llvm-project/polly/lib/Analysis/ScopInfo.cpp

3784 lines
131 KiB
C++
Raw Normal View History

//===--------- ScopInfo.cpp - Create Scops from LLVM IR ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a static control flow region.
//
// The pass creates a polyhedral description of the Scops detected by the Scop
// detection derived from their LLVM-IR code.
//
2014-10-30 03:58:28 +08:00
// This representation is shared among several tools in the polyhedral
// community, which are e.g. Cloog, Pluto, Loopo, Graphite.
//
//===----------------------------------------------------------------------===//
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/SCEVValidator.h"
2013-05-07 16:11:54 +08:00
#include "polly/Support/ScopHelper.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
2013-05-07 16:11:54 +08:00
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/RegionIterator.h"
2013-05-07 16:11:54 +08:00
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Support/Debug.h"
#include "isl/aff.h"
#include "isl/constraint.h"
#include "isl/local_space.h"
#include "isl/map.h"
#include "isl/options.h"
#include "isl/printer.h"
#include "isl/schedule.h"
#include "isl/schedule_node.h"
#include "isl/set.h"
#include "isl/union_map.h"
#include "isl/union_set.h"
#include "isl/val.h"
#include <sstream>
#include <string>
#include <vector>
using namespace llvm;
using namespace polly;
#define DEBUG_TYPE "polly-scops"
2013-01-15 06:40:23 +08:00
STATISTIC(ScopFound, "Number of valid Scops");
STATISTIC(RichScopFound, "Number of Scops containing a loop");
static cl::opt<bool> ModelReadOnlyScalars(
"polly-analyze-read-only-scalars",
cl::desc("Model read-only scalar values in the scop description"),
cl::Hidden, cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory));
// Multiplicative reductions can be disabled separately as these kind of
// operations can overflow easily. Additive reductions and bit operations
// are in contrast pretty stable.
static cl::opt<bool> DisableMultiplicativeReductions(
"polly-disable-multiplicative-reductions",
cl::desc("Disable multiplicative reductions"), cl::Hidden, cl::ZeroOrMore,
cl::init(false), cl::cat(PollyCategory));
static cl::opt<unsigned> RunTimeChecksMaxParameters(
"polly-rtc-max-parameters",
cl::desc("The maximal number of parameters allowed in RTCs."), cl::Hidden,
cl::ZeroOrMore, cl::init(8), cl::cat(PollyCategory));
static cl::opt<unsigned> RunTimeChecksMaxArraysPerGroup(
"polly-rtc-max-arrays-per-group",
cl::desc("The maximal number of arrays to compare in each alias group."),
cl::Hidden, cl::ZeroOrMore, cl::init(20), cl::cat(PollyCategory));
static cl::opt<std::string> UserContextStr(
"polly-context", cl::value_desc("isl parameter set"),
cl::desc("Provide additional constraints on the context parameters"),
cl::init(""), cl::cat(PollyCategory));
static cl::opt<bool> DetectReductions("polly-detect-reductions",
cl::desc("Detect and exploit reductions"),
cl::Hidden, cl::ZeroOrMore,
cl::init(true), cl::cat(PollyCategory));
//===----------------------------------------------------------------------===//
// Create a sequence of two schedules. Either argument may be null and is
// interpreted as the empty schedule. Can also return null if both schedules are
// empty.
static __isl_give isl_schedule *
combineInSequence(__isl_take isl_schedule *Prev,
__isl_take isl_schedule *Succ) {
if (!Prev)
return Succ;
if (!Succ)
return Prev;
return isl_schedule_sequence(Prev, Succ);
}
static __isl_give isl_set *addRangeBoundsToSet(__isl_take isl_set *S,
const ConstantRange &Range,
int dim,
enum isl_dim_type type) {
isl_val *V;
isl_ctx *ctx = isl_set_get_ctx(S);
bool useLowerUpperBound = Range.isSignWrappedSet() && !Range.isFullSet();
const auto LB = useLowerUpperBound ? Range.getLower() : Range.getSignedMin();
V = isl_valFromAPInt(ctx, LB, true);
isl_set *SLB = isl_set_lower_bound_val(isl_set_copy(S), type, dim, V);
const auto UB = useLowerUpperBound ? Range.getUpper() : Range.getSignedMax();
V = isl_valFromAPInt(ctx, UB, true);
if (useLowerUpperBound)
V = isl_val_sub_ui(V, 1);
isl_set *SUB = isl_set_upper_bound_val(S, type, dim, V);
if (useLowerUpperBound)
return isl_set_union(SLB, SUB);
else
return isl_set_intersect(SLB, SUB);
}
static const ScopArrayInfo *identifyBasePtrOriginSAI(Scop *S, Value *BasePtr) {
LoadInst *BasePtrLI = dyn_cast<LoadInst>(BasePtr);
if (!BasePtrLI)
return nullptr;
if (!S->getRegion().contains(BasePtrLI))
return nullptr;
ScalarEvolution &SE = *S->getSE();
auto *OriginBaseSCEV =
SE.getPointerBase(SE.getSCEV(BasePtrLI->getPointerOperand()));
if (!OriginBaseSCEV)
return nullptr;
auto *OriginBaseSCEVUnknown = dyn_cast<SCEVUnknown>(OriginBaseSCEV);
if (!OriginBaseSCEVUnknown)
return nullptr;
return S->getScopArrayInfo(OriginBaseSCEVUnknown->getValue());
}
ScopArrayInfo::ScopArrayInfo(Value *BasePtr, Type *ElementType, isl_ctx *Ctx,
ArrayRef<const SCEV *> Sizes, bool IsPHI, Scop *S)
: BasePtr(BasePtr), ElementType(ElementType), IsPHI(IsPHI), S(*S) {
std::string BasePtrName =
getIslCompatibleName("MemRef_", BasePtr, IsPHI ? "__phi" : "");
Id = isl_id_alloc(Ctx, BasePtrName.c_str(), this);
updateSizes(Sizes);
BasePtrOriginSAI = identifyBasePtrOriginSAI(S, BasePtr);
if (BasePtrOriginSAI)
const_cast<ScopArrayInfo *>(BasePtrOriginSAI)->addDerivedSAI(this);
}
__isl_give isl_space *ScopArrayInfo::getSpace() const {
auto Space =
isl_space_set_alloc(isl_id_get_ctx(Id), 0, getNumberOfDimensions());
Space = isl_space_set_tuple_id(Space, isl_dim_set, isl_id_copy(Id));
return Space;
}
bool ScopArrayInfo::updateSizes(ArrayRef<const SCEV *> NewSizes) {
int SharedDims = std::min(NewSizes.size(), DimensionSizes.size());
int ExtraDimsNew = NewSizes.size() - SharedDims;
int ExtraDimsOld = DimensionSizes.size() - SharedDims;
for (int i = 0; i < SharedDims; i++)
if (NewSizes[i + ExtraDimsNew] != DimensionSizes[i + ExtraDimsOld])
return false;
if (DimensionSizes.size() >= NewSizes.size())
return true;
DimensionSizes.clear();
DimensionSizes.insert(DimensionSizes.begin(), NewSizes.begin(),
NewSizes.end());
for (isl_pw_aff *Size : DimensionSizesPw)
isl_pw_aff_free(Size);
DimensionSizesPw.clear();
for (const SCEV *Expr : DimensionSizes) {
isl_pw_aff *Size = S.getPwAff(Expr);
DimensionSizesPw.push_back(Size);
}
return true;
}
ScopArrayInfo::~ScopArrayInfo() {
isl_id_free(Id);
for (isl_pw_aff *Size : DimensionSizesPw)
isl_pw_aff_free(Size);
}
std::string ScopArrayInfo::getName() const { return isl_id_get_name(Id); }
int ScopArrayInfo::getElemSizeInBytes() const {
return ElementType->getPrimitiveSizeInBits() / 8;
}
isl_id *ScopArrayInfo::getBasePtrId() const { return isl_id_copy(Id); }
void ScopArrayInfo::dump() const { print(errs()); }
void ScopArrayInfo::print(raw_ostream &OS, bool SizeAsPwAff) const {
OS.indent(8) << *getElementType() << " " << getName() << "[*]";
for (unsigned u = 0; u < getNumberOfDimensions(); u++) {
OS << "[";
if (SizeAsPwAff)
OS << " " << DimensionSizesPw[u] << " ";
else
OS << *DimensionSizes[u];
OS << "]";
}
if (BasePtrOriginSAI)
OS << " [BasePtrOrigin: " << BasePtrOriginSAI->getName() << "]";
OS << " // Element size " << getElemSizeInBytes() << "\n";
}
const ScopArrayInfo *
ScopArrayInfo::getFromAccessFunction(__isl_keep isl_pw_multi_aff *PMA) {
isl_id *Id = isl_pw_multi_aff_get_tuple_id(PMA, isl_dim_out);
assert(Id && "Output dimension didn't have an ID");
return getFromId(Id);
}
const ScopArrayInfo *ScopArrayInfo::getFromId(isl_id *Id) {
void *User = isl_id_get_user(Id);
const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
isl_id_free(Id);
return SAI;
}
void MemoryAccess::updateDimensionality() {
auto ArraySpace = getScopArrayInfo()->getSpace();
auto AccessSpace = isl_space_range(isl_map_get_space(AccessRelation));
auto DimsArray = isl_space_dim(ArraySpace, isl_dim_set);
auto DimsAccess = isl_space_dim(AccessSpace, isl_dim_set);
auto DimsMissing = DimsArray - DimsAccess;
auto Map = isl_map_from_domain_and_range(isl_set_universe(AccessSpace),
isl_set_universe(ArraySpace));
for (unsigned i = 0; i < DimsMissing; i++)
Map = isl_map_fix_si(Map, isl_dim_out, i, 0);
for (unsigned i = DimsMissing; i < DimsArray; i++)
Map = isl_map_equate(Map, isl_dim_in, i - DimsMissing, isl_dim_out, i);
AccessRelation = isl_map_apply_range(AccessRelation, Map);
}
const std::string
MemoryAccess::getReductionOperatorStr(MemoryAccess::ReductionType RT) {
switch (RT) {
case MemoryAccess::RT_NONE:
llvm_unreachable("Requested a reduction operator string for a memory "
"access which isn't a reduction");
case MemoryAccess::RT_ADD:
return "+";
case MemoryAccess::RT_MUL:
return "*";
case MemoryAccess::RT_BOR:
return "|";
case MemoryAccess::RT_BXOR:
return "^";
case MemoryAccess::RT_BAND:
return "&";
}
llvm_unreachable("Unknown reduction type");
return "";
}
/// @brief Return the reduction type for a given binary operator
static MemoryAccess::ReductionType getReductionType(const BinaryOperator *BinOp,
const Instruction *Load) {
if (!BinOp)
return MemoryAccess::RT_NONE;
switch (BinOp->getOpcode()) {
case Instruction::FAdd:
if (!BinOp->hasUnsafeAlgebra())
return MemoryAccess::RT_NONE;
// Fall through
case Instruction::Add:
return MemoryAccess::RT_ADD;
case Instruction::Or:
return MemoryAccess::RT_BOR;
case Instruction::Xor:
return MemoryAccess::RT_BXOR;
case Instruction::And:
return MemoryAccess::RT_BAND;
case Instruction::FMul:
if (!BinOp->hasUnsafeAlgebra())
return MemoryAccess::RT_NONE;
// Fall through
case Instruction::Mul:
if (DisableMultiplicativeReductions)
return MemoryAccess::RT_NONE;
return MemoryAccess::RT_MUL;
default:
return MemoryAccess::RT_NONE;
}
}
/// @brief Derive the individual index expressions from a GEP instruction
///
/// This function optimistically assumes the GEP references into a fixed size
/// array. If this is actually true, this function returns a list of array
/// subscript expressions as SCEV as well as a list of integers describing
/// the size of the individual array dimensions. Both lists have either equal
/// length of the size list is one element shorter in case there is no known
/// size available for the outermost array dimension.
///
/// @param GEP The GetElementPtr instruction to analyze.
///
/// @return A tuple with the subscript expressions and the dimension sizes.
static std::tuple<std::vector<const SCEV *>, std::vector<int>>
getIndexExpressionsFromGEP(GetElementPtrInst *GEP, ScalarEvolution &SE) {
std::vector<const SCEV *> Subscripts;
std::vector<int> Sizes;
Type *Ty = GEP->getPointerOperandType();
bool DroppedFirstDim = false;
for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
const SCEV *Expr = SE.getSCEV(GEP->getOperand(i));
if (i == 1) {
if (auto PtrTy = dyn_cast<PointerType>(Ty)) {
Ty = PtrTy->getElementType();
} else if (auto ArrayTy = dyn_cast<ArrayType>(Ty)) {
Ty = ArrayTy->getElementType();
} else {
Subscripts.clear();
Sizes.clear();
break;
}
if (auto Const = dyn_cast<SCEVConstant>(Expr))
if (Const->getValue()->isZero()) {
DroppedFirstDim = true;
continue;
}
Subscripts.push_back(Expr);
continue;
}
auto ArrayTy = dyn_cast<ArrayType>(Ty);
if (!ArrayTy) {
Subscripts.clear();
Sizes.clear();
break;
}
Subscripts.push_back(Expr);
if (!(DroppedFirstDim && i == 2))
Sizes.push_back(ArrayTy->getNumElements());
Ty = ArrayTy->getElementType();
}
return std::make_tuple(Subscripts, Sizes);
}
MemoryAccess::~MemoryAccess() {
isl_id_free(Id);
isl_map_free(AccessRelation);
isl_map_free(NewAccessRelation);
}
const ScopArrayInfo *MemoryAccess::getScopArrayInfo() const {
isl_id *ArrayId = getArrayId();
void *User = isl_id_get_user(ArrayId);
const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
isl_id_free(ArrayId);
return SAI;
}
__isl_give isl_id *MemoryAccess::getArrayId() const {
return isl_map_get_tuple_id(AccessRelation, isl_dim_out);
}
__isl_give isl_pw_multi_aff *MemoryAccess::applyScheduleToAccessRelation(
__isl_take isl_union_map *USchedule) const {
isl_map *Schedule, *ScheduledAccRel;
isl_union_set *UDomain;
UDomain = isl_union_set_from_set(getStatement()->getDomain());
USchedule = isl_union_map_intersect_domain(USchedule, UDomain);
Schedule = isl_map_from_union_map(USchedule);
ScheduledAccRel = isl_map_apply_domain(getAccessRelation(), Schedule);
return isl_pw_multi_aff_from_map(ScheduledAccRel);
}
__isl_give isl_map *MemoryAccess::getOriginalAccessRelation() const {
return isl_map_copy(AccessRelation);
}
std::string MemoryAccess::getOriginalAccessRelationStr() const {
return stringFromIslObj(AccessRelation);
}
__isl_give isl_space *MemoryAccess::getOriginalAccessRelationSpace() const {
return isl_map_get_space(AccessRelation);
}
__isl_give isl_map *MemoryAccess::getNewAccessRelation() const {
return isl_map_copy(NewAccessRelation);
}
std::string MemoryAccess::getNewAccessRelationStr() const {
return stringFromIslObj(NewAccessRelation);
}
__isl_give isl_basic_map *
MemoryAccess::createBasicAccessMap(ScopStmt *Statement) {
isl_space *Space = isl_space_set_alloc(Statement->getIslCtx(), 0, 1);
Space = isl_space_align_params(Space, Statement->getDomainSpace());
return isl_basic_map_from_domain_and_range(
isl_basic_set_universe(Statement->getDomainSpace()),
isl_basic_set_universe(Space));
}
// Formalize no out-of-bound access assumption
//
// When delinearizing array accesses we optimistically assume that the
// delinearized accesses do not access out of bound locations (the subscript
// expression of each array evaluates for each statement instance that is
// executed to a value that is larger than zero and strictly smaller than the
// size of the corresponding dimension). The only exception is the outermost
// dimension for which we do not need to assume any upper bound. At this point
// we formalize this assumption to ensure that at code generation time the
// relevant run-time checks can be generated.
//
// To find the set of constraints necessary to avoid out of bound accesses, we
// first build the set of data locations that are not within array bounds. We
// then apply the reverse access relation to obtain the set of iterations that
// may contain invalid accesses and reduce this set of iterations to the ones
// that are actually executed by intersecting them with the domain of the
// statement. If we now project out all loop dimensions, we obtain a set of
// parameters that may cause statement instances to be executed that may
// possibly yield out of bound memory accesses. The complement of these
// constraints is the set of constraints that needs to be assumed to ensure such
// statement instances are never executed.
void MemoryAccess::assumeNoOutOfBound() {
isl_space *Space = isl_space_range(getOriginalAccessRelationSpace());
isl_set *Outside = isl_set_empty(isl_space_copy(Space));
for (int i = 1, Size = Subscripts.size(); i < Size; ++i) {
isl_local_space *LS = isl_local_space_from_space(isl_space_copy(Space));
isl_pw_aff *Var =
isl_pw_aff_var_on_domain(isl_local_space_copy(LS), isl_dim_set, i);
isl_pw_aff *Zero = isl_pw_aff_zero_on_domain(LS);
isl_set *DimOutside;
DimOutside = isl_pw_aff_lt_set(isl_pw_aff_copy(Var), Zero);
isl_pw_aff *SizeE = Statement->getPwAff(Sizes[i - 1]);
SizeE = isl_pw_aff_drop_dims(SizeE, isl_dim_in, 0,
Statement->getNumIterators());
SizeE = isl_pw_aff_add_dims(SizeE, isl_dim_in,
isl_space_dim(Space, isl_dim_set));
SizeE = isl_pw_aff_set_tuple_id(SizeE, isl_dim_in,
isl_space_get_tuple_id(Space, isl_dim_set));
DimOutside = isl_set_union(DimOutside, isl_pw_aff_le_set(SizeE, Var));
Outside = isl_set_union(Outside, DimOutside);
}
Outside = isl_set_apply(Outside, isl_map_reverse(getAccessRelation()));
Outside = isl_set_intersect(Outside, Statement->getDomain());
Outside = isl_set_params(Outside);
// Remove divs to avoid the construction of overly complicated assumptions.
