2020-01-14 17:48:02 +08:00
|
|
|
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
|
2020-08-28 23:27:23 +08:00
|
|
|
; RUN: llc -mtriple=thumbv8.1m.main-none-none-eabi -mattr=+mve.fp -enable-arm-maskedgatscat=false %s -o 2>/dev/null - | FileCheck --check-prefix NOGATSCAT %s
|
|
|
|
; RUN: llc -mtriple=thumbv8.1m.main-none-none-eabi -mattr=-mve %s -o 2>/dev/null - | FileCheck --check-prefix NOMVE %s
|
2020-01-08 21:08:27 +08:00
|
|
|
|
2020-01-21 17:44:31 +08:00
|
|
|
define arm_aapcs_vfpcc <4 x i32> @unscaled_i32_i32_gather(i8* %base, <4 x i32>* %offptr) {
|
|
|
|
; NOGATSCAT-LABEL: unscaled_i32_i32_gather:
|
2020-01-08 21:08:27 +08:00
|
|
|
; NOGATSCAT: @ %bb.0: @ %entry
|
2020-01-14 17:48:02 +08:00
|
|
|
; NOGATSCAT-NEXT: vldrw.u32 q0, [r1]
|
|
|
|
; NOGATSCAT-NEXT: vadd.i32 q0, q0, r0
|
[ARM] Match dual lane vmovs from insert_vector_elt
MVE has a dual lane vector move instruction, capable of moving two
general purpose registers into lanes of a vector register. They look
like one of:
vmov q0[2], q0[0], r2, r0
vmov q0[3], q0[1], r3, r1
They only accept these lane indices though (and only insert into an
i32), either moving lanes 1 and 3, or 0 and 2.
This patch adds some tablegen patterns for them, selecting from vector
inserts elements. Because the insert_elements are know to be
canonicalized to ascending order there are several patterns that we need
to select. These lane indices are:
3 2 1 0 -> vmovqrr 31; vmovqrr 20
3 2 1 -> vmovqrr 31; vmov 2
3 1 -> vmovqrr 31
2 1 0 -> vmovqrr 20; vmov 1
2 0 -> vmovqrr 20
With the top one being the most common. All other potential patterns of
lane indices will be matched by a combination of these and the
individual vmov pattern already present. This does mean that we are
selecting several machine instructions at once due to the need to
re-arrange the inserts, but in this case there is nothing else that will
attempt to match an insert_vector_elt node.
This is a recommit of 6cc3d80a84884a79967fffa4596c14001b8ba8a3 after
fixing the backward instruction definitions.
2020-12-19 00:13:08 +08:00
|
|
|
; NOGATSCAT-NEXT: vmov r0, s2
|
|
|
|
; NOGATSCAT-NEXT: vmov r1, s0
|
2020-12-18 21:33:40 +08:00
|
|
|
; NOGATSCAT-NEXT: vmov r2, s3
|
[ARM] Match dual lane vmovs from insert_vector_elt
MVE has a dual lane vector move instruction, capable of moving two
general purpose registers into lanes of a vector register. They look
like one of:
vmov q0[2], q0[0], r2, r0
vmov q0[3], q0[1], r3, r1
They only accept these lane indices though (and only insert into an
i32), either moving lanes 1 and 3, or 0 and 2.
This patch adds some tablegen patterns for them, selecting from vector
inserts elements. Because the insert_elements are know to be
canonicalized to ascending order there are several patterns that we need
to select. These lane indices are:
3 2 1 0 -> vmovqrr 31; vmovqrr 20
3 2 1 -> vmovqrr 31; vmov 2
3 1 -> vmovqrr 31
2 1 0 -> vmovqrr 20; vmov 1
2 0 -> vmovqrr 20
With the top one being the most common. All other potential patterns of
lane indices will be matched by a combination of these and the
individual vmov pattern already present. This does mean that we are
selecting several machine instructions at once due to the need to
re-arrange the inserts, but in this case there is nothing else that will
attempt to match an insert_vector_elt node.
