymous namespace)::ModuleLinker::linkGlobalVariableProto(llvm::GlobalVariable const*, llvm::GlobalValue*, bool) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkMod ules.cpp:1100:3 #3 0x69ff4e in (anonymous namespace)::ModuleLinker::linkGlobalValueProto(llvm::GlobalValue*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1028:13 #4 0x697229 in (anonymous namespace)::ModuleLinker::run() /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1485:9 #5 0x696542 in llvm::Linker::linkInModule(llvm::Module*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1621:10 #6 0x4a2db7 in main /usr/local/google/home/chandlerc/src/llvm/build/../tools/llvm-link/llvm-link.cpp:116:9 #7 0x7f4ae61e5ec4 in __libc_start_main /build/buildd/eglibc-2.19/csu/libc-start.c:287 SUMMARY: AddressSanitizer: heap-use-after-free /usr/local/google/home/chandlerc/src/llvm/build/../include/llvm/IR/GlobalValue.h:115 llvm::GlobalValue::setUnnamedAddr(bool) Shadow bytes around the buggy address: 0x0c187fff96e0: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00 0x0c187fff96f0: 00 00 00 00 00 00 00 fa fa fa fa fa fa fa fa fa 0x0c187fff9700: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fa 0x0c187fff9710: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00 0x0c187fff9720: 00 00 00 00 00 00 00 00 fa fa fa fa fa fa fa fa =>0x0c187fff9730: fd fd fd fd fd fd fd fd fd[fd]fd fd fd fd fd fd 0x0c187fff9740: fa fa fa fa fa fa fa fa fd fd fd fd fd fd fd fd 0x0c187fff9750: fd fd fd fd fd fd fd fa fa fa fa fa fa fa fa fa 0x0c187fff9760: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd 0x0c187fff9770: fa fa fa fa fa fa fa fa fd fd fd fd fd fd fd fd 0x0c187fff9780: fd fd fd fd fd fd fd fd fa fa fa fa fa fa fa fa Shadow byte legend (one shadow byte represents 8 application bytes): Addressable: 00 Partially addressable: 01 02 03 04 05 06 07 Heap left redzone: fa Heap right redzone: fb Freed heap region: fd Stack left redzone: f1 Stack mid redzone: f2 Stack right redzone: f3 Stack partial redzone: f4 Stack after return: f5 Stack use after scope: f8 Global redzone: f9 Global init order: f6 Poisoned by user: f7 Container overflow: fc Array cookie: ac ASan internal: fe ==2122==ABORTING llvm-svn: 221096
2014-11-02 17:10:31 +08:00
if (DGV) {
Visibility = isLessConstraining(Visibility, DGV->getVisibility())
? DGV->getVisibility()
: Visibility;
HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
}
if (!LinkFromSrc && !DGV)
return false;
GlobalValue *NewGV;
if (!LinkFromSrc) {
NewGV = DGV;
} else {
// If the GV is to be lazily linked, don't create it just yet.
// The ValueMaterializerTy will deal with creating it if it's used.
if (!DGV && !OverrideFromSrc &&
(SGV->hasLocalLinkage() || SGV->hasLinkOnceLinkage() ||
SGV->hasAvailableExternallyLinkage())) {
DoNotLinkFromSource.insert(SGV);
return false;
}
NewGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
if (DGV && isa<Function>(DGV))
if (auto *NewF = dyn_cast<Function>(NewGV))
OverridingFunctions.insert(NewF);
}
NewGV->setUnnamedAddr(HasUnnamedAddr);
NewGV->setVisibility(Visibility);
if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
if (C)
NewGO->setComdat(C);
if (DGV && DGV->hasCommonLinkage() && SGV->hasCommonLinkage())
NewGO->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment()));
}
if (auto *NewGVar = dyn_cast<GlobalVariable>(NewGV)) {
auto *DGVar = dyn_cast_or_null<GlobalVariable>(DGV);
auto *SGVar = dyn_cast<GlobalVariable>(SGV);
if (DGVar && SGVar && DGVar->isDeclaration() && SGVar->isDeclaration() &&
(!DGVar->isConstant() || !SGVar->isConstant()))
NewGVar->setConstant(false);
}
// Make sure to remember this mapping.
if (NewGV != DGV) {
if (DGV) {
DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType()));
DGV->eraseFromParent();
}
ValueMap[SGV] = NewGV;
}
return false;
}
static void getArrayElements(const Constant *C,
SmallVectorImpl<Constant *> &Dest) {
unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
for (unsigned i = 0; i != NumElements; ++i)
Dest.push_back(C->getAggregateElement(i));
}
void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
// Merge the initializer.