// Doing so increases the set of parameter combinations that are assumed to
// not appear. This is always save, but may make the resulting run-time check
// bail out more often than strictly necessary.
Outside = isl_set_remove_divs(Outside);
Outside = isl_set_complement(Outside);
Statement->getParent()->addAssumption(Outside);
isl_space_free(Space);
}
void MemoryAccess::computeBoundsOnAccessRelation(unsigned ElementSize) {
ScalarEvolution *SE = Statement->getParent()->getSE();
Value *Ptr = getPointerOperand(*getAccessInstruction());
if (!Ptr || !SE->isSCEVable(Ptr->getType()))
return;
auto *PtrSCEV = SE->getSCEV(Ptr);
if (isa<SCEVCouldNotCompute>(PtrSCEV))
return;
auto *BasePtrSCEV = SE->getPointerBase(PtrSCEV);
if (BasePtrSCEV && !isa<SCEVCouldNotCompute>(BasePtrSCEV))
PtrSCEV = SE->getMinusSCEV(PtrSCEV, BasePtrSCEV);
const ConstantRange &Range = SE->getSignedRange(PtrSCEV);
if (Range.isFullSet())
return;
bool isWrapping = Range.isSignWrappedSet();
unsigned BW = Range.getBitWidth();
const auto LB = isWrapping ? Range.getLower() : Range.getSignedMin();
const auto UB = isWrapping ? Range.getUpper() : Range.getSignedMax();
auto Min = LB.sdiv(APInt(BW, ElementSize));
auto Max = (UB - APInt(BW, 1)).sdiv(APInt(BW, ElementSize));
isl_set *AccessRange = isl_map_range(isl_map_copy(AccessRelation));
AccessRange =
addRangeBoundsToSet(AccessRange, ConstantRange(Min, Max), 0, isl_dim_set);
AccessRelation = isl_map_intersect_range(AccessRelation, AccessRange);
}
__isl_give isl_map *MemoryAccess::foldAccess(__isl_take isl_map *AccessRelation,
ScopStmt *Statement) {
int Size = Subscripts.size();
for (int i = Size - 2; i >= 0; --i) {
isl_space *Space;
isl_map *MapOne, *MapTwo;
isl_pw_aff *DimSize = Statement->getPwAff(Sizes[i]);
isl_space *SpaceSize = isl_pw_aff_get_space(DimSize);
isl_pw_aff_free(DimSize);
isl_id *ParamId = isl_space_get_dim_id(SpaceSize, isl_dim_param, 0);
Space = isl_map_get_space(AccessRelation);
Space = isl_space_map_from_set(isl_space_range(Space));
Space = isl_space_align_params(Space, SpaceSize);
int ParamLocation = isl_space_find_dim_by_id(Space, isl_dim_param, ParamId);
isl_id_free(ParamId);
MapOne = isl_map_universe(isl_space_copy(Space));
for (int j = 0; j < Size; ++j)
MapOne = isl_map_equate(MapOne, isl_dim_in, j, isl_dim_out, j);
MapOne = isl_map_lower_bound_si(MapOne, isl_dim_in, i + 1, 0);
MapTwo = isl_map_universe(isl_space_copy(Space));
for (int j = 0; j < Size; ++j)
if (j < i || j > i + 1)
MapTwo = isl_map_equate(MapTwo, isl_dim_in, j, isl_dim_out, j);
isl_local_space *LS = isl_local_space_from_space(Space);
isl_constraint *C;
C = isl_equality_alloc(isl_local_space_copy(LS));
C = isl_constraint_set_constant_si(C, -1);
C = isl_constraint_set_coefficient_si(C, isl_dim_in, i, 1);
C = isl_constraint_set_coefficient_si(C, isl_dim_out, i, -1);
MapTwo = isl_map_add_constraint(MapTwo, C);
C = isl_equality_alloc(LS);
C = isl_constraint_set_coefficient_si(C, isl_dim_in, i + 1, 1);
C = isl_constraint_set_coefficient_si(C, isl_dim_out, i + 1, -1);
C = isl_constraint_set_coefficient_si(C, isl_dim_param, ParamLocation, 1);
MapTwo = isl_map_add_constraint(MapTwo, C);
MapTwo = isl_map_upper_bound_si(MapTwo, isl_dim_in, i + 1, -1);
MapOne = isl_map_union(MapOne, MapTwo);
AccessRelation = isl_map_apply_range(AccessRelation, MapOne);
}
return AccessRelation;
}
void MemoryAccess::buildAccessRelation(const ScopArrayInfo *SAI) {
assert(!AccessRelation && "AccessReltation already built");
isl_ctx *Ctx = isl_id_get_ctx(Id);
isl_id *BaseAddrId = SAI->getBasePtrId();
if (!isAffine()) {
// We overapproximate non-affine accesses with a possible access to the
// whole array. For read accesses it does not make a difference, if an
// access must or may happen. However, for write accesses it is important to
// differentiate between writes that must happen and writes that may happen.
AccessRelation = isl_map_from_basic_map(createBasicAccessMap(Statement));
AccessRelation =
isl_map_set_tuple_id(AccessRelation, isl_dim_out, BaseAddrId);
computeBoundsOnAccessRelation(getElemSizeInBytes());
return;
}
isl_space *Space = isl_space_alloc(Ctx, 0, Statement->getNumIterators(), 0);
AccessRelation = isl_map_universe(Space);
for (int i = 0, Size = Subscripts.size(); i < Size; ++i) {
isl_pw_aff *Affine = Statement->getPwAff(Subscripts[i]);
if (Size == 1) {
// For the non delinearized arrays, divide the access function of the last
// subscript by the size of the elements in the array.
//
// A stride one array access in C expressed as A[i] is expressed in
// LLVM-IR as something like A[i * elementsize]. This hides the fact that
// two subsequent values of 'i' index two values that are stored next to
// each other in memory. By this division we make this characteristic
// obvious again.
isl_val *v = isl_val_int_from_si(Ctx, getElemSizeInBytes());
Affine = isl_pw_aff_scale_down_val(Affine, v);
}
isl_map *SubscriptMap = isl_map_from_pw_aff(Affine);
AccessRelation = isl_map_flat_range_product(AccessRelation, SubscriptMap);
}
if (Sizes.size() > 1 && !isa<SCEVConstant>(Sizes[0]))
AccessRelation = foldAccess(AccessRelation, Statement);
Space = Statement->getDomainSpace();
AccessRelation = isl_map_set_tuple_id(
AccessRelation, isl_dim_in, isl_space_get_tuple_id(Space, isl_dim_set));
AccessRelation =
isl_map_set_tuple_id(AccessRelation, isl_dim_out, BaseAddrId);
assumeNoOutOfBound();
AccessRelation = isl_map_gist_domain(AccessRelation, Statement->getDomain());
isl_space_free(Space);
}
MemoryAccess::MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst,
__isl_take isl_id *Id, AccessType Type,
Value *BaseAddress, unsigned ElemBytes, bool Affine,
ArrayRef<const SCEV *> Subscripts,
ArrayRef<const SCEV *> Sizes, Value *AccessValue,
AccessOrigin Origin, StringRef BaseName)
: Id(Id), Origin(Origin), AccType(Type), RedType(RT_NONE), Statement(Stmt),
BaseAddr(BaseAddress), BaseName(BaseName), ElemBytes(ElemBytes),
Sizes(Sizes.begin(), Sizes.end()), AccessInstruction(AccessInst),
AccessValue(AccessValue), IsAffine(Affine),
Subscripts(Subscripts.begin(), Subscripts.end()), AccessRelation(nullptr),
NewAccessRelation(nullptr) {}
void MemoryAccess::realignParams() {
isl_space *ParamSpace = Statement->getParent()->getParamSpace();
AccessRelation = isl_map_align_params(AccessRelation, ParamSpace);
}
const std::string MemoryAccess::getReductionOperatorStr() const {
return MemoryAccess::getReductionOperatorStr(getReductionType());
}
__isl_give isl_id *MemoryAccess::getId() const { return isl_id_copy(Id); }
raw_ostream &polly::operator<<(raw_ostream &OS,
MemoryAccess::ReductionType RT) {
if (RT == MemoryAccess::RT_NONE)
OS << "NONE";
else
OS << MemoryAccess::getReductionOperatorStr(RT);
return OS;
}
void MemoryAccess::print(raw_ostream &OS) const {
switch (AccType) {
case READ:
OS.indent(12) << "ReadAccess :=\t";
break;
case MUST_WRITE:
OS.indent(12) << "MustWriteAccess :=\t";
break;
case MAY_WRITE:
OS.indent(12) << "MayWriteAccess :=\t";
break;
}
OS << "[Reduction Type: " << getReductionType() << "] ";
OS << "[Scalar: " << isImplicit() << "]\n";
OS.indent(16) << getOriginalAccessRelationStr() << ";\n";
if (hasNewAccessRelation())
OS.indent(11) << "new: " << getNewAccessRelationStr() << ";\n";
}
2013-01-15 06:40:23 +08:00
void MemoryAccess::dump() const { print(errs()); }
// Create a map in the size of the provided set domain, that maps from the
// one element of the provided set domain to another element of the provided
// set domain.
// The mapping is limited to all points that are equal in all but the last
// dimension and for which the last dimension of the input is strict smaller
// than the last dimension of the output.
//
// getEqualAndLarger(set[i0, i1, ..., iX]):
//
// set[i0, i1, ..., iX] -> set[o0, o1, ..., oX]
// : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX
//
static isl_map *getEqualAndLarger(isl_space *setDomain) {
isl_space *Space = isl_space_map_from_set(setDomain);
isl_map *Map = isl_map_universe(Space);
unsigned lastDimension = isl_map_dim(Map, isl_dim_in) - 1;
// Set all but the last dimension to be equal for the input and output
//
// input[i0, i1, ..., iX] -> output[o0, o1, ..., oX]
// : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1)
for (unsigned i = 0; i < lastDimension; ++i)
Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i);
// Set the last dimension of the input to be strict smaller than the
// last dimension of the output.
//
// input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX
Map = isl_map_order_lt(Map, isl_dim_in, lastDimension, isl_dim_out,
lastDimension);
return Map;
}
__isl_give isl_set *
MemoryAccess::getStride(__isl_take const isl_map *Schedule) const {
isl_map *S = const_cast<isl_map *>(Schedule);
isl_map *AccessRelation = getAccessRelation();
isl_space *Space = isl_space_range(isl_map_get_space(S));
isl_map *NextScatt = getEqualAndLarger(Space);
S = isl_map_reverse(S);
NextScatt = isl_map_lexmin(NextScatt);
NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(S));
NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(AccessRelation));
NextScatt = isl_map_apply_domain(NextScatt, S);
NextScatt = isl_map_apply_domain(NextScatt, AccessRelation);
isl_set *Deltas = isl_map_deltas(NextScatt);
return Deltas;
}
bool MemoryAccess::isStrideX(__isl_take const isl_map *Schedule,
int StrideWidth) const {
isl_set *Stride, *StrideX;
bool IsStrideX;
Stride = getStride(Schedule);
StrideX = isl_set_universe(isl_set_get_space(Stride));
for (unsigned i = 0; i < isl_set_dim(StrideX, isl_dim_set) - 1; i++)
StrideX = isl_set_fix_si(StrideX, isl_dim_set, i, 0);
StrideX = isl_set_fix_si(StrideX, isl_dim_set,
isl_set_dim(StrideX, isl_dim_set) - 1, StrideWidth);
IsStrideX = isl_set_is_subset(Stride, StrideX);
isl_set_free(StrideX);
isl_set_free(Stride);
return IsStrideX;
}
bool MemoryAccess::isStrideZero(const isl_map *Schedule) const {
return isStrideX(Schedule, 0);
}
bool MemoryAccess::isStrideOne(const isl_map *Schedule) const {
return isStrideX(Schedule, 1);
}
void MemoryAccess::setNewAccessRelation(isl_map *NewAccess) {
isl_map_free(NewAccessRelation);
NewAccessRelation = NewAccess;
}
//===----------------------------------------------------------------------===//
isl_map *ScopStmt::getSchedule() const {
isl_set *Domain = getDomain();
if (isl_set_is_empty(Domain)) {
isl_set_free(Domain);
return isl_map_from_aff(
isl_aff_zero_on_domain(isl_local_space_from_space(getDomainSpace())));
}
auto *Schedule = getParent()->getSchedule();
Schedule = isl_union_map_intersect_domain(
Schedule, isl_union_set_from_set(isl_set_copy(Domain)));
if (isl_union_map_is_empty(Schedule)) {
isl_set_free(Domain);
isl_union_map_free(Schedule);
return isl_map_from_aff(
isl_aff_zero_on_domain(isl_local_space_from_space(getDomainSpace())));
}
auto *M = isl_map_from_union_map(Schedule);
M = isl_map_coalesce(M);
M = isl_map_gist_domain(M, Domain);
M = isl_map_coalesce(M);
return M;
}
__isl_give isl_pw_aff *ScopStmt::getPwAff(const SCEV *E) {
return getParent()->getPwAff(E, isBlockStmt() ? getBasicBlock()
: getRegion()->getEntry());
}
void ScopStmt::restrictDomain(__isl_take isl_set *NewDomain) {
assert(isl_set_is_subset(NewDomain, Domain) &&
"New domain is not a subset of old domain!");
isl_set_free(Domain);
Domain = NewDomain;
}
void ScopStmt::buildAccessRelations() {
for (MemoryAccess *Access : MemAccs) {
Type *ElementType = Access->getAccessValue()->getType();
const ScopArrayInfo *SAI = getParent()->getOrCreateScopArrayInfo(
Access->getBaseAddr(), ElementType, Access->Sizes, Access->isPHI());
Access->buildAccessRelation(SAI);
}
}
void ScopStmt::addAccess(MemoryAccess *Access) {
Instruction *AccessInst = Access->getAccessInstruction();
MemoryAccessList *&MAL = InstructionToAccess[AccessInst];
if (!MAL)
MAL = new MemoryAccessList();
MAL->emplace_front(Access);
MemAccs.push_back(MAL->front());
}
void ScopStmt::realignParams() {
for (MemoryAccess *MA : *this)
MA->realignParams();
Domain = isl_set_align_params(Domain, Parent.getParamSpace());
}
/// @brief Add @p BSet to the set @p User if @p BSet is bounded.
static isl_stat collectBoundedParts(__isl_take isl_basic_set *BSet,
void *User) {
isl_set **BoundedParts = static_cast<isl_set **>(User);
if (isl_basic_set_is_bounded(BSet))
*BoundedParts = isl_set_union(*BoundedParts, isl_set_from_basic_set(BSet));
else
isl_basic_set_free(BSet);
return isl_stat_ok;
}
/// @brief Return the bounded parts of @p S.
static __isl_give isl_set *collectBoundedParts(__isl_take isl_set *S) {
isl_set *BoundedParts = isl_set_empty(isl_set_get_space(S));
isl_set_foreach_basic_set(S, collectBoundedParts, &BoundedParts);
isl_set_free(S);
return BoundedParts;
}
/// @brief Compute the (un)bounded parts of @p S wrt. to dimension @p Dim.
///
/// @returns A separation of @p S into first an unbounded then a bounded subset,
/// both with regards to the dimension @p Dim.
static std::pair<__isl_give isl_set *, __isl_give isl_set *>
partitionSetParts(__isl_take isl_set *S, unsigned Dim) {
for (unsigned u = 0, e = isl_set_n_dim(S); u < e; u++)
S = isl_set_lower_bound_si(S, isl_dim_set, u, 0);
unsigned NumDimsS = isl_set_n_dim(S);
isl_set *OnlyDimS = isl_set_copy(S);
// Remove dimensions that are greater than Dim as they are not interesting.
assert(NumDimsS >= Dim + 1);
OnlyDimS =
isl_set_project_out(OnlyDimS, isl_dim_set, Dim + 1, NumDimsS - Dim - 1);
// Create artificial parametric upper bounds for dimensions smaller than Dim
// as we are not interested in them.
OnlyDimS = isl_set_insert_dims(OnlyDimS, isl_dim_param, 0, Dim);
for (unsigned u = 0; u < Dim; u++) {
isl_constraint *C = isl_inequality_alloc(
isl_local_space_from_space(isl_set_get_space(OnlyDimS)));
C = isl_constraint_set_coefficient_si(C, isl_dim_param, u, 1);
C = isl_constraint_set_coefficient_si(C, isl_dim_set, u, -1);
OnlyDimS = isl_set_add_constraint(OnlyDimS, C);
}
// Collect all bounded parts of OnlyDimS.
isl_set *BoundedParts = collectBoundedParts(OnlyDimS);
// Create the dimensions greater than Dim again.
BoundedParts = isl_set_insert_dims(BoundedParts, isl_dim_set, Dim + 1,
NumDimsS - Dim - 1);
// Remove the artificial upper bound parameters again.