This is a recommit of 6cc3d80a84884a79967fffa4596c14001b8ba8a3 after
fixing the backward instruction definitions.
2020-12-19 00:13:08 +08:00
|
|
|
; NOGATSCAT-NEXT: vmov r3, s1
|
2020-01-08 21:08:27 +08:00
|
|
|
; NOGATSCAT-NEXT: ldr r0, [r0]
|
|
|
|
; NOGATSCAT-NEXT: ldr r1, [r1]
|
|
|
|
; NOGATSCAT-NEXT: ldr r2, [r2]
|
[ARM] Match dual lane vmovs from insert_vector_elt
MVE has a dual lane vector move instruction, capable of moving two
general purpose registers into lanes of a vector register. They look
like one of:
vmov q0[2], q0[0], r2, r0
vmov q0[3], q0[1], r3, r1
They only accept these lane indices though (and only insert into an
i32), either moving lanes 1 and 3, or 0 and 2.
This patch adds some tablegen patterns for them, selecting from vector
inserts elements. Because the insert_elements are know to be
canonicalized to ascending order there are several patterns that we need
to select. These lane indices are:
3 2 1 0 -> vmovqrr 31; vmovqrr 20
3 2 1 -> vmovqrr 31; vmov 2
3 1 -> vmovqrr 31
2 1 0 -> vmovqrr 20; vmov 1
2 0 -> vmovqrr 20
With the top one being the most common. All other potential patterns of
lane indices will be matched by a combination of these and the
individual vmov pattern already present. This does mean that we are
selecting several machine instructions at once due to the need to
re-arrange the inserts, but in this case there is nothing else that will
attempt to match an insert_vector_elt node.
This is a recommit of 6cc3d80a84884a79967fffa4596c14001b8ba8a3 after
fixing the backward instruction definitions.
2020-12-19 00:13:08 +08:00
|
|
|
; NOGATSCAT-NEXT: ldr r3, [r3]
|
|
|
|
; NOGATSCAT-NEXT: vmov q0[2], q0[0], r1, r0
|
|
|
|
; NOGATSCAT-NEXT: vmov q0[3], q0[1], r3, r2
|
2020-01-08 21:08:27 +08:00
|
|
|
; NOGATSCAT-NEXT: bx lr
|
2020-01-14 17:48:02 +08:00
|
|
|
;
|
2020-01-21 17:44:31 +08:00
|
|
|
; NOMVE-LABEL: unscaled_i32_i32_gather:
|
2020-01-08 21:08:27 +08:00
|
|
|
; NOMVE: @ %bb.0: @ %entry
|
2020-01-14 17:48:02 +08:00
|
|
|
; NOMVE-NEXT: .save {r4, lr}
|
|
|
|
; NOMVE-NEXT: push {r4, lr}
|
|
|
|
; NOMVE-NEXT: ldm.w r1, {r2, r3, lr}
|
|
|
|
; NOMVE-NEXT: ldr r4, [r1, #12]
|
|
|
|
; NOMVE-NEXT: ldr.w r12, [r0, r2]
|
|
|
|
; NOMVE-NEXT: ldr r1, [r0, r3]
|
|
|
|
; NOMVE-NEXT: ldr.w r2, [r0, lr]
|
|
|
|
; NOMVE-NEXT: ldr r3, [r0, r4]
|
|
|
|
; NOMVE-NEXT: mov r0, r12
|
|
|
|
; NOMVE-NEXT: pop {r4, pc}
|
|
|
|
|
2020-01-08 21:08:27 +08:00
|
|
|
entry:
|
|
|
|