SmallVector<Constant *, 16> DstElements;
getArrayElements(AVI.DstInit, DstElements);
SmallVector<Constant *, 16> SrcElements;
getArrayElements(AVI.SrcInit, SrcElements);
ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
StringRef Name = AVI.NewGV->getName();
bool IsNewStructor =
(Name == "llvm.global_ctors" || Name == "llvm.global_dtors") &&
cast<StructType>(NewType->getElementType())->getNumElements() == 3;
for (auto *V : SrcElements) {
if (IsNewStructor) {
Constant *Key = V->getAggregateElement(2);
if (DoNotLinkFromSource.count(Key))
continue;
}
DstElements.push_back(
MapValue(V, ValueMap, RF_None, &TypeMap, &ValMaterializer));
}
if (IsNewStructor) {
NewType = ArrayType::get(NewType->getElementType(), DstElements.size());
AVI.NewGV->mutateType(PointerType::get(NewType, 0));
}
AVI.NewGV->setInitializer(ConstantArray::get(NewType, DstElements));
}
/// Update the initializers in the Dest module now that all globals that may be
/// referenced are in Dest.
void ModuleLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) {
// Figure out what the initializer looks like in the dest module.
Dst.setInitializer(MapValue(Src.getInitializer(), ValueMap, RF_None, &TypeMap,
&ValMaterializer));
}
/// Copy the source function over into the dest function and fix up references
/// to values. At this point we know that Dest is an external function, and
/// that Src is not.
bool ModuleLinker::linkFunctionBody(Function &Dst, Function &Src) {
assert(Dst.isDeclaration() && !Src.isDeclaration());
// Materialize if needed.
if (std::error_code EC = Src.materialize())
return emitError(EC.message());
// Link in the prefix data.
if (Src.hasPrefixData())
Dst.setPrefixData(MapValue(Src.getPrefixData(), ValueMap, RF_None, &TypeMap,
&ValMaterializer));
// Link in the prologue data.
if (Src.hasPrologueData())
Dst.setPrologueData(MapValue(Src.getPrologueData(), ValueMap, RF_None,
&TypeMap, &ValMaterializer));
// Go through and convert function arguments over, remembering the mapping.
Function::arg_iterator DI = Dst.arg_begin();
for (Argument &Arg : Src.args()) {
2014-12-08 22:20:10 +08:00
DI->setName(Arg.getName()); // Copy the name over.
// Add a mapping to our mapping.
2014-12-08 22:20:10 +08:00
ValueMap[&Arg] = DI;
++DI;
}
// Copy over the metadata attachments.
SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
Src.getAllMetadata(MDs);
for (const auto &I : MDs)
Dst.setMetadata(I.first, MapMetadata(I.second, ValueMap, RF_None, &TypeMap,
&ValMaterializer));
// Splice the body of the source function into the dest function.
Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
// At this point, all of the instructions and values of the function are now
// copied over. The only problem is that they are still referencing values in
// the Source function as operands. Loop through all of the operands of the
// functions and patch them up to point to the local versions.
for (BasicBlock &BB : Dst)
2014-12-08 22:20:10 +08:00
for (Instruction &I : BB)
RemapInstruction(&I, ValueMap, RF_IgnoreMissingEntries, &TypeMap,
&ValMaterializer);
// There is no need to map the arguments anymore.