BoundedParts = isl_set_remove_dims(BoundedParts, isl_dim_param, 0, Dim);
isl_set *UnboundedParts = isl_set_subtract(S, isl_set_copy(BoundedParts));
return std::make_pair(UnboundedParts, BoundedParts);
}
/// @brief Set the dimension Ids from @p From in @p To.
static __isl_give isl_set *setDimensionIds(__isl_keep isl_set *From,
__isl_take isl_set *To) {
for (unsigned u = 0, e = isl_set_n_dim(From); u < e; u++) {
isl_id *DimId = isl_set_get_dim_id(From, isl_dim_set, u);
To = isl_set_set_dim_id(To, isl_dim_set, u, DimId);
}
return To;
}
/// @brief Create the conditions under which @p L @p Pred @p R is true.
static __isl_give isl_set *buildConditionSet(ICmpInst::Predicate Pred,
__isl_take isl_pw_aff *L,
__isl_take isl_pw_aff *R) {
switch (Pred) {
case ICmpInst::ICMP_EQ:
return isl_pw_aff_eq_set(L, R);
case ICmpInst::ICMP_NE:
return isl_pw_aff_ne_set(L, R);
case ICmpInst::ICMP_SLT:
return isl_pw_aff_lt_set(L, R);
case ICmpInst::ICMP_SLE:
return isl_pw_aff_le_set(L, R);
case ICmpInst::ICMP_SGT:
return isl_pw_aff_gt_set(L, R);
case ICmpInst::ICMP_SGE:
return isl_pw_aff_ge_set(L, R);
case ICmpInst::ICMP_ULT:
return isl_pw_aff_lt_set(L, R);
case ICmpInst::ICMP_UGT:
return isl_pw_aff_gt_set(L, R);
case ICmpInst::ICMP_ULE:
return isl_pw_aff_le_set(L, R);
case ICmpInst::ICMP_UGE:
return isl_pw_aff_ge_set(L, R);
default:
llvm_unreachable("Non integer predicate not supported");
}
}
/// @brief Create the conditions under which @p L @p Pred @p R is true.
///
/// Helper function that will make sure the dimensions of the result have the
/// same isl_id's as the @p Domain.
static __isl_give isl_set *buildConditionSet(ICmpInst::Predicate Pred,
__isl_take isl_pw_aff *L,
__isl_take isl_pw_aff *R,
__isl_keep isl_set *Domain) {
isl_set *ConsequenceCondSet = buildConditionSet(Pred, L, R);
return setDimensionIds(Domain, ConsequenceCondSet);
}
/// @brief Build the conditions sets for the switch @p SI in the @p Domain.
///
/// This will fill @p ConditionSets with the conditions under which control
/// will be moved from @p SI to its successors. Hence, @p ConditionSets will
/// have as many elements as @p SI has successors.
static void
buildConditionSets(Scop &S, SwitchInst *SI, Loop *L, __isl_keep isl_set *Domain,
SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
Value *Condition = getConditionFromTerminator(SI);
assert(Condition && "No condition for switch");
ScalarEvolution &SE = *S.getSE();
BasicBlock *BB = SI->getParent();
isl_pw_aff *LHS, *RHS;
LHS = S.getPwAff(SE.getSCEVAtScope(Condition, L), BB);
unsigned NumSuccessors = SI->getNumSuccessors();
ConditionSets.resize(NumSuccessors);
for (auto &Case : SI->cases()) {
unsigned Idx = Case.getSuccessorIndex();
ConstantInt *CaseValue = Case.getCaseValue();
RHS = S.getPwAff(SE.getSCEV(CaseValue), BB);
isl_set *CaseConditionSet =
buildConditionSet(ICmpInst::ICMP_EQ, isl_pw_aff_copy(LHS), RHS, Domain);
ConditionSets[Idx] = isl_set_coalesce(
isl_set_intersect(CaseConditionSet, isl_set_copy(Domain)));
}
assert(ConditionSets[0] == nullptr && "Default condition set was set");
isl_set *ConditionSetUnion = isl_set_copy(ConditionSets[1]);
for (unsigned u = 2; u < NumSuccessors; u++)
ConditionSetUnion =
isl_set_union(ConditionSetUnion, isl_set_copy(ConditionSets[u]));
ConditionSets[0] = setDimensionIds(
Domain, isl_set_subtract(isl_set_copy(Domain), ConditionSetUnion));
S.markAsOptimized();
isl_pw_aff_free(LHS);
}
/// @brief Build the conditions sets for the branch condition @p Condition in
/// the @p Domain.
///
/// This will fill @p ConditionSets with the conditions under which control
/// will be moved from @p TI to its successors. Hence, @p ConditionSets will
/// have as many elements as @p TI has successors.
static void
buildConditionSets(Scop &S, Value *Condition, TerminatorInst *TI, Loop *L,
__isl_keep isl_set *Domain,
SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
isl_set *ConsequenceCondSet = nullptr;
if (auto *CCond = dyn_cast<ConstantInt>(Condition)) {
if (CCond->isZero())
ConsequenceCondSet = isl_set_empty(isl_set_get_space(Domain));
else
ConsequenceCondSet = isl_set_universe(isl_set_get_space(Domain));
} else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
auto Opcode = BinOp->getOpcode();
assert(Opcode == Instruction::And || Opcode == Instruction::Or);
buildConditionSets(S, BinOp->getOperand(0), TI, L, Domain, ConditionSets);
buildConditionSets(S, BinOp->getOperand(1), TI, L, Domain, ConditionSets);
isl_set_free(ConditionSets.pop_back_val());
isl_set *ConsCondPart0 = ConditionSets.pop_back_val();
isl_set_free(ConditionSets.pop_back_val());
isl_set *ConsCondPart1 = ConditionSets.pop_back_val();
if (Opcode == Instruction::And)
ConsequenceCondSet = isl_set_intersect(ConsCondPart0, ConsCondPart1);
else
ConsequenceCondSet = isl_set_union(ConsCondPart0, ConsCondPart1);
} else {
auto *ICond = dyn_cast<ICmpInst>(Condition);
assert(ICond &&
"Condition of exiting branch was neither constant nor ICmp!");
ScalarEvolution &SE = *S.getSE();
BasicBlock *BB = TI->getParent();
isl_pw_aff *LHS, *RHS;
LHS = S.getPwAff(SE.getSCEVAtScope(ICond->getOperand(0), L), BB);
RHS = S.getPwAff(SE.getSCEVAtScope(ICond->getOperand(1), L), BB);
ConsequenceCondSet =
buildConditionSet(ICond->getPredicate(), LHS, RHS, Domain);
}
assert(ConsequenceCondSet);
isl_set *AlternativeCondSet =
isl_set_complement(isl_set_copy(ConsequenceCondSet));
ConditionSets.push_back(isl_set_coalesce(
isl_set_intersect(ConsequenceCondSet, isl_set_copy(Domain))));
ConditionSets.push_back(isl_set_coalesce(
isl_set_intersect(AlternativeCondSet, isl_set_copy(Domain))));
}
/// @brief Build the conditions sets for the terminator @p TI in the @p Domain.
///
/// This will fill @p ConditionSets with the conditions under which control
/// will be moved from @p TI to its successors. Hence, @p ConditionSets will
/// have as many elements as @p TI has successors.
static void
buildConditionSets(Scop &S, TerminatorInst *TI, Loop *L,
__isl_keep isl_set *Domain,
SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
return buildConditionSets(S, SI, L, Domain, ConditionSets);
assert(isa<BranchInst>(TI) && "Terminator was neither branch nor switch.");
if (TI->getNumSuccessors() == 1) {
ConditionSets.push_back(isl_set_copy(Domain));
return;
}
Value *Condition = getConditionFromTerminator(TI);
assert(Condition && "No condition for Terminator");
return buildConditionSets(S, Condition, TI, L, Domain, ConditionSets);
}
void ScopStmt::buildDomain() {
isl_id *Id;
Id = isl_id_alloc(getIslCtx(), getBaseName(), this);
Domain = getParent()->getDomainConditions(this);
Domain = isl_set_set_tuple_id(Domain, Id);
}
Assume GetElementPtr offsets to be inbounds In case a GEP instruction references into a fixed size array e.g., an access A[i][j] into an array A[100x100], LLVM-IR does not guarantee that the subscripts always compute values that are within array bounds. We now derive the set of parameter values for which all accesses are within bounds and add the assumption that the scop is only every executed with this set of parameter values. Example: void foo(float A[][20], long n, long m { for (long i = 0; i < n; i++) for (long j = 0; j < m; j++) A[i][j] = ... This loop yields out-of-bound accesses if m is at least 20 and at the same time at least one iteration of the outer loop is executed. Hence, we assume: n <= 0 or m <= 20. Doing so simplifies the dependence analysis problem, allows us to perform more optimizations and generate better code. TODO: The location where the GEP instruction is executed is not necessarily the location where the memory is actually accessed. As a result scanning for GEP[s] is imprecise. Even though this is not a correctness problem, this imprecision may result in missed optimizations or non-optimal run-time checks. In polybench where this mismatch between parametric loop bounds and fixed size arrays is common, we see with this patch significant reductions in compile time (up to 50%) and execution time (up to 70%). We see two significant compile time regressions (fdtd-2d, jacobi-2d-imper), and one execution time regression (trmm). Both regressions arise due to additional optimizations that have been enabled by this patch. They can be addressed in subsequent commits. http://reviews.llvm.org/D6369 llvm-svn: 222754
2014-11-25 18:51:12 +08:00
void ScopStmt::deriveAssumptionsFromGEP(GetElementPtrInst *GEP) {
isl_ctx *Ctx = Parent.getIslCtx();
isl_local_space *LSpace = isl_local_space_from_space(getDomainSpace());
Type *Ty = GEP->getPointerOperandType();
ScalarEvolution &SE = *Parent.getSE();
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
ScopDetection &SD = Parent.getSD();
// The set of loads that are required to be invariant.
auto &ScopRIL = *SD.getRequiredInvariantLoads(&Parent.getRegion());
Assume GetElementPtr offsets to be inbounds In case a GEP instruction references into a fixed size array e.g., an access A[i][j] into an array A[100x100], LLVM-IR does not guarantee that the subscripts always compute values that are within array bounds. We now derive the set of parameter values for which all accesses are within bounds and add the assumption that the scop is only every executed with this set of parameter values. Example: void foo(float A[][20], long n, long m { for (long i = 0; i < n; i++) for (long j = 0; j < m; j++) A[i][j] = ... This loop yields out-of-bound accesses if m is at least 20 and at the same time at least one iteration of the outer loop is executed. Hence, we assume: n <= 0 or m <= 20. Doing so simplifies the dependence analysis problem, allows us to perform more optimizations and generate better code. TODO: The location where the GEP instruction is executed is not necessarily the location where the memory is actually accessed. As a result scanning for GEP[s] is imprecise. Even though this is not a correctness problem, this imprecision may result in missed optimizations or non-optimal run-time checks. In polybench where this mismatch between parametric loop bounds and fixed size arrays is common, we see with this patch significant reductions in compile time (up to 50%) and execution time (up to 70%). We see two significant compile time regressions (fdtd-2d, jacobi-2d-imper), and one execution time regression (trmm). Both regressions arise due to additional optimizations that have been enabled by this patch. They can be addressed in subsequent commits. http://reviews.llvm.org/D6369 llvm-svn: 222754
2014-11-25 18:51:12 +08:00
std::vector<const SCEV *> Subscripts;
std::vector<int> Sizes;
std::tie(Subscripts, Sizes) = getIndexExpressionsFromGEP(GEP, SE);
Assume GetElementPtr offsets to be inbounds In case a GEP instruction references into a fixed size array e.g., an access A[i][j] into an array A[100x100], LLVM-IR does not guarantee that the subscripts always compute values that are within array bounds. We now derive the set of parameter values for which all accesses are within bounds and add the assumption that the scop is only every executed with this set of parameter values. Example: void foo(float A[][20], long n, long m { for (long i = 0; i < n; i++) for (long j = 0; j < m; j++) A[i][j] = ... This loop yields out-of-bound accesses if m is at least 20 and at the same time at least one iteration of the outer loop is executed. Hence, we assume: n <= 0 or m <= 20. Doing so simplifies the dependence analysis problem, allows us to perform more optimizations and generate better code. TODO: The location where the GEP instruction is executed is not necessarily the location where the memory is actually accessed. As a result scanning for GEP[s] is imprecise. Even though this is not a correctness problem, this imprecision may result in missed optimizations or non-optimal run-time checks. In polybench where this mismatch between parametric loop bounds and fixed size arrays is common, we see with this patch significant reductions in compile time (up to 50%) and execution time (up to 70%). We see two significant compile time regressions (fdtd-2d, jacobi-2d-imper), and one execution time regression (trmm). Both regressions arise due to additional optimizations that have been enabled by this patch. They can be addressed in subsequent commits. http://reviews.llvm.org/D6369 llvm-svn: 222754
2014-11-25 18:51:12 +08:00
if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
Ty = PtrTy->getElementType();
}
int IndexOffset = Subscripts.size() - Sizes.size();
Assume GetElementPtr offsets to be inbounds In case a GEP instruction references into a fixed size array e.g., an access A[i][j] into an array A[100x100], LLVM-IR does not guarantee that the subscripts always compute values that are within array bounds. We now derive the set of parameter values for which all accesses are within bounds and add the assumption that the scop is only every executed with this set of parameter values. Example: void foo(float A[][20], long n, long m { for (long i = 0; i < n; i++) for (long j = 0; j < m; j++) A[i][j] = ... This loop yields out-of-bound accesses if m is at least 20 and at the same time at least one iteration of the outer loop is executed. Hence, we assume: n <= 0 or m <= 20. Doing so simplifies the dependence analysis problem, allows us to perform more optimizations and generate better code. TODO: The location where the GEP instruction is executed is not necessarily the location where the memory is actually accessed. As a result scanning for GEP[s] is imprecise. Even though this is not a correctness problem, this imprecision may result in missed optimizations or non-optimal run-time checks. In polybench where this mismatch between parametric loop bounds and fixed size arrays is common, we see with this patch significant reductions in compile time (up to 50%) and execution time (up to 70%). We see two significant compile time regressions (fdtd-2d, jacobi-2d-imper), and one execution time regression (trmm). Both regressions arise due to additional optimizations that have been enabled by this patch. They can be addressed in subsequent commits. http://reviews.llvm.org/D6369 llvm-svn: 222754
2014-11-25 18:51:12 +08:00
assert(IndexOffset <= 1 && "Unexpected large index offset");
Assume GetElementPtr offsets to be inbounds In case a GEP instruction references into a fixed size array e.g., an access A[i][j] into an array A[100x100], LLVM-IR does not guarantee that the subscripts always compute values that are within array bounds. We now derive the set of parameter values for which all accesses are within bounds and add the assumption that the scop is only every executed with this set of parameter values. Example: void foo(float A[][20], long n, long m { for (long i = 0; i < n; i++) for (long j = 0; j < m; j++) A[i][j] = ... This loop yields out-of-bound accesses if m is at least 20 and at the same time at least one iteration of the outer loop is executed. Hence, we assume: n <= 0 or m <= 20. Doing so simplifies the dependence analysis problem, allows us to perform more optimizations and generate better code. TODO: The location where the GEP instruction is executed is not necessarily the location where the memory is actually accessed. As a result scanning for GEP[s] is imprecise. Even though this is not a correctness problem, this imprecision may result in missed optimizations or non-optimal run-time checks. In polybench where this mismatch between parametric loop bounds and fixed size arrays is common, we see with this patch significant reductions in compile time (up to 50%) and execution time (up to 70%). We see two significant compile time regressions (fdtd-2d, jacobi-2d-imper), and one execution time regression (trmm). Both regressions arise due to additional optimizations that have been enabled by this patch. They can be addressed in subsequent commits. http://reviews.llvm.org/D6369 llvm-svn: 222754
2014-11-25 18:51:12 +08:00
for (size_t i = 0; i < Sizes.size(); i++) {
auto Expr = Subscripts[i + IndexOffset];
auto Size = Sizes[i];
Assume GetElementPtr offsets to be inbounds In case a GEP instruction references into a fixed size array e.g., an access A[i][j] into an array A[100x100], LLVM-IR does not guarantee that the subscripts always compute values that are within array bounds. We now derive the set of parameter values for which all accesses are within bounds and add the assumption that the scop is only every executed with this set of parameter values. Example: void foo(float A[][20], long n, long m { for (long i = 0; i < n; i++) for (long j = 0; j < m; j++) A[i][j] = ... This loop yields out-of-bound accesses if m is at least 20 and at the same time at least one iteration of the outer loop is executed. Hence, we assume: n <= 0 or m <= 20. Doing so simplifies the dependence analysis problem, allows us to perform more optimizations and generate better code. TODO: The location where the GEP instruction is executed is not necessarily the location where the memory is actually accessed. As a result scanning for GEP[s] is imprecise. Even though this is not a correctness problem, this imprecision may result in missed optimizations or non-optimal run-time checks. In polybench where this mismatch between parametric loop bounds and fixed size arrays is common, we see with this patch significant reductions in compile time (up to 50%) and execution time (up to 70%). We see two significant compile time regressions (fdtd-2d, jacobi-2d-imper), and one execution time regression (trmm). Both regressions arise due to additional optimizations that have been enabled by this patch. They can be addressed in subsequent commits. http://reviews.llvm.org/D6369 llvm-svn: 222754
2014-11-25 18:51:12 +08:00
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
InvariantLoadsSetTy AccessILS;
if (!isAffineExpr(&Parent.getRegion(), Expr, SE, nullptr, &AccessILS))
continue;
bool NonAffine = false;
for (LoadInst *LInst : AccessILS)
if (!ScopRIL.count(LInst))
NonAffine = true;
if (NonAffine)
continue;