%offs = load <4 x i32>, <4 x i32>* %offptr, align 4
|
|
|
|
%byte_ptrs = getelementptr inbounds i8, i8* %base, <4 x i32> %offs
|
|
|
|
%ptrs = bitcast <4 x i8*> %byte_ptrs to <4 x i32*>
|
|
|
|
%gather = call <4 x i32> @llvm.masked.gather.v4i32.v4p0i32(<4 x i32*> %ptrs, i32 4, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x i32> undef)
|
|
|
|
ret <4 x i32> %gather
|
|
|
|
}
|
|
|
|
|
|
|
|
declare <4 x i32> @llvm.masked.gather.v4i32.v4p0i32(<4 x i32*>, i32, <4 x i1>, <4 x i32>)
|
2020-01-21 17:44:31 +08:00
|
|
|
|
|
|
|
|
|
|
|
define arm_aapcs_vfpcc void @unscaled_i32_i8_scatter(i8* %base, <4 x i8>* %offptr, <4 x i32> %input) {
|
|
|
|
; NOGATSCAT-LABEL: unscaled_i32_i8_scatter:
|
|
|
|
; NOGATSCAT: @ %bb.0: @ %entry
|
|
|
|
; NOGATSCAT-NEXT: vldrb.u32 q1, [r1]
|
|
|
|
; NOGATSCAT-NEXT: vmov r1, s0
|
|
|
|
; NOGATSCAT-NEXT: vadd.i32 q1, q1, r0
|
|
|
|
; NOGATSCAT-NEXT: vmov r0, s4
|
|
|
|
; NOGATSCAT-NEXT: str r1, [r0]
|
|
|
|
; NOGATSCAT-NEXT: vmov r0, s5
|
|
|
|
; NOGATSCAT-NEXT: vmov r1, s1
|
|
|
|
; NOGATSCAT-NEXT: str r1, [r0]
|
|
|
|
; NOGATSCAT-NEXT: vmov r0, s6
|
|
|
|
; NOGATSCAT-NEXT: vmov r1, s2
|
|
|
|
; NOGATSCAT-NEXT: str r1, [r0]
|
|
|
|
; NOGATSCAT-NEXT: vmov r0, s7
|
|
|
|
; NOGATSCAT-NEXT: vmov r1, s3
|
|
|
|
; NOGATSCAT-NEXT: str r1, [r0]
|
|
|
|
; NOGATSCAT-NEXT: bx lr
|
|
|
|
;
|
|
|
|
; NOMVE-LABEL: unscaled_i32_i8_scatter:
|
|
|
|
; NOMVE: @ %bb.0: @ %entry
|
|
|
|
; NOMVE-NEXT: .save {r4, lr}
|
|
|
|
; NOMVE-NEXT: push {r4, lr}
|
|
|
|
; NOMVE-NEXT: ldrb.w r12, [r1]
|
|
|
|
; NOMVE-NEXT: ldrb.w lr, [r1, #1]
|
|
|
|
; NOMVE-NEXT: ldrb r4, [r1, #2]
|
|
|
|
; NOMVE-NEXT: ldrb r1, [r1, #3]
|
|
|
|
; NOMVE-NEXT: str.w r2, [r0, r12]
|
|
|
|
; NOMVE-NEXT: ldr r2, [sp, #8]
|
|
|
|
; NOMVE-NEXT: str.w r3, [r0, lr]
|
|
|
|
; NOMVE-NEXT: str r2, [r0, r4]
|
|
|
|
; NOMVE-NEXT: ldr r2, [sp, #12]
|
|
|
|
; NOMVE-NEXT: str r2, [r0, r1]
|
|
|
|
; NOMVE-NEXT: pop {r4, pc}
|
|
|
|
|
|
|
|
entry:
|
|
|
|
%offs = load <4 x i8>, <4 x i8>* %offptr, align 1
|
|
|
|
%offs.zext = zext <4 x i8> %offs to <4 x i32>
|
|
|
|
%byte_ptrs = getelementptr inbounds i8, i8* %base, <4 x i32> %offs.zext
|
|
|
|
%ptrs = bitcast <4 x i8*> %byte_ptrs to <4 x i32*>
|
|
|
|
call void @llvm.masked.scatter.v4i32.v4p0i32(<4 x i32> %input, <4 x i32*> %ptrs, i32 4, <4 x i1> <i1 true, i1 true, i1 true, i1 true>)
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
declare void @llvm.masked.scatter.v4i32.v4p0i32(<4 x i32>, <4 x i32*>, i32, <4 x i1>)
|