for (Argument &Arg : Src.args())
2014-12-08 22:20:10 +08:00
ValueMap.erase(&Arg);
Src.dematerialize();
return false;
}
void ModuleLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
Constant *Aliasee = Src.getAliasee();
Constant *Val =
MapValue(Aliasee, ValueMap, RF_None, &TypeMap, &ValMaterializer);
Dst.setAliasee(Val);
}
bool ModuleLinker::linkGlobalValueBody(GlobalValue &Src) {
Value *Dst = ValueMap[&Src];
assert(Dst);
if (auto *F = dyn_cast<Function>(&Src))
return linkFunctionBody(cast<Function>(*Dst), *F);
if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
linkGlobalInit(cast<GlobalVariable>(*Dst), *GVar);
return false;
}
linkAliasBody(cast<GlobalAlias>(*Dst), cast<GlobalAlias>(Src));
return false;
}
/// Insert all of the named MDNodes in Src into the Dest module.
void ModuleLinker::linkNamedMDNodes() {
const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
E = SrcM->named_metadata_end(); I != E; ++I) {
// Don't link module flags here. Do them separately.
if (&*I == SrcModFlags) continue;
NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
// Add Src elements into Dest node.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
DestNMD->addOperand(MapMetadata(I->getOperand(i), ValueMap, RF_None,
&TypeMap, &ValMaterializer));
}
}
/// Drop DISubprograms that have been superseded.
///
Reapply "Linker: Drop function pointers for overridden subprograms" This reverts commit r233254, effectively reapplying r233164 (and its successors), with an additional testcase for when subprograms match exactly. This fixes PR22792 (again). I'm using the same approach, but I've moved up the call to `stripReplacedSubprograms()`. The function pointers need to be dropped before mapping any metadata from the source module, or else this can drop the function from new subprograms that have merged (via Metadata uniquing) with the old ones. Dropping the pointers first prevents them from merging. **** The original commit message follows. **** Linker: Drop function pointers for overridden subprograms Instead of dropping subprograms that have been overridden, just set their function pointers to `nullptr`. This is a minor adjustment to the stop-gap fix for PR21910 committed in r224487, and fixes the crasher from PR22792. The problem that r224487 put a band-aid on: how do we find the canonical subprogram for a `Function`? Since the backend currently relies on `DebugInfoFinder` (which does a naive in-order traversal of compile units and picks the first subprogram) for this, r224487 tried dropping non-canonical subprograms. Dropping subprograms fails because the backend *also* builds up a map from subprogram to compile unit (`DwarfDebug::SPMap`) based on the subprogram lists. A missing subprogram causes segfaults later when an inlined reference (such as in this testcase) is created. Instead, just drop the `Function` pointer to `nullptr`, which nicely mirrors what happens when an already-inlined `Function` is optimized out. We can't really be sure that it's the same definition anyway, as the testcase demonstrates. This still isn't completely satisfactory. Two flaws at least that I can think of: - I still haven't found a straightforward way to make this symmetric in the IR. (Interestingly, the DWARF output is already symmetric, and I've tested for that to be sure we don't regress.) - Using `DebugInfoFinder` to find the canonical subprogram for a function is kind of crazy. We should just attach metadata to the function, like this: define weak i32 @foo(i32, i32) !dbg !MDSubprogram(...) { llvm-svn: 233302
2015-03-27 02:35:30 +08:00
/// FIXME: this creates an asymmetric result: we strip functions from losing
/// subprograms in DstM, but leave losing subprograms in SrcM.
/// TODO: Remove this logic once the backend can correctly determine canonical
/// subprograms.
void ModuleLinker::stripReplacedSubprograms() {
// Avoid quadratic runtime by returning early when there's nothing to do.
if (OverridingFunctions.empty())
return;
// Move the functions now, so the set gets cleared even on early returns.