Assume GetElementPtr offsets to be inbounds In case a GEP instruction references into a fixed size array e.g., an access A[i][j] into an array A[100x100], LLVM-IR does not guarantee that the subscripts always compute values that are within array bounds. We now derive the set of parameter values for which all accesses are within bounds and add the assumption that the scop is only every executed with this set of parameter values. Example: void foo(float A[][20], long n, long m { for (long i = 0; i < n; i++) for (long j = 0; j < m; j++) A[i][j] = ... This loop yields out-of-bound accesses if m is at least 20 and at the same time at least one iteration of the outer loop is executed. Hence, we assume: n <= 0 or m <= 20. Doing so simplifies the dependence analysis problem, allows us to perform more optimizations and generate better code. TODO: The location where the GEP instruction is executed is not necessarily the location where the memory is actually accessed. As a result scanning for GEP[s] is imprecise. Even though this is not a correctness problem, this imprecision may result in missed optimizations or non-optimal run-time checks. In polybench where this mismatch between parametric loop bounds and fixed size arrays is common, we see with this patch significant reductions in compile time (up to 50%) and execution time (up to 70%). We see two significant compile time regressions (fdtd-2d, jacobi-2d-imper), and one execution time regression (trmm). Both regressions arise due to additional optimizations that have been enabled by this patch. They can be addressed in subsequent commits. http://reviews.llvm.org/D6369 llvm-svn: 222754
2014-11-25 18:51:12 +08:00
isl_pw_aff *AccessOffset = getPwAff(Expr);
AccessOffset =
isl_pw_aff_set_tuple_id(AccessOffset, isl_dim_in, getDomainId());
Assume GetElementPtr offsets to be inbounds In case a GEP instruction references into a fixed size array e.g., an access A[i][j] into an array A[100x100], LLVM-IR does not guarantee that the subscripts always compute values that are within array bounds. We now derive the set of parameter values for which all accesses are within bounds and add the assumption that the scop is only every executed with this set of parameter values. Example: void foo(float A[][20], long n, long m { for (long i = 0; i < n; i++) for (long j = 0; j < m; j++) A[i][j] = ... This loop yields out-of-bound accesses if m is at least 20 and at the same time at least one iteration of the outer loop is executed. Hence, we assume: n <= 0 or m <= 20. Doing so simplifies the dependence analysis problem, allows us to perform more optimizations and generate better code. TODO: The location where the GEP instruction is executed is not necessarily the location where the memory is actually accessed. As a result scanning for GEP[s] is imprecise. Even though this is not a correctness problem, this imprecision may result in missed optimizations or non-optimal run-time checks. In polybench where this mismatch between parametric loop bounds and fixed size arrays is common, we see with this patch significant reductions in compile time (up to 50%) and execution time (up to 70%). We see two significant compile time regressions (fdtd-2d, jacobi-2d-imper), and one execution time regression (trmm). Both regressions arise due to additional optimizations that have been enabled by this patch. They can be addressed in subsequent commits. http://reviews.llvm.org/D6369 llvm-svn: 222754
2014-11-25 18:51:12 +08:00
isl_pw_aff *DimSize = isl_pw_aff_from_aff(isl_aff_val_on_domain(
isl_local_space_copy(LSpace), isl_val_int_from_si(Ctx, Size)));
Assume GetElementPtr offsets to be inbounds In case a GEP instruction references into a fixed size array e.g., an access A[i][j] into an array A[100x100], LLVM-IR does not guarantee that the subscripts always compute values that are within array bounds. We now derive the set of parameter values for which all accesses are within bounds and add the assumption that the scop is only every executed with this set of parameter values. Example: void foo(float A[][20], long n, long m { for (long i = 0; i < n; i++) for (long j = 0; j < m; j++) A[i][j] = ... This loop yields out-of-bound accesses if m is at least 20 and at the same time at least one iteration of the outer loop is executed. Hence, we assume: n <= 0 or m <= 20. Doing so simplifies the dependence analysis problem, allows us to perform more optimizations and generate better code. TODO: The location where the GEP instruction is executed is not necessarily the location where the memory is actually accessed. As a result scanning for GEP[s] is imprecise. Even though this is not a correctness problem, this imprecision may result in missed optimizations or non-optimal run-time checks. In polybench where this mismatch between parametric loop bounds and fixed size arrays is common, we see with this patch significant reductions in compile time (up to 50%) and execution time (up to 70%). We see two significant compile time regressions (fdtd-2d, jacobi-2d-imper), and one execution time regression (trmm). Both regressions arise due to additional optimizations that have been enabled by this patch. They can be addressed in subsequent commits. http://reviews.llvm.org/D6369 llvm-svn: 222754
2014-11-25 18:51:12 +08:00
isl_set *OutOfBound = isl_pw_aff_ge_set(AccessOffset, DimSize);
OutOfBound = isl_set_intersect(getDomain(), OutOfBound);
OutOfBound = isl_set_params(OutOfBound);
isl_set *InBound = isl_set_complement(OutOfBound);
isl_set *Executed = isl_set_params(getDomain());
Assume GetElementPtr offsets to be inbounds In case a GEP instruction references into a fixed size array e.g., an access A[i][j] into an array A[100x100], LLVM-IR does not guarantee that the subscripts always compute values that are within array bounds. We now derive the set of parameter values for which all accesses are within bounds and add the assumption that the scop is only every executed with this set of parameter values. Example: void foo(float A[][20], long n, long m { for (long i = 0; i < n; i++) for (long j = 0; j < m; j++) A[i][j] = ... This loop yields out-of-bound accesses if m is at least 20 and at the same time at least one iteration of the outer loop is executed. Hence, we assume: n <= 0 or m <= 20. Doing so simplifies the dependence analysis problem, allows us to perform more optimizations and generate better code. TODO: The location where the GEP instruction is executed is not necessarily the location where the memory is actually accessed. As a result scanning for GEP[s] is imprecise. Even though this is not a correctness problem, this imprecision may result in missed optimizations or non-optimal run-time checks. In polybench where this mismatch between parametric loop bounds and fixed size arrays is common, we see with this patch significant reductions in compile time (up to 50%) and execution time (up to 70%). We see two significant compile time regressions (fdtd-2d, jacobi-2d-imper), and one execution time regression (trmm). Both regressions arise due to additional optimizations that have been enabled by this patch. They can be addressed in subsequent commits. http://reviews.llvm.org/D6369 llvm-svn: 222754
2014-11-25 18:51:12 +08:00
// A => B == !A or B
isl_set *InBoundIfExecuted =
isl_set_union(isl_set_complement(Executed), InBound);
Assume GetElementPtr offsets to be inbounds In case a GEP instruction references into a fixed size array e.g., an access A[i][j] into an array A[100x100], LLVM-IR does not guarantee that the subscripts always compute values that are within array bounds. We now derive the set of parameter values for which all accesses are within bounds and add the assumption that the scop is only every executed with this set of parameter values. Example: void foo(float A[][20], long n, long m { for (long i = 0; i < n; i++) for (long j = 0; j < m; j++) A[i][j] = ... This loop yields out-of-bound accesses if m is at least 20 and at the same time at least one iteration of the outer loop is executed. Hence, we assume: n <= 0 or m <= 20. Doing so simplifies the dependence analysis problem, allows us to perform more optimizations and generate better code. TODO: The location where the GEP instruction is executed is not necessarily the location where the memory is actually accessed. As a result scanning for GEP[s] is imprecise. Even though this is not a correctness problem, this imprecision may result in missed optimizations or non-optimal run-time checks. In polybench where this mismatch between parametric loop bounds and fixed size arrays is common, we see with this patch significant reductions in compile time (up to 50%) and execution time (up to 70%). We see two significant compile time regressions (fdtd-2d, jacobi-2d-imper), and one execution time regression (trmm). Both regressions arise due to additional optimizations that have been enabled by this patch. They can be addressed in subsequent commits. http://reviews.llvm.org/D6369 llvm-svn: 222754
2014-11-25 18:51:12 +08:00
Parent.addAssumption(InBoundIfExecuted);
Assume GetElementPtr offsets to be inbounds In case a GEP instruction references into a fixed size array e.g., an access A[i][j] into an array A[100x100], LLVM-IR does not guarantee that the subscripts always compute values that are within array bounds. We now derive the set of parameter values for which all accesses are within bounds and add the assumption that the scop is only every executed with this set of parameter values. Example: void foo(float A[][20], long n, long m { for (long i = 0; i < n; i++) for (long j = 0; j < m; j++) A[i][j] = ... This loop yields out-of-bound accesses if m is at least 20 and at the same time at least one iteration of the outer loop is executed. Hence, we assume: n <= 0 or m <= 20. Doing so simplifies the dependence analysis problem, allows us to perform more optimizations and generate better code. TODO: The location where the GEP instruction is executed is not necessarily the location where the memory is actually accessed. As a result scanning for GEP[s] is imprecise. Even though this is not a correctness problem, this imprecision may result in missed optimizations or non-optimal run-time checks. In polybench where this mismatch between parametric loop bounds and fixed size arrays is common, we see with this patch significant reductions in compile time (up to 50%) and execution time (up to 70%). We see two significant compile time regressions (fdtd-2d, jacobi-2d-imper), and one execution time regression (trmm). Both regressions arise due to additional optimizations that have been enabled by this patch. They can be addressed in subsequent commits. http://reviews.llvm.org/D6369 llvm-svn: 222754
2014-11-25 18:51:12 +08:00
}
isl_local_space_free(LSpace);
}
void ScopStmt::deriveAssumptions(BasicBlock *Block) {
for (Instruction &Inst : *Block)
Assume GetElementPtr offsets to be inbounds In case a GEP instruction references into a fixed size array e.g., an access A[i][j] into an array A[100x100], LLVM-IR does not guarantee that the subscripts always compute values that are within array bounds. We now derive the set of parameter values for which all accesses are within bounds and add the assumption that the scop is only every executed with this set of parameter values. Example: void foo(float A[][20], long n, long m { for (long i = 0; i < n; i++) for (long j = 0; j < m; j++) A[i][j] = ... This loop yields out-of-bound accesses if m is at least 20 and at the same time at least one iteration of the outer loop is executed. Hence, we assume: n <= 0 or m <= 20. Doing so simplifies the dependence analysis problem, allows us to perform more optimizations and generate better code. TODO: The location where the GEP instruction is executed is not necessarily the location where the memory is actually accessed. As a result scanning for GEP[s] is imprecise. Even though this is not a correctness problem, this imprecision may result in missed optimizations or non-optimal run-time checks. In polybench where this mismatch between parametric loop bounds and fixed size arrays is common, we see with this patch significant reductions in compile time (up to 50%) and execution time (up to 70%). We see two significant compile time regressions (fdtd-2d, jacobi-2d-imper), and one execution time regression (trmm). Both regressions arise due to additional optimizations that have been enabled by this patch. They can be addressed in subsequent commits. http://reviews.llvm.org/D6369 llvm-svn: 222754
2014-11-25 18:51:12 +08:00
if (auto *GEP = dyn_cast<GetElementPtrInst>(&Inst))
deriveAssumptionsFromGEP(GEP);
}
void ScopStmt::collectSurroundingLoops() {
for (unsigned u = 0, e = isl_set_n_dim(Domain); u < e; u++) {
isl_id *DimId = isl_set_get_dim_id(Domain, isl_dim_set, u);
NestLoops.push_back(static_cast<Loop *>(isl_id_get_user(DimId)));
isl_id_free(DimId);
}
}
ScopStmt::ScopStmt(Scop &parent, Region &R)
: Parent(parent), Domain(nullptr), BB(nullptr), R(&R), Build(nullptr) {
BaseName = getIslCompatibleName("Stmt_", R.getNameStr(), "");
}
ScopStmt::ScopStmt(Scop &parent, BasicBlock &bb)
: Parent(parent), Domain(nullptr), BB(&bb), R(nullptr), Build(nullptr) {
BaseName = getIslCompatibleName("Stmt_", &bb, "");
}
void ScopStmt::init() {
assert(!Domain && "init must be called only once");
buildDomain();
collectSurroundingLoops();
buildAccessRelations();
if (BB) {
deriveAssumptions(BB);
} else {
for (BasicBlock *Block : R->blocks()) {
deriveAssumptions(Block);
}
}
if (DetectReductions)
checkForReductions();
}
/// @brief Collect loads which might form a reduction chain with @p StoreMA
///
2015-02-25 00:00:29 +08:00
/// Check if the stored value for @p StoreMA is a binary operator with one or
/// two loads as operands. If the binary operand is commutative & associative,
/// used only once (by @p StoreMA) and its load operands are also used only
/// once, we have found a possible reduction chain. It starts at an operand
/// load and includes the binary operator and @p StoreMA.
///
2015-02-25 00:00:29 +08:00
/// Note: We allow only one use to ensure the load and binary operator cannot
/// escape this block or into any other store except @p StoreMA.
void ScopStmt::collectCandiateReductionLoads(
MemoryAccess *StoreMA, SmallVectorImpl<MemoryAccess *> &Loads) {
auto *Store = dyn_cast<StoreInst>(StoreMA->getAccessInstruction());
if (!Store)
return;
// Skip if there is not one binary operator between the load and the store
auto *BinOp = dyn_cast<BinaryOperator>(Store->getValueOperand());
if (!BinOp)
return;
// Skip if the binary operators has multiple uses
if (BinOp->getNumUses() != 1)
return;
2015-02-25 00:00:29 +08:00
// Skip if the opcode of the binary operator is not commutative/associative
if (!BinOp->isCommutative() || !BinOp->isAssociative())
return;
// Skip if the binary operator is outside the current SCoP
if (BinOp->getParent() != Store->getParent())
return;
// Skip if it is a multiplicative reduction and we disabled them
if (DisableMultiplicativeReductions &&
(BinOp->getOpcode() == Instruction::Mul ||
BinOp->getOpcode() == Instruction::FMul))
return;
// Check the binary operator operands for a candidate load
auto *PossibleLoad0 = dyn_cast<LoadInst>(BinOp->getOperand(0));
auto *PossibleLoad1 = dyn_cast<LoadInst>(BinOp->getOperand(1));
if (!PossibleLoad0 && !PossibleLoad1)
return;
// A load is only a candidate if it cannot escape (thus has only this use)
if (PossibleLoad0 && PossibleLoad0->getNumUses() == 1)
if (PossibleLoad0->getParent() == Store->getParent())
Loads.push_back(lookupAccessFor(PossibleLoad0));
if (PossibleLoad1 && PossibleLoad1->getNumUses() == 1)
if (PossibleLoad1->getParent() == Store->getParent())
Loads.push_back(lookupAccessFor(PossibleLoad1));
}
/// @brief Check for reductions in this ScopStmt
///
2015-02-25 00:00:29 +08:00
/// Iterate over all store memory accesses and check for valid binary reduction
/// like chains. For all candidates we check if they have the same base address
/// and there are no other accesses which overlap with them. The base address
/// check rules out impossible reductions candidates early. The overlap check,
/// together with the "only one user" check in collectCandiateReductionLoads,
/// guarantees that none of the intermediate results will escape during
/// execution of the loop nest. We basically check here that no other memory
/// access can access the same memory as the potential reduction.
void ScopStmt::checkForReductions() {
SmallVector<MemoryAccess *, 2> Loads;
SmallVector<std::pair<MemoryAccess *, MemoryAccess *>, 4> Candidates;
2015-02-25 00:00:29 +08:00
// First collect candidate load-store reduction chains by iterating over all
// stores and collecting possible reduction loads.
for (MemoryAccess *StoreMA : MemAccs) {
if (StoreMA->isRead())
continue;
Loads.clear();
collectCandiateReductionLoads(StoreMA, Loads);
for (MemoryAccess *LoadMA : Loads)
Candidates.push_back(std::make_pair(LoadMA, StoreMA));
}
// Then check each possible candidate pair.
for (const auto &CandidatePair : Candidates) {
bool Valid = true;
isl_map *LoadAccs = CandidatePair.first->getAccessRelation();
isl_map *StoreAccs = CandidatePair.second->getAccessRelation();
// Skip those with obviously unequal base addresses.
if (!isl_map_has_equal_space(LoadAccs, StoreAccs)) {
isl_map_free(LoadAccs);
isl_map_free(StoreAccs);
continue;
}
// And check if the remaining for overlap with other memory accesses.
isl_map *AllAccsRel = isl_map_union(LoadAccs, StoreAccs);
AllAccsRel = isl_map_intersect_domain(AllAccsRel, getDomain());
isl_set *AllAccs = isl_map_range(AllAccsRel);
for (MemoryAccess *MA : MemAccs) {
if (MA == CandidatePair.first || MA == CandidatePair.second)
continue;
isl_map *AccRel =
isl_map_intersect_domain(MA->getAccessRelation(), getDomain());
isl_set *Accs = isl_map_range(AccRel);
if (isl_set_has_equal_space(AllAccs, Accs) || isl_set_free(Accs)) {
isl_set *OverlapAccs = isl_set_intersect(Accs, isl_set_copy(AllAccs));
Valid = Valid && isl_set_is_empty(OverlapAccs);
isl_set_free(OverlapAccs);
}
}
isl_set_free(AllAccs);
if (!Valid)
continue;
const LoadInst *Load =
dyn_cast<const LoadInst>(CandidatePair.first->getAccessInstruction());
MemoryAccess::ReductionType RT =
getReductionType(dyn_cast<BinaryOperator>(Load->user_back()), Load);
// If no overlapping access was found we mark the load and store as
// reduction like.
CandidatePair.first->markAsReductionLike(RT);
CandidatePair.second->markAsReductionLike(RT);
}
}
2013-01-15 06:40:23 +08:00
std::string ScopStmt::getDomainStr() const { return stringFromIslObj(Domain); }
std::string ScopStmt::getScheduleStr() const {
auto *S = getSchedule();
auto Str = stringFromIslObj(S);
isl_map_free(S);
return Str;
}
2013-01-15 06:40:23 +08:00
unsigned ScopStmt::getNumParams() const { return Parent.getNumParams(); }
2015-02-20 06:16:12 +08:00
unsigned ScopStmt::getNumIterators() const { return NestLoops.size(); }
const char *ScopStmt::getBaseName() const { return BaseName.c_str(); }
const Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const {
return NestLoops[Dimension];
}
2013-01-15 06:40:23 +08:00
isl_ctx *ScopStmt::getIslCtx() const { return Parent.getIslCtx(); }
__isl_give isl_set *ScopStmt::getDomain() const { return isl_set_copy(Domain); }
__isl_give isl_space *ScopStmt::getDomainSpace() const {
return isl_set_get_space(Domain);
}
__isl_give isl_id *ScopStmt::getDomainId() const {
return isl_set_get_tuple_id(Domain);
}
ScopStmt::~ScopStmt() {
DeleteContainerSeconds(InstructionToAccess);
isl_set_free(Domain);
}
void ScopStmt::print(raw_ostream &OS) const {
OS << "\t" << getBaseName() << "\n";
OS.indent(12) << "Domain :=\n";
if (Domain) {
OS.indent(16) << getDomainStr() << ";\n";
} else
OS.indent(16) << "n/a\n";
OS.indent(12) << "Schedule :=\n";
if (Domain) {
OS.indent(16) << getScheduleStr() << ";\n";
} else
OS.indent(16) << "n/a\n";
for (MemoryAccess *Access : MemAccs)
Access->print(OS);
}
void ScopStmt::dump() const { print(dbgs()); }
void ScopStmt::removeMemoryAccesses(MemoryAccessList &InvMAs) {
// Remove all memory accesses in @p InvMAs from this statement together
// with all scalar accesses that were caused by them. The tricky iteration
// order uses is needed because the MemAccs is a vector and the order in
// which the accesses of each memory access list (MAL) are stored in this
// vector is reversed.
for (MemoryAccess *MA : InvMAs) {
auto &MAL = *lookupAccessesFor(MA->getAccessInstruction());
MAL.reverse();
auto MALIt = MAL.begin();
auto MALEnd = MAL.end();
auto MemAccsIt = MemAccs.begin();
while (MALIt != MALEnd) {
while (*MemAccsIt != *MALIt)
MemAccsIt++;
MALIt++;
MemAccs.erase(MemAccsIt);
}
InstructionToAccess.erase(MA->getAccessInstruction());
delete &MAL;
}
}
//===----------------------------------------------------------------------===//
/// Scop class implement
void Scop::setContext(__isl_take isl_set *NewContext) {
NewContext = isl_set_align_params(NewContext, isl_set_get_space(Context));
isl_set_free(Context);
Context = NewContext;
}
/// @brief Remap parameter values but keep AddRecs valid wrt. invariant loads.
struct SCEVSensitiveParameterRewriter
: public SCEVVisitor<SCEVSensitiveParameterRewriter, const SCEV *> {
ValueToValueMap &VMap;
ScalarEvolution &SE;
public:
SCEVSensitiveParameterRewriter(ValueToValueMap &VMap, ScalarEvolution &SE)
: VMap(VMap), SE(SE) {}
static const SCEV *rewrite(const SCEV *E, ScalarEvolution &SE,
ValueToValueMap &VMap) {
SCEVSensitiveParameterRewriter SSPR(VMap, SE);
return SSPR.visit(E);
}
const SCEV *visit(const SCEV *E) {
return SCEVVisitor<SCEVSensitiveParameterRewriter, const SCEV *>::visit(E);
}
const SCEV *visitConstant(const SCEVConstant *E) { return E; }
const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) {
return SE.getTruncateExpr(visit(E->getOperand()), E->getType());
}
const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) {
return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType());
}
const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) {
return SE.getSignExtendExpr(visit(E->getOperand()), E->getType());
}
const SCEV *visitAddExpr(const SCEVAddExpr *E) {
SmallVector<const SCEV *, 4> Operands;
for (int i = 0, e = E->getNumOperands(); i < e; ++i)
Operands.push_back(visit(E->getOperand(i)));
return SE.getAddExpr(Operands);
}
const SCEV *visitMulExpr(const SCEVMulExpr *E) {
SmallVector<const SCEV *, 4> Operands;
for (int i = 0, e = E->getNumOperands(); i < e; ++i)
Operands.push_back(visit(E->getOperand(i)));
return SE.getMulExpr(Operands);
}
const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) {
SmallVector<const SCEV *, 4> Operands;
for (int i = 0, e = E->getNumOperands(); i < e; ++i)
Operands.push_back(visit(E->getOperand(i)));
return SE.getSMaxExpr(Operands);
}
const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) {
SmallVector<const SCEV *, 4> Operands;
for (int i = 0, e = E->getNumOperands(); i < e; ++i)
Operands.push_back(visit(E->getOperand(i)));
return SE.getUMaxExpr(Operands);
}
const SCEV *visitUDivExpr(const SCEVUDivExpr *E) {
return SE.getUDivExpr(visit(E->getLHS()), visit(E->getRHS()));
}
const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
auto *Start = visit(E->getStart());
auto *AddRec = SE.getAddRecExpr(SE.getConstant(E->getType(), 0),
visit(E->getStepRecurrence(SE)),
E->getLoop(), SCEV::FlagAnyWrap);
return SE.getAddExpr(Start, AddRec);
}
const SCEV *visitUnknown(const SCEVUnknown *E) {
if (auto *NewValue = VMap.lookup(E->getValue()))
return SE.getUnknown(NewValue);
return E;
}
};
const SCEV *Scop::getRepresentingInvariantLoadSCEV(const SCEV *S) {
return SCEVSensitiveParameterRewriter::rewrite(S, *SE, InvEquivClassVMap);
}
void Scop::addParams(std::vector<const SCEV *> NewParameters) {
for (const SCEV *Parameter : NewParameters) {
Parameter = extractConstantFactor(Parameter, *SE).second;
// Normalize the SCEV to get the representing element for an invariant load.
Parameter = getRepresentingInvariantLoadSCEV(Parameter);
if (ParameterIds.find(Parameter) != ParameterIds.end())
continue;
int dimension = Parameters.size();
Parameters.push_back(Parameter);
ParameterIds[Parameter] = dimension;
}
}
__isl_give isl_id *Scop::getIdForParam(const SCEV *Parameter) {
// Normalize the SCEV to get the representing element for an invariant load.
Parameter = getRepresentingInvariantLoadSCEV(Parameter);
ParamIdType::const_iterator IdIter = ParameterIds.find(Parameter);
if (IdIter == ParameterIds.end())
2014-04-16 15:33:47 +08:00
return nullptr;
std::string ParameterName;
if (const SCEVUnknown *ValueParameter = dyn_cast<SCEVUnknown>(Parameter)) {
Value *Val = ValueParameter->getValue();
ParameterName = Val->getName();
if (!Val->hasName())
if (LoadInst *LI = dyn_cast<LoadInst>(Val))
ParameterName =
LI->getPointerOperand()->stripInBoundsOffsets()->getName();
}
if (ParameterName == "" || ParameterName.substr(0, 2) == "p_")
ParameterName = "p_" + utostr_32(IdIter->second);
return isl_id_alloc(getIslCtx(), ParameterName.c_str(),
const_cast<void *>((const void *)Parameter));
}
isl_set *Scop::addNonEmptyDomainConstraints(isl_set *C) const {
isl_set *DomainContext = isl_union_set_params(getDomains());
return isl_set_intersect_params(C, DomainContext);
}
void Scop::buildBoundaryContext() {
BoundaryContext = Affinator.getWrappingContext();
BoundaryContext = isl_set_complement(BoundaryContext);
BoundaryContext = isl_set_gist_params(BoundaryContext, getContext());
}
void Scop::addUserContext() {
if (UserContextStr.empty())
return;
isl_set *UserContext = isl_set_read_from_str(IslCtx, UserContextStr.c_str());
isl_space *Space = getParamSpace();
if (isl_space_dim(Space, isl_dim_param) !=
isl_set_dim(UserContext, isl_dim_param)) {
auto SpaceStr = isl_space_to_str(Space);
errs() << "Error: the context provided in -polly-context has not the same "
<< "number of dimensions than the computed context. Due to this "
<< "mismatch, the -polly-context option is ignored. Please provide "
<< "the context in the parameter space: " << SpaceStr << ".\n";
free(SpaceStr);
isl_set_free(UserContext);
isl_space_free(Space);
return;
}
for (unsigned i = 0; i < isl_space_dim(Space, isl_dim_param); i++) {
auto NameContext = isl_set_get_dim_name(Context, isl_dim_param, i);
auto NameUserContext = isl_set_get_dim_name(UserContext, isl_dim_param, i);
if (strcmp(NameContext, NameUserContext) != 0) {
auto SpaceStr = isl_space_to_str(Space);
errs() << "Error: the name of dimension " << i
<< " provided in -polly-context "
<< "is '" << NameUserContext << "', but the name in the computed "
<< "context is '" << NameContext
<< "'. Due to this name mismatch, "
<< "the -polly-context option is ignored. Please provide "
<< "the context in the parameter space: " << SpaceStr << ".\n";
free(SpaceStr);
isl_set_free(UserContext);
isl_space_free(Space);
return;
}
UserContext =
isl_set_set_dim_id(UserContext, isl_dim_param, i,
isl_space_get_dim_id(Space, isl_dim_param, i));
}
Context = isl_set_intersect(Context, UserContext);
isl_space_free(Space);
}
void Scop::buildInvariantEquivalenceClasses() {
DenseMap<const SCEV *, LoadInst *> EquivClasses;
const InvariantLoadsSetTy &RIL = *SD.getRequiredInvariantLoads(&getRegion());
for (LoadInst *LInst : RIL) {
const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
LoadInst *&ClassRep = EquivClasses[PointerSCEV];
if (!ClassRep)
ClassRep = LInst;
else
InvEquivClassVMap[LInst] = ClassRep;
}
}
void Scop::buildContext() {
isl_space *Space = isl_space_params_alloc(IslCtx, 0);
Context = isl_set_universe(isl_space_copy(Space));
AssumedContext = isl_set_universe(Space);
}
void Scop::addParameterBounds() {
for (const auto &ParamID : ParameterIds) {
int dim = ParamID.second;
ConstantRange SRange = SE->getSignedRange(ParamID.first);
Context = addRangeBoundsToSet(Context, SRange, dim, isl_dim_param);
}
}
void Scop::realignParams() {
// Add all parameters into a common model.
isl_space *Space = isl_space_params_alloc(IslCtx, ParameterIds.size());
for (const auto &ParamID : ParameterIds) {
const SCEV *Parameter = ParamID.first;
isl_id *id = getIdForParam(Parameter);
Space = isl_space_set_dim_id(Space, isl_dim_param, ParamID.second, id);
}
// Align the parameters of all data structures to the model.
Context = isl_set_align_params(Context, Space);
for (ScopStmt &Stmt : *this)
Stmt.realignParams();
}
static __isl_give isl_set *
simplifyAssumptionContext(__isl_take isl_set *AssumptionContext,
const Scop &S) {
isl_set *DomainParameters = isl_union_set_params(S.getDomains());
AssumptionContext = isl_set_gist_params(AssumptionContext, DomainParameters);
AssumptionContext = isl_set_gist_params(AssumptionContext, S.getContext());
return AssumptionContext;
}
void Scop::simplifyContexts() {
// The parameter constraints of the iteration domains give us a set of
// constraints that need to hold for all cases where at least a single
// statement iteration is executed in the whole scop. We now simplify the
// assumed context under the assumption that such constraints hold and at
// least a single statement iteration is executed. For cases where no
// statement instances are executed, the assumptions we have taken about
// the executed code do not matter and can be changed.
//
// WARNING: This only holds if the assumptions we have taken do not reduce
// the set of statement instances that are executed. Otherwise we
// may run into a case where the iteration domains suggest that
2015-02-25 00:00:29 +08:00
// for a certain set of parameter constraints no code is executed,
// but in the original program some computation would have been
2015-02-25 00:00:29 +08:00
// performed. In such a case, modifying the run-time conditions and
// possibly influencing the run-time check may cause certain scops
// to not be executed.
//
// Example:
//
// When delinearizing the following code:
//
// for (long i = 0; i < 100; i++)
// for (long j = 0; j < m; j++)
// A[i+p][j] = 1.0;
//
// we assume that the condition m <= 0 or (m >= 1 and p >= 0) holds as
2015-02-25 00:00:29 +08:00
// otherwise we would access out of bound data. Now, knowing that code is
// only executed for the case m >= 0, it is sufficient to assume p >= 0.
AssumedContext = simplifyAssumptionContext(AssumedContext, *this);
BoundaryContext = simplifyAssumptionContext(BoundaryContext, *this);
}
/// @brief Add the minimal/maximal access in @p Set to @p User.
static isl_stat buildMinMaxAccess(__isl_take isl_set *Set, void *User) {
Scop::MinMaxVectorTy *MinMaxAccesses = (Scop::MinMaxVectorTy *)User;
isl_pw_multi_aff *MinPMA, *MaxPMA;
isl_pw_aff *LastDimAff;
isl_aff *OneAff;
unsigned Pos;
// Restrict the number of parameters involved in the access as the lexmin/
// lexmax computation will take too long if this number is high.
//
// Experiments with a simple test case using an i7 4800MQ:
//
// #Parameters involved | Time (in sec)
// 6 | 0.01
// 7 | 0.04
// 8 | 0.12
// 9 | 0.40
// 10 | 1.54
// 11 | 6.78
// 12 | 30.38
//
if (isl_set_n_param(Set) > RunTimeChecksMaxParameters) {
unsigned InvolvedParams = 0;
for (unsigned u = 0, e = isl_set_n_param(Set); u < e; u++)
if (isl_set_involves_dims(Set, isl_dim_param, u, 1))
InvolvedParams++;
if (InvolvedParams > RunTimeChecksMaxParameters) {
isl_set_free(Set);
return isl_stat_error;
}
}
Set = isl_set_remove_divs(Set);
MinPMA = isl_set_lexmin_pw_multi_aff(isl_set_copy(Set));
MaxPMA = isl_set_lexmax_pw_multi_aff(isl_set_copy(Set));
MinPMA = isl_pw_multi_aff_coalesce(MinPMA);
MaxPMA = isl_pw_multi_aff_coalesce(MaxPMA);
// Adjust the last dimension of the maximal access by one as we want to
// enclose the accessed memory region by MinPMA and MaxPMA. The pointer
// we test during code generation might now point after the end of the
// allocated array but we will never dereference it anyway.
assert(isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) &&
"Assumed at least one output dimension");
Pos = isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) - 1;
LastDimAff = isl_pw_multi_aff_get_pw_aff(MaxPMA, Pos);
OneAff = isl_aff_zero_on_domain(
isl_local_space_from_space(isl_pw_aff_get_domain_space(LastDimAff)));
OneAff = isl_aff_add_constant_si(OneAff, 1);
LastDimAff = isl_pw_aff_add(LastDimAff, isl_pw_aff_from_aff(OneAff));
MaxPMA = isl_pw_multi_aff_set_pw_aff(MaxPMA, Pos, LastDimAff);
MinMaxAccesses->push_back(std::make_pair(MinPMA, MaxPMA));
isl_set_free(Set);
return isl_stat_ok;
}
static __isl_give isl_set *getAccessDomain(MemoryAccess *MA) {
isl_set *Domain = MA->getStatement()->getDomain();
Domain = isl_set_project_out(Domain, isl_dim_set, 0, isl_set_n_dim(Domain));
return isl_set_reset_tuple_id(Domain);
}
/// @brief Wrapper function to calculate minimal/maximal accesses to each array.
static bool calculateMinMaxAccess(__isl_take isl_union_map *Accesses,
__isl_take isl_union_set *Domains,
Scop::MinMaxVectorTy &MinMaxAccesses) {
Accesses = isl_union_map_intersect_domain(Accesses, Domains);
isl_union_set *Locations = isl_union_map_range(Accesses);
Locations = isl_union_set_coalesce(Locations);
Locations = isl_union_set_detect_equalities(Locations);
bool Valid = (0 == isl_union_set_foreach_set(Locations, buildMinMaxAccess,
&MinMaxAccesses));
isl_union_set_free(Locations);
return Valid;
}
/// @brief Helper to treat non-affine regions and basic blocks the same.