auto Functions = std::move(OverridingFunctions);
OverridingFunctions.clear();
Reapply "Linker: Drop function pointers for overridden subprograms" This reverts commit r233254, effectively reapplying r233164 (and its successors), with an additional testcase for when subprograms match exactly. This fixes PR22792 (again). I'm using the same approach, but I've moved up the call to `stripReplacedSubprograms()`. The function pointers need to be dropped before mapping any metadata from the source module, or else this can drop the function from new subprograms that have merged (via Metadata uniquing) with the old ones. Dropping the pointers first prevents them from merging. **** The original commit message follows. **** Linker: Drop function pointers for overridden subprograms Instead of dropping subprograms that have been overridden, just set their function pointers to `nullptr`. This is a minor adjustment to the stop-gap fix for PR21910 committed in r224487, and fixes the crasher from PR22792. The problem that r224487 put a band-aid on: how do we find the canonical subprogram for a `Function`? Since the backend currently relies on `DebugInfoFinder` (which does a naive in-order traversal of compile units and picks the first subprogram) for this, r224487 tried dropping non-canonical subprograms. Dropping subprograms fails because the backend *also* builds up a map from subprogram to compile unit (`DwarfDebug::SPMap`) based on the subprogram lists. A missing subprogram causes segfaults later when an inlined reference (such as in this testcase) is created. Instead, just drop the `Function` pointer to `nullptr`, which nicely mirrors what happens when an already-inlined `Function` is optimized out. We can't really be sure that it's the same definition anyway, as the testcase demonstrates. This still isn't completely satisfactory. Two flaws at least that I can think of: - I still haven't found a straightforward way to make this symmetric in the IR. (Interestingly, the DWARF output is already symmetric, and I've tested for that to be sure we don't regress.) - Using `DebugInfoFinder` to find the canonical subprogram for a function is kind of crazy. We should just attach metadata to the function, like this: define weak i32 @foo(i32, i32) !dbg !MDSubprogram(...) { llvm-svn: 233302
2015-03-27 02:35:30 +08:00
// Drop functions from subprograms if they've been overridden by the new
// compile unit.
NamedMDNode *CompileUnits = DstM->getNamedMetadata("llvm.dbg.cu");
if (!CompileUnits)
return;
for (unsigned I = 0, E = CompileUnits->getNumOperands(); I != E; ++I) {
auto *CU = cast<DICompileUnit>(CompileUnits->getOperand(I));
assert(CU && "Expected valid compile unit");
for (DISubprogram *SP : CU->getSubprograms()) {
if (!SP || !SP->getFunction() || !Functions.count(SP->getFunction()))
continue;
Reapply "Linker: Drop function pointers for overridden subprograms" This reverts commit r233254, effectively reapplying r233164 (and its successors), with an additional testcase for when subprograms match exactly. This fixes PR22792 (again). I'm using the same approach, but I've moved up the call to `stripReplacedSubprograms()`. The function pointers need to be dropped before mapping any metadata from the source module, or else this can drop the function from new subprograms that have merged (via Metadata uniquing) with the old ones. Dropping the pointers first prevents them from merging. **** The original commit message follows. **** Linker: Drop function pointers for overridden subprograms Instead of dropping subprograms that have been overridden, just set their function pointers to `nullptr`. This is a minor adjustment to the stop-gap fix for PR21910 committed in r224487, and fixes the crasher from PR22792. The problem that r224487 put a band-aid on: how do we find the canonical subprogram for a `Function`? Since the backend currently relies on `DebugInfoFinder` (which does a naive in-order traversal of compile units and picks the first subprogram) for this, r224487 tried dropping non-canonical subprograms. Dropping subprograms fails because the backend *also* builds up a map from subprogram to compile unit (`DwarfDebug::SPMap`) based on the subprogram lists. A missing subprogram causes segfaults later when an inlined reference (such as in this testcase) is created. Instead, just drop the `Function` pointer to `nullptr`, which nicely mirrors what happens when an already-inlined `Function` is optimized out. We can't really be sure that it's the same definition anyway, as the testcase demonstrates. This still isn't completely satisfactory. Two flaws at least that I can think of: - I still haven't found a straightforward way to make this symmetric in the IR. (Interestingly, the DWARF output is already symmetric, and I've tested for that to be sure we don't regress.) - Using `DebugInfoFinder` to find the canonical subprogram for a function is kind of crazy. We should just attach metadata to the function, like this: define weak i32 @foo(i32, i32) !dbg !MDSubprogram(...) { llvm-svn: 233302
2015-03-27 02:35:30 +08:00
// Prevent DebugInfoFinder from tagging this as the canonical subprogram,
// since the canonical one is in the incoming module.
SP->replaceFunction(nullptr);
}
}
}
/// Merge the linker flags in Src into the Dest module.
bool ModuleLinker::linkModuleFlagsMetadata() {
// If the source module has no module flags, we are done.
const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
if (!SrcModFlags) return false;
// If the destination module doesn't have module flags yet, then just copy
// over the source module's flags.
NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
if (DstModFlags->getNumOperands() == 0) {
for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
DstModFlags->addOperand(SrcModFlags->getOperand(I));
return false;
}
// First build a map of the existing module flags and requirements.
DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
SmallSetVector<MDNode*, 16> Requirements;
for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
MDNode *Op = DstModFlags->getOperand(I);
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
MDString *ID = cast<MDString>(Op->getOperand(1));
if (Behavior->getZExtValue() == Module::Require) {
Requirements.insert(cast<MDNode>(Op->getOperand(2)));
} else {
Flags[ID] = std::make_pair(Op, I);
}
}
// Merge in the flags from the source module, and also collect its set of
// requirements.
bool HasErr = false;
for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
MDNode *SrcOp = SrcModFlags->getOperand(I);
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
ConstantInt *SrcBehavior =
mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
MDString *ID = cast<MDString>(SrcOp->getOperand(1));
MDNode *DstOp;
unsigned DstIndex;
std::tie(DstOp, DstIndex) = Flags.lookup(ID);
unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
// If this is a requirement, add it and continue.
if (SrcBehaviorValue == Module::Require) {
// If the destination module does not already have this requirement, add
// it.
if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
DstModFlags->addOperand(SrcOp);
}
continue;
}
// If there is no existing flag with this ID, just add it.
if (!DstOp) {
Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
DstModFlags->addOperand(SrcOp);
continue;
}
// Otherwise, perform a merge.
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
ConstantInt *DstBehavior =
mdconst::extract<ConstantInt>(DstOp->getOperand(0));
unsigned DstBehaviorValue = DstBehavior->getZExtValue();
// If either flag has override behavior, handle it first.
if (DstBehaviorValue == Module::Override) {
// Diagnose inconsistent flags which both have override behavior.
if (SrcBehaviorValue == Module::Override &&
SrcOp->getOperand(2) != DstOp->getOperand(2)) {
HasErr |= emitError("linking module flags '" + ID->getString() +
"': IDs have conflicting override values");
}
continue;
} else if (SrcBehaviorValue == Module::Override) {
// Update the destination flag to that of the source.
DstModFlags->setOperand(DstIndex, SrcOp);
Flags[ID].first = SrcOp;
continue;
}
// Diagnose inconsistent merge behavior types.
if (SrcBehaviorValue != DstBehaviorValue) {
HasErr |= emitError("linking module flags '" + ID->getString() +
"': IDs have conflicting behaviors");
continue;
}
auto replaceDstValue = [&](MDNode *New) {
Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
MDNode *Flag = MDNode::get(DstM->getContext(), FlagOps);
DstModFlags->setOperand(DstIndex, Flag);
Flags[ID].first = Flag;
};
// Perform the merge for standard behavior types.
switch (SrcBehaviorValue) {
case Module::Require:
case Module::Override: llvm_unreachable("not possible");
case Module::Error: {
// Emit an error if the values differ.
if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
HasErr |= emitError("linking module flags '" + ID->getString() +
"': IDs have conflicting values");
}
continue;
}
case Module::Warning: {
// Emit a warning if the values differ.
if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
emitWarning("linking module flags '" + ID->getString() +
"': IDs have conflicting values");
}
continue;
}
case Module::Append: {
MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
SmallVector<Metadata *, 8> MDs;
MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
MDs.append(DstValue->op_begin(), DstValue->op_end());
MDs.append(SrcValue->op_begin(), SrcValue->op_end());
replaceDstValue(MDNode::get(DstM->getContext(), MDs));
break;
}
case Module::AppendUnique: {
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
SmallSetVector<Metadata *, 16> Elts;
MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
Elts.insert(DstValue->op_begin(), DstValue->op_end());
Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
replaceDstValue(MDNode::get(DstM->getContext(),
makeArrayRef(Elts.begin(), Elts.end())));
break;
}
}
}
// Check all of the requirements.
for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
MDNode *Requirement = Requirements[I];
MDString *Flag = cast<MDString>(Requirement->getOperand(0));
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
Metadata *ReqValue = Requirement->getOperand(1);
MDNode *Op = Flags[Flag].first;
if (!Op || Op->getOperand(2) != ReqValue) {
HasErr |= emitError("linking module flags '" + Flag->getString() +
"': does not have the required value");
continue;
}
}
return HasErr;
}
// This function returns true if the triples match.