///
///{
/// @brief Return the block that is the representing block for @p RN.
static inline BasicBlock *getRegionNodeBasicBlock(RegionNode *RN) {
return RN->isSubRegion() ? RN->getNodeAs<Region>()->getEntry()
: RN->getNodeAs<BasicBlock>();
}
/// @brief Return the @p idx'th block that is executed after @p RN.
static inline BasicBlock *
getRegionNodeSuccessor(RegionNode *RN, TerminatorInst *TI, unsigned idx) {
if (RN->isSubRegion()) {
assert(idx == 0);
return RN->getNodeAs<Region>()->getExit();
}
return TI->getSuccessor(idx);
}
/// @brief Return the smallest loop surrounding @p RN.
static inline Loop *getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) {
if (!RN->isSubRegion())
return LI.getLoopFor(RN->getNodeAs<BasicBlock>());
Region *NonAffineSubRegion = RN->getNodeAs<Region>();
Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry());
while (L && NonAffineSubRegion->contains(L))
L = L->getParentLoop();
return L;
}
static inline unsigned getNumBlocksInRegionNode(RegionNode *RN) {
if (!RN->isSubRegion())
return 1;
unsigned NumBlocks = 0;
Region *R = RN->getNodeAs<Region>();
for (auto BB : R->blocks()) {
(void)BB;
NumBlocks++;
}
return NumBlocks;
}
static bool containsErrorBlock(RegionNode *RN, const Region &R, LoopInfo &LI,
const DominatorTree &DT) {
if (!RN->isSubRegion())
return isErrorBlock(*RN->getNodeAs<BasicBlock>(), R, LI, DT);
for (BasicBlock *BB : RN->getNodeAs<Region>()->blocks())
if (isErrorBlock(*BB, R, LI, DT))
return true;
return false;
}
///}
static inline __isl_give isl_set *addDomainDimId(__isl_take isl_set *Domain,
unsigned Dim, Loop *L) {
Domain = isl_set_lower_bound_si(Domain, isl_dim_set, Dim, -1);
isl_id *DimId =
isl_id_alloc(isl_set_get_ctx(Domain), nullptr, static_cast<void *>(L));
return isl_set_set_dim_id(Domain, isl_dim_set, Dim, DimId);
}
isl_set *Scop::getDomainConditions(ScopStmt *Stmt) {
BasicBlock *BB = Stmt->isBlockStmt() ? Stmt->getBasicBlock()
: Stmt->getRegion()->getEntry();
return getDomainConditions(BB);
}
isl_set *Scop::getDomainConditions(BasicBlock *BB) {
assert(DomainMap.count(BB) && "Requested BB did not have a domain");
return isl_set_copy(DomainMap[BB]);
}
void Scop::buildDomains(Region *R) {
auto *EntryBB = R->getEntry();
int LD = getRelativeLoopDepth(LI.getLoopFor(EntryBB));
auto *S = isl_set_universe(isl_space_set_alloc(getIslCtx(), 0, LD + 1));
Loop *L = LI.getLoopFor(EntryBB);
while (LD-- >= 0) {
S = addDomainDimId(S, LD + 1, L);
L = L->getParentLoop();
}
DomainMap[EntryBB] = S;
if (SD.isNonAffineSubRegion(R, R))
return;
buildDomainsWithBranchConstraints(R);
propagateDomainConstraints(R);
}
void Scop::buildDomainsWithBranchConstraints(Region *R) {
RegionInfo &RI = *R->getRegionInfo();
// To create the domain for each block in R we iterate over all blocks and
// subregions in R and propagate the conditions under which the current region
// element is executed. To this end we iterate in reverse post order over R as
// it ensures that we first visit all predecessors of a region node (either a
// basic block or a subregion) before we visit the region node itself.
// Initially, only the domain for the SCoP region entry block is set and from
// there we propagate the current domain to all successors, however we add the
// condition that the successor is actually executed next.
// As we are only interested in non-loop carried constraints here we can
// simply skip loop back edges.
ReversePostOrderTraversal<Region *> RTraversal(R);
for (auto *RN : RTraversal) {
// Recurse for affine subregions but go on for basic blocks and non-affine
// subregions.
if (RN->isSubRegion()) {
Region *SubRegion = RN->getNodeAs<Region>();
if (!SD.isNonAffineSubRegion(SubRegion, &getRegion())) {
buildDomainsWithBranchConstraints(SubRegion);
continue;
}
}
// Error blocks are assumed not to be executed. Therefor they are not
// checked properly in the ScopDetection. Any attempt to generate control
// conditions from them might result in a crash. However, this is only true
// for the first step of the domain generation (this function) where we
// push the control conditions of a block to the successors. In the second
// step (propagateDomainConstraints) we only receive domain constraints from
// the predecessors and can therefor look at the domain of a error block.
// That allows us to generate the assumptions needed for them not to be
// executed at runtime.
if (containsErrorBlock(RN, getRegion(), LI, DT))
continue;
BasicBlock *BB = getRegionNodeBasicBlock(RN);
TerminatorInst *TI = BB->getTerminator();
isl_set *Domain = DomainMap.lookup(BB);
if (!Domain) {
DEBUG(dbgs() << "\tSkip: " << BB->getName()
<< ", it is only reachable from error blocks.\n");
continue;
}
DEBUG(dbgs() << "\tVisit: " << BB->getName() << " : " << Domain << "\n");
Loop *BBLoop = getRegionNodeLoop(RN, LI);
int BBLoopDepth = getRelativeLoopDepth(BBLoop);
// Build the condition sets for the successor nodes of the current region
// node. If it is a non-affine subregion we will always execute the single
// exit node, hence the single entry node domain is the condition set. For
// basic blocks we use the helper function buildConditionSets.
SmallVector<isl_set *, 8> ConditionSets;
if (RN->isSubRegion())
ConditionSets.push_back(isl_set_copy(Domain));
else
buildConditionSets(*this, TI, BBLoop, Domain, ConditionSets);
// Now iterate over the successors and set their initial domain based on
// their condition set. We skip back edges here and have to be careful when
// we leave a loop not to keep constraints over a dimension that doesn't
// exist anymore.
assert(RN->isSubRegion() || TI->getNumSuccessors() == ConditionSets.size());
for (unsigned u = 0, e = ConditionSets.size(); u < e; u++) {
isl_set *CondSet = ConditionSets[u];
BasicBlock *SuccBB = getRegionNodeSuccessor(RN, TI, u);
// Skip back edges.
if (DT.dominates(SuccBB, BB)) {
isl_set_free(CondSet);
continue;
}
// Do not adjust the number of dimensions if we enter a boxed loop or are
// in a non-affine subregion or if the surrounding loop stays the same.
Loop *SuccBBLoop = LI.getLoopFor(SuccBB);
Region *SuccRegion = RI.getRegionFor(SuccBB);
if (SD.isNonAffineSubRegion(SuccRegion, &getRegion()))
while (SuccBBLoop && SuccRegion->contains(SuccBBLoop))
SuccBBLoop = SuccBBLoop->getParentLoop();
if (BBLoop != SuccBBLoop) {
// Check if the edge to SuccBB is a loop entry or exit edge. If so
// adjust the dimensionality accordingly. Lastly, if we leave a loop
// and enter a new one we need to drop the old constraints.
int SuccBBLoopDepth = getRelativeLoopDepth(SuccBBLoop);
unsigned LoopDepthDiff = std::abs(BBLoopDepth - SuccBBLoopDepth);
if (BBLoopDepth > SuccBBLoopDepth) {
CondSet = isl_set_project_out(CondSet, isl_dim_set,
isl_set_n_dim(CondSet) - LoopDepthDiff,
LoopDepthDiff);
} else if (SuccBBLoopDepth > BBLoopDepth) {
assert(LoopDepthDiff == 1);
CondSet = isl_set_add_dims(CondSet, isl_dim_set, 1);
CondSet = addDomainDimId(CondSet, SuccBBLoopDepth, SuccBBLoop);
} else if (BBLoopDepth >= 0) {
assert(LoopDepthDiff <= 1);
CondSet = isl_set_project_out(CondSet, isl_dim_set, BBLoopDepth, 1);
CondSet = isl_set_add_dims(CondSet, isl_dim_set, 1);
CondSet = addDomainDimId(CondSet, SuccBBLoopDepth, SuccBBLoop);
}
}
// Set the domain for the successor or merge it with an existing domain in
// case there are multiple paths (without loop back edges) to the
// successor block.
isl_set *&SuccDomain = DomainMap[SuccBB];
if (!SuccDomain)
SuccDomain = CondSet;
else
SuccDomain = isl_set_union(SuccDomain, CondSet);
SuccDomain = isl_set_coalesce(SuccDomain);
DEBUG(dbgs() << "\tSet SuccBB: " << SuccBB->getName() << " : "
<< SuccDomain << "\n");
}
}
}
/// @brief Return the domain for @p BB wrt @p DomainMap.
///
/// This helper function will lookup @p BB in @p DomainMap but also handle the
/// case where @p BB is contained in a non-affine subregion using the region
/// tree obtained by @p RI.
static __isl_give isl_set *
getDomainForBlock(BasicBlock *BB, DenseMap<BasicBlock *, isl_set *> &DomainMap,
RegionInfo &RI) {
auto DIt = DomainMap.find(BB);
if (DIt != DomainMap.end())
return isl_set_copy(DIt->getSecond());
Region *R = RI.getRegionFor(BB);
while (R->getEntry() == BB)
R = R->getParent();
return getDomainForBlock(R->getEntry(), DomainMap, RI);
}
void Scop::propagateDomainConstraints(Region *R) {
// Iterate over the region R and propagate the domain constrains from the
// predecessors to the current node. In contrast to the
// buildDomainsWithBranchConstraints function, this one will pull the domain
// information from the predecessors instead of pushing it to the successors.
// Additionally, we assume the domains to be already present in the domain
// map here. However, we iterate again in reverse post order so we know all
// predecessors have been visited before a block or non-affine subregion is
// visited.
// The set of boxed loops (loops in non-affine subregions) for this SCoP.
auto &BoxedLoops = *SD.getBoxedLoops(&getRegion());
ReversePostOrderTraversal<Region *> RTraversal(R);
for (auto *RN : RTraversal) {
// Recurse for affine subregions but go on for basic blocks and non-affine
// subregions.
if (RN->isSubRegion()) {
Region *SubRegion = RN->getNodeAs<Region>();
if (!SD.isNonAffineSubRegion(SubRegion, &getRegion())) {
propagateDomainConstraints(SubRegion);
continue;
}
}
// Get the domain for the current block and check if it was initialized or
// not. The only way it was not is if this block is only reachable via error
// blocks, thus will not be executed under the assumptions we make. Such
// blocks have to be skipped as their predecessors might not have domains
// either. It would not benefit us to compute the domain anyway, only the
// domains of the error blocks that are reachable from non-error blocks
// are needed to generate assumptions.
BasicBlock *BB = getRegionNodeBasicBlock(RN);
isl_set *&Domain = DomainMap[BB];
if (!Domain) {
DEBUG(dbgs() << "\tSkip: " << BB->getName()
<< ", it is only reachable from error blocks.\n");
DomainMap.erase(BB);
continue;
}
DEBUG(dbgs() << "\tVisit: " << BB->getName() << " : " << Domain << "\n");
Loop *BBLoop = getRegionNodeLoop(RN, LI);
int BBLoopDepth = getRelativeLoopDepth(BBLoop);
isl_set *PredDom = isl_set_empty(isl_set_get_space(Domain));
for (auto *PredBB : predecessors(BB)) {
// Skip backedges
if (DT.dominates(BB, PredBB))
continue;
isl_set *PredBBDom = nullptr;
// Handle the SCoP entry block with its outside predecessors.
if (!getRegion().contains(PredBB))
PredBBDom = isl_set_universe(isl_set_get_space(PredDom));
if (!PredBBDom) {
// Determine the loop depth of the predecessor and adjust its domain to
// the domain of the current block. This can mean we have to:
// o) Drop a dimension if this block is the exit of a loop, not the
// header of a new loop and the predecessor was part of the loop.
// o) Add an unconstrainted new dimension if this block is the header
// of a loop and the predecessor is not part of it.
// o) Drop the information about the innermost loop dimension when the
// predecessor and the current block are surrounded by different
// loops in the same depth.
PredBBDom = getDomainForBlock(PredBB, DomainMap, *R->getRegionInfo());
Loop *PredBBLoop = LI.getLoopFor(PredBB);
while (BoxedLoops.count(PredBBLoop))
PredBBLoop = PredBBLoop->getParentLoop();
int PredBBLoopDepth = getRelativeLoopDepth(PredBBLoop);
unsigned LoopDepthDiff = std::abs(BBLoopDepth - PredBBLoopDepth);
if (BBLoopDepth < PredBBLoopDepth)
PredBBDom = isl_set_project_out(
PredBBDom, isl_dim_set, isl_set_n_dim(PredBBDom) - LoopDepthDiff,
LoopDepthDiff);
else if (PredBBLoopDepth < BBLoopDepth) {
assert(LoopDepthDiff == 1);
PredBBDom = isl_set_add_dims(PredBBDom, isl_dim_set, 1);
} else if (BBLoop != PredBBLoop && BBLoopDepth >= 0) {
assert(LoopDepthDiff <= 1);
PredBBDom = isl_set_drop_constraints_involving_dims(
PredBBDom, isl_dim_set, BBLoopDepth, 1);
}
}
PredDom = isl_set_union(PredDom, PredBBDom);
}
// Under the union of all predecessor conditions we can reach this block.
Domain = isl_set_coalesce(isl_set_intersect(Domain, PredDom));
if (BBLoop && BBLoop->getHeader() == BB && getRegion().contains(BBLoop))
addLoopBoundsToHeaderDomain(BBLoop);
// Add assumptions for error blocks.
if (containsErrorBlock(RN, getRegion(), LI, DT)) {
IsOptimized = true;
isl_set *DomPar = isl_set_params(isl_set_copy(Domain));
addAssumption(isl_set_complement(DomPar));
}
}
}
/// @brief Create a map from SetSpace -> SetSpace where the dimensions @p Dim
/// is incremented by one and all other dimensions are equal, e.g.,
/// [i0, i1, i2, i3] -> [i0, i1, i2 + 1, i3]
/// if @p Dim is 2 and @p SetSpace has 4 dimensions.
static __isl_give isl_map *
createNextIterationMap(__isl_take isl_space *SetSpace, unsigned Dim) {
auto *MapSpace = isl_space_map_from_set(SetSpace);
auto *NextIterationMap = isl_map_universe(isl_space_copy(MapSpace));
for (unsigned u = 0; u < isl_map_n_in(NextIterationMap); u++)
if (u != Dim)
NextIterationMap =
isl_map_equate(NextIterationMap, isl_dim_in, u, isl_dim_out, u);
auto *C = isl_constraint_alloc_equality(isl_local_space_from_space(MapSpace));
C = isl_constraint_set_constant_si(C, 1);
C = isl_constraint_set_coefficient_si(C, isl_dim_in, Dim, 1);
C = isl_constraint_set_coefficient_si(C, isl_dim_out, Dim, -1);
NextIterationMap = isl_map_add_constraint(NextIterationMap, C);
return NextIterationMap;
}
void Scop::addLoopBoundsToHeaderDomain(Loop *L) {
int LoopDepth = getRelativeLoopDepth(L);
assert(LoopDepth >= 0 && "Loop in region should have at least depth one");
BasicBlock *HeaderBB = L->getHeader();
assert(DomainMap.count(HeaderBB));
isl_set *&HeaderBBDom = DomainMap[HeaderBB];
isl_map *NextIterationMap =
createNextIterationMap(isl_set_get_space(HeaderBBDom), LoopDepth);
isl_set *UnionBackedgeCondition =
isl_set_empty(isl_set_get_space(HeaderBBDom));
SmallVector<llvm::BasicBlock *, 4> LatchBlocks;
L->getLoopLatches(LatchBlocks);
for (BasicBlock *LatchBB : LatchBlocks) {
// If the latch is only reachable via error statements we skip it.
isl_set *LatchBBDom = DomainMap.lookup(LatchBB);
if (!LatchBBDom)
continue;
isl_set *BackedgeCondition = nullptr;
TerminatorInst *TI = LatchBB->getTerminator();
BranchInst *BI = dyn_cast<BranchInst>(TI);
if (BI && BI->isUnconditional())
BackedgeCondition = isl_set_copy(LatchBBDom);
else {
SmallVector<isl_set *, 8> ConditionSets;
int idx = BI->getSuccessor(0) != HeaderBB;
buildConditionSets(*this, TI, L, LatchBBDom, ConditionSets);
// Free the non back edge condition set as we do not need it.
isl_set_free(ConditionSets[1 - idx]);
BackedgeCondition = ConditionSets[idx];
}
int LatchLoopDepth = getRelativeLoopDepth(LI.getLoopFor(LatchBB));
assert(LatchLoopDepth >= LoopDepth);
BackedgeCondition =
isl_set_project_out(BackedgeCondition, isl_dim_set, LoopDepth + 1,
LatchLoopDepth - LoopDepth);
UnionBackedgeCondition =
isl_set_union(UnionBackedgeCondition, BackedgeCondition);
}
isl_map *ForwardMap = isl_map_lex_le(isl_set_get_space(HeaderBBDom));
for (int i = 0; i < LoopDepth; i++)
ForwardMap = isl_map_equate(ForwardMap, isl_dim_in, i, isl_dim_out, i);
isl_set *UnionBackedgeConditionComplement =
isl_set_complement(UnionBackedgeCondition);
UnionBackedgeConditionComplement = isl_set_lower_bound_si(
UnionBackedgeConditionComplement, isl_dim_set, LoopDepth, 0);
UnionBackedgeConditionComplement =
isl_set_apply(UnionBackedgeConditionComplement, ForwardMap);
HeaderBBDom = isl_set_subtract(HeaderBBDom, UnionBackedgeConditionComplement);
HeaderBBDom = isl_set_apply(HeaderBBDom, NextIterationMap);
auto Parts = partitionSetParts(HeaderBBDom, LoopDepth);
HeaderBBDom = Parts.second;
// Check if there is a <nsw> tagged AddRec for this loop and if so do not add
// the bounded assumptions to the context as they are already implied by the
// <nsw> tag.
if (Affinator.hasNSWAddRecForLoop(L)) {
isl_set_free(Parts.first);
return;
}
isl_set *UnboundedCtx = isl_set_params(Parts.first);
isl_set *BoundedCtx = isl_set_complement(UnboundedCtx);
addAssumption(BoundedCtx);
}
void Scop::buildAliasChecks(AliasAnalysis &AA) {
if (!PollyUseRuntimeAliasChecks)
return;
if (buildAliasGroups(AA))
return;
// If a problem occurs while building the alias groups we need to delete
// this SCoP and pretend it wasn't valid in the first place. To this end
// we make the assumed context infeasible.
addAssumption(isl_set_empty(getParamSpace()));
DEBUG(dbgs() << "\n\nNOTE: Run time checks for " << getNameStr()
<< " could not be created as the number of parameters involved "
"is too high. The SCoP will be "
"dismissed.\nUse:\n\t--polly-rtc-max-parameters=X\nto adjust "
"the maximal number of parameters but be advised that the "
"compile time might increase exponentially.\n\n");
}
bool Scop::buildAliasGroups(AliasAnalysis &AA) {
// To create sound alias checks we perform the following steps:
2015-02-25 00:00:29 +08:00
// o) Use the alias analysis and an alias set tracker to build alias sets
// for all memory accesses inside the SCoP.
// o) For each alias set we then map the aliasing pointers back to the
2015-02-25 00:00:29 +08:00
// memory accesses we know, thus obtain groups of memory accesses which
// might alias.
// o) We divide each group based on the domains of the minimal/maximal
2015-02-25 00:00:29 +08:00
// accesses. That means two minimal/maximal accesses are only in a group
// if their access domains intersect, otherwise they are in different
// ones.
// o) We partition each group into read only and non read only accesses.
2015-02-25 00:00:29 +08:00
// o) For each group with more than one base pointer we then compute minimal
// and maximal accesses to each array of a group in read only and non
// read only partitions separately.
using AliasGroupTy = SmallVector<MemoryAccess *, 4>;
AliasSetTracker AST(AA);
DenseMap<Value *, MemoryAccess *> PtrToAcc;
DenseSet<Value *> HasWriteAccess;
for (ScopStmt &Stmt : *this) {
// Skip statements with an empty domain as they will never be executed.
isl_set *StmtDomain = Stmt.getDomain();
bool StmtDomainEmpty = isl_set_is_empty(StmtDomain);
isl_set_free(StmtDomain);
if (StmtDomainEmpty)
continue;
for (MemoryAccess *MA : Stmt) {
if (MA->isImplicit())
continue;
if (!MA->isRead())
HasWriteAccess.insert(MA->getBaseAddr());
Instruction *Acc = MA->getAccessInstruction();
PtrToAcc[getPointerOperand(*Acc)] = MA;
AST.add(Acc);
}
}
SmallVector<AliasGroupTy, 4> AliasGroups;
for (AliasSet &AS : AST) {
if (AS.isMustAlias() || AS.isForwardingAliasSet())
continue;
AliasGroupTy AG;
for (auto PR : AS)
AG.push_back(PtrToAcc[PR.getValue()]);
assert(AG.size() > 1 &&
"Alias groups should contain at least two accesses");
AliasGroups.push_back(std::move(AG));
}
// Split the alias groups based on their domain.
for (unsigned u = 0; u < AliasGroups.size(); u++) {
AliasGroupTy NewAG;
AliasGroupTy &AG = AliasGroups[u];
AliasGroupTy::iterator AGI = AG.begin();
isl_set *AGDomain = getAccessDomain(*AGI);
while (AGI != AG.end()) {
MemoryAccess *MA = *AGI;
isl_set *MADomain = getAccessDomain(MA);
if (isl_set_is_disjoint(AGDomain, MADomain)) {
NewAG.push_back(MA);
AGI = AG.erase(AGI);
isl_set_free(MADomain);
} else {
AGDomain = isl_set_union(AGDomain, MADomain);
AGI++;
}
}
if (NewAG.size() > 1)
AliasGroups.push_back(std::move(NewAG));
isl_set_free(AGDomain);
}
MapVector<const Value *, SmallPtrSet<MemoryAccess *, 8>> ReadOnlyPairs;
SmallPtrSet<const Value *, 4> NonReadOnlyBaseValues;
for (AliasGroupTy &AG : AliasGroups) {
NonReadOnlyBaseValues.clear();
ReadOnlyPairs.clear();
if (AG.size() < 2) {
AG.clear();
continue;
}
for (auto II = AG.begin(); II != AG.end();) {
Value *BaseAddr = (*II)->getBaseAddr();
if (HasWriteAccess.count(BaseAddr)) {
NonReadOnlyBaseValues.insert(BaseAddr);
II++;
} else {
ReadOnlyPairs[BaseAddr].insert(*II);
II = AG.erase(II);
}
}
// If we don't have read only pointers check if there are at least two
// non read only pointers, otherwise clear the alias group.
if (ReadOnlyPairs.empty() && NonReadOnlyBaseValues.size() <= 1) {
AG.clear();
continue;
}
// If we don't have non read only pointers clear the alias group.
if (NonReadOnlyBaseValues.empty()) {
AG.clear();
continue;
}
// Calculate minimal and maximal accesses for non read only accesses.
MinMaxAliasGroups.emplace_back();
MinMaxVectorPairTy &pair = MinMaxAliasGroups.back();
MinMaxVectorTy &MinMaxAccessesNonReadOnly = pair.first;
MinMaxVectorTy &MinMaxAccessesReadOnly = pair.second;
MinMaxAccessesNonReadOnly.reserve(AG.size());
isl_union_map *Accesses = isl_union_map_empty(getParamSpace());
// AG contains only non read only accesses.
for (MemoryAccess *MA : AG)
Accesses = isl_union_map_add_map(Accesses, MA->getAccessRelation());
bool Valid = calculateMinMaxAccess(Accesses, getDomains(),
MinMaxAccessesNonReadOnly);
// Bail out if the number of values we need to compare is too large.
// This is important as the number of comparisions grows quadratically with
// the number of values we need to compare.
if (!Valid || (MinMaxAccessesNonReadOnly.size() + !ReadOnlyPairs.empty() >
RunTimeChecksMaxArraysPerGroup))
return false;
// Calculate minimal and maximal accesses for read only accesses.
MinMaxAccessesReadOnly.reserve(ReadOnlyPairs.size());
Accesses = isl_union_map_empty(getParamSpace());
for (const auto &ReadOnlyPair : ReadOnlyPairs)
for (MemoryAccess *MA : ReadOnlyPair.second)
Accesses = isl_union_map_add_map(Accesses, MA->getAccessRelation());
Valid =
calculateMinMaxAccess(Accesses, getDomains(), MinMaxAccessesReadOnly);
if (!Valid)
return false;
}
return true;
}
static Loop *getLoopSurroundingRegion(Region &R, LoopInfo &LI) {
Loop *L = LI.getLoopFor(R.getEntry());
return L ? (R.contains(L) ? L->getParentLoop() : L) : nullptr;
}
static unsigned getMaxLoopDepthInRegion(const Region &R, LoopInfo &LI,
ScopDetection &SD) {
const ScopDetection::BoxedLoopsSetTy *BoxedLoops = SD.getBoxedLoops(&R);
unsigned MinLD = INT_MAX, MaxLD = 0;
for (BasicBlock *BB : R.blocks()) {
if (Loop *L = LI.getLoopFor(BB)) {
if (!R.contains(L))
continue;
if (BoxedLoops && BoxedLoops->count(L))
continue;
unsigned LD = L->getLoopDepth();
MinLD = std::min(MinLD, LD);
MaxLD = std::max(MaxLD, LD);
}
}
// Handle the case that there is no loop in the SCoP first.
if (MaxLD == 0)
return 1;
assert(MinLD >= 1 && "Minimal loop depth should be at least one");
assert(MaxLD >= MinLD &&
"Maximal loop depth was smaller than mininaml loop depth?");
return MaxLD - MinLD + 1;
}
Scop::Scop(Region &R, AccFuncMapType &AccFuncMap, ScopDetection &SD,
ScalarEvolution &ScalarEvolution, DominatorTree &DT, LoopInfo &LI,
isl_ctx *Context, unsigned MaxLoopDepth)
: LI(LI), DT(DT), SE(&ScalarEvolution), SD(SD), R(R),
AccFuncMap(AccFuncMap), IsOptimized(false),
HasSingleExitEdge(R.getExitingBlock()), MaxLoopDepth(MaxLoopDepth),
IslCtx(Context), Context(nullptr), Affinator(this),
AssumedContext(nullptr), BoundaryContext(nullptr), Schedule(nullptr) {}
void Scop::init(AliasAnalysis &AA) {
buildContext();
buildInvariantEquivalenceClasses();
buildDomains(&R);
// Remove empty and ignored statements.
// Exit early in case there are no executable statements left in this scop.
simplifySCoP(true);
if (Stmts.empty())
return;
// The ScopStmts now have enough information to initialize themselves.
for (ScopStmt &Stmt : Stmts)
Stmt.init();
DenseMap<Loop *, std::pair<isl_schedule *, unsigned>> LoopSchedules;
Loop *L = getLoopSurroundingRegion(R, LI);
LoopSchedules[L];
buildSchedule(&R, LoopSchedules);
Schedule = LoopSchedules[L].first;
if (isl_set_is_empty(AssumedContext))
return;
updateAccessDimensionality();
realignParams();
addParameterBounds();
addUserContext();
buildBoundaryContext();
simplifyContexts();
buildAliasChecks(AA);
hoistInvariantLoads();
simplifySCoP(false);
}
Scop::~Scop() {
isl_set_free(Context);
isl_set_free(AssumedContext);
isl_set_free(BoundaryContext);
isl_schedule_free(Schedule);
for (auto It : DomainMap)
isl_set_free(It.second);
// Free the alias groups
for (MinMaxVectorPairTy &MinMaxAccessPair : MinMaxAliasGroups) {
for (MinMaxAccessTy &MMA : MinMaxAccessPair.first) {
isl_pw_multi_aff_free(MMA.first);
isl_pw_multi_aff_free(MMA.second);
}
for (MinMaxAccessTy &MMA : MinMaxAccessPair.second) {
isl_pw_multi_aff_free(MMA.first);
isl_pw_multi_aff_free(MMA.second);
}
}
for (const auto &IAClass : InvariantEquivClasses)
isl_set_free(std::get<2>(IAClass));
}
void Scop::updateAccessDimensionality() {
for (auto &Stmt : *this)
for (auto &Access : Stmt)
Access->updateDimensionality();
}
void Scop::simplifySCoP(bool RemoveIgnoredStmts) {
for (auto StmtIt = Stmts.begin(), StmtEnd = Stmts.end(); StmtIt != StmtEnd;) {
ScopStmt &Stmt = *StmtIt;
RegionNode *RN = Stmt.isRegionStmt()
? Stmt.getRegion()->getNode()
: getRegion().getBBNode(Stmt.getBasicBlock());
if (StmtIt->isEmpty() ||
isl_set_is_empty(DomainMap[getRegionNodeBasicBlock(RN)]) ||
(RemoveIgnoredStmts && isIgnored(RN))) {
// Remove the statement because it is unnecessary.
if (Stmt.isRegionStmt())
for (BasicBlock *BB : Stmt.getRegion()->blocks())
StmtMap.erase(BB);
else
StmtMap.erase(Stmt.getBasicBlock());
StmtIt = Stmts.erase(StmtIt);
continue;
}
StmtIt++;
}
}
const InvariantEquivClassTy *Scop::lookupInvariantEquivClass(Value *Val) const {
LoadInst *LInst = dyn_cast<LoadInst>(Val);
if (!LInst)
return nullptr;
if (Value *Rep = InvEquivClassVMap.lookup(LInst))
LInst = cast<LoadInst>(Rep);
const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
for (auto &IAClass : InvariantEquivClasses)
if (PointerSCEV == std::get<0>(IAClass))
return &IAClass;
return nullptr;
}
void Scop::addInvariantLoads(ScopStmt &Stmt, MemoryAccessList &InvMAs) {
// Get the context under which the statement is executed.
isl_set *DomainCtx = isl_set_params(Stmt.getDomain());
DomainCtx = isl_set_remove_redundancies(DomainCtx);
DomainCtx = isl_set_detect_equalities(DomainCtx);
DomainCtx = isl_set_coalesce(DomainCtx);
// Project out all parameters that relate to loads in the statement. Otherwise
// we could have cyclic dependences on the constraints under which the
// hoisted loads are executed and we could not determine an order in which to
// pre-load them. This happens because not only lower bounds are part of the
// domain but also upper bounds.
for (MemoryAccess *MA : InvMAs) {
Instruction *AccInst = MA->getAccessInstruction();
if (SE->isSCEVable(AccInst->getType())) {
isl_id *ParamId = getIdForParam(SE->getSCEV(AccInst));
if (ParamId) {
int Dim = isl_set_find_dim_by_id(DomainCtx, isl_dim_param, ParamId);
DomainCtx = isl_set_eliminate(DomainCtx, isl_dim_param, Dim, 1);
}
isl_id_free(ParamId);
}
}
for (MemoryAccess *MA : InvMAs) {
// Check for another invariant access that accesses the same location as
// MA and if found consolidate them. Otherwise create a new equivalence
// class at the end of InvariantEquivClasses.
LoadInst *LInst = cast<LoadInst>(MA->getAccessInstruction());
const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
bool Consolidated = false;
for (auto &IAClass : InvariantEquivClasses) {
if (PointerSCEV != std::get<0>(IAClass))
continue;
Consolidated = true;
// Add MA to the list of accesses that are in this class.
auto &MAs = std::get<1>(IAClass);
MAs.push_front(MA);
// Unify the execution context of the class and this statement.
isl_set *&IAClassDomainCtx = std::get<2>(IAClass);
IAClassDomainCtx = isl_set_coalesce(
isl_set_union(IAClassDomainCtx, isl_set_copy(DomainCtx)));
break;
}
if (Consolidated)
continue;
// If we did not consolidate MA, thus did not find an equivalence class
// for it, we create a new one.
InvariantEquivClasses.emplace_back(PointerSCEV, MemoryAccessList{MA},
isl_set_copy(DomainCtx));
}
isl_set_free(DomainCtx);
}
void Scop::hoistInvariantLoads() {
isl_union_map *Writes = getWrites();
for (ScopStmt &Stmt : *this) {
// TODO: Loads that are not loop carried, hence are in a statement with
// zero iterators, are by construction invariant, though we
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
// currently "hoist" them anyway. This is necessary because we allow
// them to be treated as parameters (e.g., in conditions) and our code
// generation would otherwise use the old value.
BasicBlock *BB = Stmt.isBlockStmt() ? Stmt.getBasicBlock()
: Stmt.getRegion()->getEntry();
isl_set *Domain = Stmt.getDomain();
MemoryAccessList InvMAs;
for (MemoryAccess *MA : Stmt) {
if (MA->isImplicit() || MA->isWrite() || !MA->isAffine())
continue;
// Skip accesses that have an invariant base pointer which is defined but
// not loaded inside the SCoP. This can happened e.g., if a readnone call
// returns a pointer that is used as a base address. However, as we want
// to hoist indirect pointers, we allow the base pointer to be defined in
// the region if it is also a memory access. Each ScopArrayInfo object
// that has a base pointer origin has a base pointer that is loaded and
// that it is invariant, thus it will be hoisted too. However, if there is
2015-10-25 20:05:14 +08:00
// no base pointer origin we check that the base pointer is defined
// outside the region.
const ScopArrayInfo *SAI = MA->getScopArrayInfo();
while (auto *BasePtrOriginSAI = SAI->getBasePtrOriginSAI())
SAI = BasePtrOriginSAI;
if (auto *BasePtrInst = dyn_cast<Instruction>(SAI->getBasePtr()))
if (R.contains(BasePtrInst))
continue;
// Skip accesses in non-affine subregions as they might not be executed
// under the same condition as the entry of the non-affine subregion.
if (BB != MA->getAccessInstruction()->getParent())
continue;
isl_map *AccessRelation = MA->getAccessRelation();
// Skip accesses that have an empty access relation. These can be caused
// by multiple offsets with a type cast in-between that cause the overall
// byte offset to be not divisible by the new types sizes.
if (isl_map_is_empty(AccessRelation)) {
isl_map_free(AccessRelation);
continue;
}
if (isl_map_involves_dims(AccessRelation, isl_dim_in, 0,
Stmt.getNumIterators())) {
isl_map_free(AccessRelation);
continue;
}
AccessRelation =
isl_map_intersect_domain(AccessRelation, isl_set_copy(Domain));
isl_set *AccessRange = isl_map_range(AccessRelation);
isl_union_map *Written = isl_union_map_intersect_range(
isl_union_map_copy(Writes), isl_union_set_from_set(AccessRange));
bool IsWritten = !isl_union_map_is_empty(Written);
isl_union_map_free(Written);
if (IsWritten)
continue;
InvMAs.push_front(MA);
}
// We inserted invariant accesses always in the front but need them to be
// sorted in a "natural order". The statements are already sorted in reverse
// post order and that suffices for the accesses too. The reason we require
// an order in the first place is the dependences between invariant loads
// that can be caused by indirect loads.
InvMAs.reverse();
// Transfer the memory access from the statement to the SCoP.