static bool triplesMatch(const Triple &T0, const Triple &T1) {
// If vendor is apple, ignore the version number.
if (T0.getVendor() == Triple::Apple)
return T0.getArch() == T1.getArch() &&
T0.getSubArch() == T1.getSubArch() &&
T0.getVendor() == T1.getVendor() &&
T0.getOS() == T1.getOS();
return T0 == T1;
}
// This function returns the merged triple.
static std::string mergeTriples(const Triple &SrcTriple, const Triple &DstTriple) {
// If vendor is apple, pick the triple with the larger version number.
if (SrcTriple.getVendor() == Triple::Apple)
if (DstTriple.isOSVersionLT(SrcTriple))
return SrcTriple.str();
return DstTriple.str();
}
bool ModuleLinker::run() {
assert(DstM && "Null destination module");
assert(SrcM && "Null source module");
// Inherit the target data from the source module if the destination module
// doesn't have one already.
if (DstM->getDataLayout().isDefault())
DstM->setDataLayout(SrcM->getDataLayout());
if (SrcM->getDataLayout() != DstM->getDataLayout()) {
emitWarning("Linking two modules of different data layouts: '" +
SrcM->getModuleIdentifier() + "' is '" +
SrcM->getDataLayoutStr() + "' whereas '" +
DstM->getModuleIdentifier() + "' is '" +
DstM->getDataLayoutStr() + "'\n");
}
// Copy the target triple from the source to dest if the dest's is empty.
if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
DstM->setTargetTriple(SrcM->getTargetTriple());
Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM->getTargetTriple());
if (!SrcM->getTargetTriple().empty() && !triplesMatch(SrcTriple, DstTriple))
emitWarning("Linking two modules of different target triples: " +
SrcM->getModuleIdentifier() + "' is '" +
SrcM->getTargetTriple() + "' whereas '" +
DstM->getModuleIdentifier() + "' is '" +
DstM->getTargetTriple() + "'\n");
DstM->setTargetTriple(mergeTriples(SrcTriple, DstTriple));
2008-02-20 02:49:08 +08:00
// Append the module inline asm string.
if (!SrcM->getModuleInlineAsm().empty()) {
if (DstM->getModuleInlineAsm().empty())
DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
else
DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
SrcM->getModuleInlineAsm());
}
// Loop over all of the linked values to compute type mappings.
computeTypeMapping();
ComdatsChosen.clear();
for (const auto &SMEC : SrcM->getComdatSymbolTable()) {
const Comdat &C = SMEC.getValue();
if (ComdatsChosen.count(&C))
continue;
Comdat::SelectionKind SK;
bool LinkFromSrc;
if (getComdatResult(&C, SK, LinkFromSrc))
return true;
ComdatsChosen[&C] = std::make_pair(SK, LinkFromSrc);
}
// Upgrade mismatched global arrays.
upgradeMismatchedGlobals();
// Insert all of the globals in src into the DstM module... without linking
// initializers (which could refer to functions not yet mapped over).
for (Module::global_iterator I = SrcM->global_begin(),
E = SrcM->global_end(); I != E; ++I)
if (linkGlobalValueProto(I))
return true;
// Link the functions together between the two modules, without doing function
// bodies... this just adds external function prototypes to the DstM
// function... We do this so that when we begin processing function bodies,
// all of the global values that may be referenced are available in our
// ValueMap.
for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
if (linkGlobalValueProto(I))
return true;
// If there were any aliases, link them now.
for (Module::alias_iterator I = SrcM->alias_begin(),
E = SrcM->alias_end(); I != E; ++I)
if (linkGlobalValueProto(I))
return true;
for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
linkAppendingVarInit(AppendingVars[i]);
for (const auto &Entry : DstM->getComdatSymbolTable()) {
const Comdat &C = Entry.getValue();
if (C.getSelectionKind() == Comdat::Any)
continue;
const GlobalValue *GV = SrcM->getNamedValue(C.getName());
assert(GV);
MapValue(GV, ValueMap, RF_None, &TypeMap, &ValMaterializer);
}
Reapply "Linker: Drop function pointers for overridden subprograms" This reverts commit r233254, effectively reapplying r233164 (and its successors), with an additional testcase for when subprograms match exactly. This fixes PR22792 (again). I'm using the same approach, but I've moved up the call to `stripReplacedSubprograms()`. The function pointers need to be dropped before mapping any metadata from the source module, or else this can drop the function from new subprograms that have merged (via Metadata uniquing) with the old ones. Dropping the pointers first prevents them from merging. **** The original commit message follows. **** Linker: Drop function pointers for overridden subprograms Instead of dropping subprograms that have been overridden, just set their function pointers to `nullptr`. This is a minor adjustment to the stop-gap fix for PR21910 committed in r224487, and fixes the crasher from PR22792. The problem that r224487 put a band-aid on: how do we find the canonical subprogram for a `Function`? Since the backend currently relies on `DebugInfoFinder` (which does a naive in-order traversal of compile units and picks the first subprogram) for this, r224487 tried dropping non-canonical subprograms. Dropping subprograms fails because the backend *also* builds up a map from subprogram to compile unit (`DwarfDebug::SPMap`) based on the subprogram lists. A missing subprogram causes segfaults later when an inlined reference (such as in this testcase) is created. Instead, just drop the `Function` pointer to `nullptr`, which nicely mirrors what happens when an already-inlined `Function` is optimized out. We can't really be sure that it's the same definition anyway, as the testcase demonstrates. This still isn't completely satisfactory. Two flaws at least that I can think of: - I still haven't found a straightforward way to make this symmetric in the IR. (Interestingly, the DWARF output is already symmetric, and I've tested for that to be sure we don't regress.) - Using `DebugInfoFinder` to find the canonical subprogram for a function is kind of crazy. We should just attach metadata to the function, like this: define weak i32 @foo(i32, i32) !dbg !MDSubprogram(...) { llvm-svn: 233302
2015-03-27 02:35:30 +08:00
// Strip replaced subprograms before mapping any metadata -- so that we're
// not changing metadata from the source module (note that
// linkGlobalValueBody() eventually calls RemapInstruction() and therefore
// MapMetadata()) -- but after linking global value protocols -- so that
// OverridingFunctions has been built.
stripReplacedSubprograms();
// Link in the function bodies that are defined in the source module into
// DstM.
for (Function &SF : *SrcM) {
// Skip if no body (function is external).
if (SF.isDeclaration())
continue;
// Skip if not linking from source.
if (DoNotLinkFromSource.count(&SF))
continue;
if (linkGlobalValueBody(SF))
return true;
}
// Resolve all uses of aliases with aliasees.
for (GlobalAlias &Src : SrcM->aliases()) {
if (DoNotLinkFromSource.count(&Src))
continue;
linkGlobalValueBody(Src);
}
// Remap all of the named MDNodes in Src into the DstM module. We do this
// after linking GlobalValues so that MDNodes that reference GlobalValues
// are properly remapped.
linkNamedMDNodes();
// Merge the module flags into the DstM module.
if (linkModuleFlagsMetadata())
return true;
// Update the initializers in the DstM module now that all globals that may
// be referenced are in DstM.
for (GlobalVariable &Src : SrcM->globals()) {
// Only process initialized GV's or ones not already in dest.
if (!Src.hasInitializer() || DoNotLinkFromSource.count(&Src))
continue;
linkGlobalValueBody(Src);
}
// Process vector of lazily linked in functions.
while (!LazilyLinkGlobalValues.empty()) {
GlobalValue *SGV = LazilyLinkGlobalValues.back();
LazilyLinkGlobalValues.pop_back();
assert(!SGV->isDeclaration() && "users should not pass down decls");
if (linkGlobalValueBody(*SGV))
return true;
}
return false;
}
Linker::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
: ETypes(E), IsPacked(P) {}
Linker::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
: ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
bool Linker::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
if (IsPacked != That.IsPacked)
return false;
if (ETypes != That.ETypes)
return false;
return true;
}
bool Linker::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
return !this->operator==(That);
}
StructType *Linker::StructTypeKeyInfo::getEmptyKey() {
return DenseMapInfo<StructType *>::getEmptyKey();
}
StructType *Linker::StructTypeKeyInfo::getTombstoneKey() {
return DenseMapInfo<StructType *>::getTombstoneKey();
}
unsigned Linker::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
Key.IsPacked);
}
unsigned Linker::StructTypeKeyInfo::getHashValue(const StructType *ST) {
return getHashValue(KeyTy(ST));
}
bool Linker::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
const StructType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return LHS == KeyTy(RHS);
}
bool Linker::StructTypeKeyInfo::isEqual(const StructType *LHS,
const StructType *RHS) {
if (RHS == getEmptyKey())
return LHS == getEmptyKey();
if (RHS == getTombstoneKey())
return LHS == getTombstoneKey();
return KeyTy(LHS) == KeyTy(RHS);
}
void Linker::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
assert(!Ty->isOpaque());
NonOpaqueStructTypes.insert(Ty);
}
void Linker::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
assert(!Ty->isOpaque());
NonOpaqueStructTypes.insert(Ty);
bool Removed = OpaqueStructTypes.erase(Ty);
(void)Removed;
assert(Removed);
}
void Linker::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
assert(Ty->isOpaque());
OpaqueStructTypes.insert(Ty);
}
StructType *
Linker::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
bool IsPacked) {
Linker::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
auto I = NonOpaqueStructTypes.find_as(Key);
if (I == NonOpaqueStructTypes.end())
return nullptr;
return *I;
}
bool Linker::IdentifiedStructTypeSet::hasType(StructType *Ty) {
if (Ty->isOpaque())
return OpaqueStructTypes.count(Ty);
auto I = NonOpaqueStructTypes.find(Ty);
if (I == NonOpaqueStructTypes.end())
return false;
return *I == Ty;
}
void Linker::init(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
this->Composite = M;
this->DiagnosticHandler = DiagnosticHandler;
TypeFinder StructTypes;
StructTypes.run(*M, true);
for (StructType *Ty : StructTypes) {
if (Ty->isOpaque())
IdentifiedStructTypes.addOpaque(Ty);
else
IdentifiedStructTypes.addNonOpaque(Ty);
}
}
Linker::Linker(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
init(M, DiagnosticHandler);
}
Linker::Linker(Module *M) {
init(M, [this](const DiagnosticInfo &DI) {
Composite->getContext().diagnose(DI);
});
}
Linker::~Linker() {
}
void Linker::deleteModule() {
delete Composite;
Composite = nullptr;
}
bool Linker::linkInModule(Module *Src, bool OverrideSymbols) {
ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src,
DiagnosticHandler, OverrideSymbols);
bool RetCode = TheLinker.run();
Composite->dropTriviallyDeadConstantArrays();
return RetCode;
}
void Linker::setModule(Module *Dst) {
init(Dst, DiagnosticHandler);
}
//===----------------------------------------------------------------------===//
// LinkModules entrypoint.
//===----------------------------------------------------------------------===//
/// This function links two modules together, with the resulting Dest module
/// modified to be the composite of the two input modules. If an error occurs,
/// true is returned and ErrorMsg (if not null) is set to indicate the problem.
/// Upon failure, the Dest module could be in a modified state, and shouldn't be
/// relied on to be consistent.
bool Linker::LinkModules(Module *Dest, Module *Src,
DiagnosticHandlerFunction DiagnosticHandler) {
Linker L(Dest, DiagnosticHandler);
return L.linkInModule(Src);
}
bool Linker::LinkModules(Module *Dest, Module *Src) {
Linker L(Dest);
return L.linkInModule(Src);
}
//===----------------------------------------------------------------------===//
// C API.
//===----------------------------------------------------------------------===//
LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
LLVMLinkerMode Unused, char **OutMessages) {
Module *D = unwrap(Dest);
std::string Message;
raw_string_ostream Stream(Message);
DiagnosticPrinterRawOStream DP(Stream);
LLVMBool Result = Linker::LinkModules(
D, unwrap(Src), [&](const DiagnosticInfo &DI) { DI.print(DP); });
if (OutMessages && Result)
*OutMessages = strdup(Message.c_str());
return Result;
}