Stmt.removeMemoryAccesses(InvMAs);
addInvariantLoads(Stmt, InvMAs);
isl_set_free(Domain);
}
isl_union_map_free(Writes);
if (!InvariantEquivClasses.empty())
IsOptimized = true;
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
auto &ScopRIL = *SD.getRequiredInvariantLoads(&getRegion());
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
// Check required invariant loads that were tagged during SCoP detection.
for (LoadInst *LI : ScopRIL) {
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
assert(LI && getRegion().contains(LI));
ScopStmt *Stmt = getStmtForBasicBlock(LI->getParent());
if (Stmt && Stmt->lookupAccessesFor(LI) != nullptr) {
DEBUG(dbgs() << "\n\nWARNING: Load (" << *LI
<< ") is required to be invariant but was not marked as "
"such. SCoP for "
<< getRegion() << " will be dropped\n\n");
addAssumption(isl_set_empty(getParamSpace()));
return;
}
}
}
const ScopArrayInfo *
Scop::getOrCreateScopArrayInfo(Value *BasePtr, Type *AccessType,
ArrayRef<const SCEV *> Sizes, bool IsPHI) {
auto &SAI = ScopArrayInfoMap[std::make_pair(BasePtr, IsPHI)];
if (!SAI) {
SAI.reset(new ScopArrayInfo(BasePtr, AccessType, getIslCtx(), Sizes, IsPHI,
this));
} else {
// In case of mismatching array sizes, we bail out by setting the run-time
// context to false.
if (!SAI->updateSizes(Sizes))
addAssumption(isl_set_empty(getParamSpace()));
}
return SAI.get();
}
const ScopArrayInfo *Scop::getScopArrayInfo(Value *BasePtr, bool IsPHI) {
auto *SAI = ScopArrayInfoMap[std::make_pair(BasePtr, IsPHI)].get();
assert(SAI && "No ScopArrayInfo available for this base pointer");
return SAI;
}
2013-01-15 06:40:23 +08:00
std::string Scop::getContextStr() const { return stringFromIslObj(Context); }
std::string Scop::getAssumedContextStr() const {
return stringFromIslObj(AssumedContext);
}
std::string Scop::getBoundaryContextStr() const {
return stringFromIslObj(BoundaryContext);
}
std::string Scop::getNameStr() const {
std::string ExitName, EntryName;
raw_string_ostream ExitStr(ExitName);
raw_string_ostream EntryStr(EntryName);
R.getEntry()->printAsOperand(EntryStr, false);
EntryStr.str();
if (R.getExit()) {
R.getExit()->printAsOperand(ExitStr, false);
ExitStr.str();
} else
ExitName = "FunctionExit";
return EntryName + "---" + ExitName;
}
2013-01-15 06:40:23 +08:00
__isl_give isl_set *Scop::getContext() const { return isl_set_copy(Context); }
__isl_give isl_space *Scop::getParamSpace() const {
return isl_set_get_space(Context);
}
__isl_give isl_set *Scop::getAssumedContext() const {
return isl_set_copy(AssumedContext);
}
__isl_give isl_set *Scop::getRuntimeCheckContext() const {
isl_set *RuntimeCheckContext = getAssumedContext();
RuntimeCheckContext =
isl_set_intersect(RuntimeCheckContext, getBoundaryContext());
RuntimeCheckContext = simplifyAssumptionContext(RuntimeCheckContext, *this);
return RuntimeCheckContext;
}
bool Scop::hasFeasibleRuntimeContext() const {
isl_set *RuntimeCheckContext = getRuntimeCheckContext();
RuntimeCheckContext = addNonEmptyDomainConstraints(RuntimeCheckContext);
bool IsFeasible = !isl_set_is_empty(RuntimeCheckContext);
isl_set_free(RuntimeCheckContext);
return IsFeasible;
}
void Scop::addAssumption(__isl_take isl_set *Set) {
AssumedContext = isl_set_intersect(AssumedContext, Set);
Assume GetElementPtr offsets to be inbounds In case a GEP instruction references into a fixed size array e.g., an access A[i][j] into an array A[100x100], LLVM-IR does not guarantee that the subscripts always compute values that are within array bounds. We now derive the set of parameter values for which all accesses are within bounds and add the assumption that the scop is only every executed with this set of parameter values. Example: void foo(float A[][20], long n, long m { for (long i = 0; i < n; i++) for (long j = 0; j < m; j++) A[i][j] = ... This loop yields out-of-bound accesses if m is at least 20 and at the same time at least one iteration of the outer loop is executed. Hence, we assume: n <= 0 or m <= 20. Doing so simplifies the dependence analysis problem, allows us to perform more optimizations and generate better code. TODO: The location where the GEP instruction is executed is not necessarily the location where the memory is actually accessed. As a result scanning for GEP[s] is imprecise. Even though this is not a correctness problem, this imprecision may result in missed optimizations or non-optimal run-time checks. In polybench where this mismatch between parametric loop bounds and fixed size arrays is common, we see with this patch significant reductions in compile time (up to 50%) and execution time (up to 70%). We see two significant compile time regressions (fdtd-2d, jacobi-2d-imper), and one execution time regression (trmm). Both regressions arise due to additional optimizations that have been enabled by this patch. They can be addressed in subsequent commits. http://reviews.llvm.org/D6369 llvm-svn: 222754
2014-11-25 18:51:12 +08:00
AssumedContext = isl_set_coalesce(AssumedContext);
}
__isl_give isl_set *Scop::getBoundaryContext() const {
return isl_set_copy(BoundaryContext);
}
void Scop::printContext(raw_ostream &OS) const {
OS << "Context:\n";
if (!Context) {
OS.indent(4) << "n/a\n\n";
return;
}
OS.indent(4) << getContextStr() << "\n";
OS.indent(4) << "Assumed Context:\n";
if (!AssumedContext) {
OS.indent(4) << "n/a\n\n";
return;
}
OS.indent(4) << getAssumedContextStr() << "\n";
OS.indent(4) << "Boundary Context:\n";
if (!BoundaryContext) {
OS.indent(4) << "n/a\n\n";
return;
}
OS.indent(4) << getBoundaryContextStr() << "\n";
for (const SCEV *Parameter : Parameters) {
int Dim = ParameterIds.find(Parameter)->second;
OS.indent(4) << "p" << Dim << ": " << *Parameter << "\n";
}
}
void Scop::printAliasAssumptions(raw_ostream &OS) const {
int noOfGroups = 0;
for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) {
if (Pair.second.size() == 0)
noOfGroups += 1;
else
noOfGroups += Pair.second.size();
}
OS.indent(4) << "Alias Groups (" << noOfGroups << "):\n";
if (MinMaxAliasGroups.empty()) {
OS.indent(8) << "n/a\n";
return;
}
for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) {
// If the group has no read only accesses print the write accesses.
if (Pair.second.empty()) {
OS.indent(8) << "[[";
for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) {
OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second
<< ">";
}
OS << " ]]\n";
}
for (const MinMaxAccessTy &MMAReadOnly : Pair.second) {
OS.indent(8) << "[[";
OS << " <" << MMAReadOnly.first << ", " << MMAReadOnly.second << ">";
for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) {
OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second
<< ">";
}
OS << " ]]\n";
}
}
}
void Scop::printStatements(raw_ostream &OS) const {
OS << "Statements {\n";
for (const ScopStmt &Stmt : *this)
OS.indent(4) << Stmt;
OS.indent(4) << "}\n";
}
void Scop::printArrayInfo(raw_ostream &OS) const {
OS << "Arrays {\n";
for (auto &Array : arrays())
Array.second->print(OS);
OS.indent(4) << "}\n";
OS.indent(4) << "Arrays (Bounds as pw_affs) {\n";
for (auto &Array : arrays())
Array.second->print(OS, /* SizeAsPwAff */ true);
OS.indent(4) << "}\n";
}
void Scop::print(raw_ostream &OS) const {
OS.indent(4) << "Function: " << getRegion().getEntry()->getParent()->getName()
<< "\n";
OS.indent(4) << "Region: " << getNameStr() << "\n";
OS.indent(4) << "Max Loop Depth: " << getMaxLoopDepth() << "\n";
OS.indent(4) << "Invariant Accesses: {\n";
for (const auto &IAClass : InvariantEquivClasses) {
const auto &MAs = std::get<1>(IAClass);
if (MAs.empty()) {
OS.indent(12) << "Class Pointer: " << *std::get<0>(IAClass) << "\n";
} else {
MAs.front()->print(OS);
OS.indent(12) << "Execution Context: " << std::get<2>(IAClass) << "\n";
}
}
OS.indent(4) << "}\n";
printContext(OS.indent(4));
printArrayInfo(OS.indent(4));
printAliasAssumptions(OS);
printStatements(OS.indent(4));
}
void Scop::dump() const { print(dbgs()); }
isl_ctx *Scop::getIslCtx() const { return IslCtx; }
__isl_give isl_pw_aff *Scop::getPwAff(const SCEV *E, BasicBlock *BB) {
return Affinator.getPwAff(E, BB);
}
__isl_give isl_union_set *Scop::getDomains() const {
isl_union_set *Domain = isl_union_set_empty(getParamSpace());
for (const ScopStmt &Stmt : *this)
Domain = isl_union_set_add_set(Domain, Stmt.getDomain());
return Domain;
}
__isl_give isl_union_map *Scop::getMustWrites() {
isl_union_map *Write = isl_union_map_empty(getParamSpace());
for (ScopStmt &Stmt : *this) {
for (MemoryAccess *MA : Stmt) {
if (!MA->isMustWrite())
continue;
isl_set *Domain = Stmt.getDomain();
isl_map *AccessDomain = MA->getAccessRelation();
AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
Write = isl_union_map_add_map(Write, AccessDomain);
}
}
return isl_union_map_coalesce(Write);
}
__isl_give isl_union_map *Scop::getMayWrites() {
isl_union_map *Write = isl_union_map_empty(getParamSpace());
for (ScopStmt &Stmt : *this) {
for (MemoryAccess *MA : Stmt) {
if (!MA->isMayWrite())
continue;
isl_set *Domain = Stmt.getDomain();
isl_map *AccessDomain = MA->getAccessRelation();
AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
Write = isl_union_map_add_map(Write, AccessDomain);
}
}
return isl_union_map_coalesce(Write);
}
__isl_give isl_union_map *Scop::getWrites() {
isl_union_map *Write = isl_union_map_empty(getParamSpace());
for (ScopStmt &Stmt : *this) {
for (MemoryAccess *MA : Stmt) {
if (!MA->isWrite())
continue;
isl_set *Domain = Stmt.getDomain();
isl_map *AccessDomain = MA->getAccessRelation();
AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
Write = isl_union_map_add_map(Write, AccessDomain);
}
}
return isl_union_map_coalesce(Write);
}
__isl_give isl_union_map *Scop::getReads() {
isl_union_map *Read = isl_union_map_empty(getParamSpace());
for (ScopStmt &Stmt : *this) {
for (MemoryAccess *MA : Stmt) {
if (!MA->isRead())
continue;
isl_set *Domain = Stmt.getDomain();
isl_map *AccessDomain = MA->getAccessRelation();
AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
Read = isl_union_map_add_map(Read, AccessDomain);
}
}
return isl_union_map_coalesce(Read);
}
__isl_give isl_union_map *Scop::getSchedule() const {
auto Tree = getScheduleTree();
auto S = isl_schedule_get_map(Tree);
isl_schedule_free(Tree);
return S;
}
__isl_give isl_schedule *Scop::getScheduleTree() const {
return isl_schedule_intersect_domain(isl_schedule_copy(Schedule),
getDomains());
}
void Scop::setSchedule(__isl_take isl_union_map *NewSchedule) {
auto *S = isl_schedule_from_domain(getDomains());
S = isl_schedule_insert_partial_schedule(
S, isl_multi_union_pw_aff_from_union_map(NewSchedule));
isl_schedule_free(Schedule);
Schedule = S;
}
void Scop::setScheduleTree(__isl_take isl_schedule *NewSchedule) {
isl_schedule_free(Schedule);
Schedule = NewSchedule;
}
bool Scop::restrictDomains(__isl_take isl_union_set *Domain) {
bool Changed = false;
for (ScopStmt &Stmt : *this) {
isl_union_set *StmtDomain = isl_union_set_from_set(Stmt.getDomain());
isl_union_set *NewStmtDomain = isl_union_set_intersect(
isl_union_set_copy(StmtDomain), isl_union_set_copy(Domain));
if (isl_union_set_is_subset(StmtDomain, NewStmtDomain)) {
isl_union_set_free(StmtDomain);
isl_union_set_free(NewStmtDomain);
continue;
}
Changed = true;
isl_union_set_free(StmtDomain);
NewStmtDomain = isl_union_set_coalesce(NewStmtDomain);
if (isl_union_set_is_empty(NewStmtDomain)) {
Stmt.restrictDomain(isl_set_empty(Stmt.getDomainSpace()));
isl_union_set_free(NewStmtDomain);
} else
Stmt.restrictDomain(isl_set_from_union_set(NewStmtDomain));
}
isl_union_set_free(Domain);
return Changed;
}
ScalarEvolution *Scop::getSE() const { return SE; }
bool Scop::isIgnored(RegionNode *RN) {
BasicBlock *BB = getRegionNodeBasicBlock(RN);
// Check if there are accesses contained.
bool ContainsAccesses = false;
if (!RN->isSubRegion())
ContainsAccesses = getAccessFunctions(BB);
else
for (BasicBlock *RBB : RN->getNodeAs<Region>()->blocks())
ContainsAccesses |= (getAccessFunctions(RBB) != nullptr);
if (!ContainsAccesses)
return true;
// Check for reachability via non-error blocks.
if (!DomainMap.count(BB))
return true;
// Check if error blocks are contained.
if (containsErrorBlock(RN, getRegion(), LI, DT))
return true;
return false;
}
struct MapToDimensionDataTy {
int N;
isl_union_pw_multi_aff *Res;
};
// @brief Create a function that maps the elements of 'Set' to its N-th
// dimension.
//
// The result is added to 'User->Res'.
//
// @param Set The input set.
// @param N The dimension to map to.
//
// @returns Zero if no error occurred, non-zero otherwise.
static isl_stat mapToDimension_AddSet(__isl_take isl_set *Set, void *User) {
struct MapToDimensionDataTy *Data = (struct MapToDimensionDataTy *)User;
int Dim;
isl_space *Space;
isl_pw_multi_aff *PMA;
Dim = isl_set_dim(Set, isl_dim_set);
Space = isl_set_get_space(Set);
PMA = isl_pw_multi_aff_project_out_map(Space, isl_dim_set, Data->N,
Dim - Data->N);
if (Data->N > 1)
PMA = isl_pw_multi_aff_drop_dims(PMA, isl_dim_out, 0, Data->N - 1);
Data->Res = isl_union_pw_multi_aff_add_pw_multi_aff(Data->Res, PMA);
isl_set_free(Set);
return isl_stat_ok;
}
// @brief Create a function that maps the elements of Domain to their Nth
// dimension.
//
// @param Domain The set of elements to map.
// @param N The dimension to map to.
static __isl_give isl_multi_union_pw_aff *
mapToDimension(__isl_take isl_union_set *Domain, int N) {
if (N <= 0 || isl_union_set_is_empty(Domain)) {
isl_union_set_free(Domain);
return nullptr;
}
struct MapToDimensionDataTy Data;
isl_space *Space;
Space = isl_union_set_get_space(Domain);
Data.N = N;
Data.Res = isl_union_pw_multi_aff_empty(Space);
if (isl_union_set_foreach_set(Domain, &mapToDimension_AddSet, &Data) < 0)
Data.Res = isl_union_pw_multi_aff_free(Data.Res);
isl_union_set_free(Domain);
return isl_multi_union_pw_aff_from_union_pw_multi_aff(Data.Res);
}
ScopStmt *Scop::addScopStmt(BasicBlock *BB, Region *R) {
ScopStmt *Stmt;
if (BB) {
Stmts.emplace_back(*this, *BB);
Stmt = &Stmts.back();
StmtMap[BB] = Stmt;
} else {
assert(R && "Either basic block or a region expected.");
Stmts.emplace_back(*this, *R);
Stmt = &Stmts.back();
for (BasicBlock *BB : R->blocks())
StmtMap[BB] = Stmt;
}
return Stmt;
}
void Scop::buildSchedule(
Region *R,
DenseMap<Loop *, std::pair<isl_schedule *, unsigned>> &LoopSchedules) {
if (SD.isNonAffineSubRegion(R, &getRegion())) {
Loop *L = getLoopSurroundingRegion(*R, LI);
auto &LSchedulePair = LoopSchedules[L];
ScopStmt *Stmt = getStmtForBasicBlock(R->getEntry());
isl_set *Domain = Stmt->getDomain();
auto *UDomain = isl_union_set_from_set(Domain);
auto *StmtSchedule = isl_schedule_from_domain(UDomain);
LSchedulePair.first = StmtSchedule;
return;
}
ReversePostOrderTraversal<Region *> RTraversal(R);
for (auto *RN : RTraversal) {
if (RN->isSubRegion()) {
Region *SubRegion = RN->getNodeAs<Region>();
if (!SD.isNonAffineSubRegion(SubRegion, &getRegion())) {
buildSchedule(SubRegion, LoopSchedules);
continue;
}
}
Loop *L = getRegionNodeLoop(RN, LI);
if (!getRegion().contains(L))
L = getLoopSurroundingRegion(getRegion(), LI);
int LD = getRelativeLoopDepth(L);
auto &LSchedulePair = LoopSchedules[L];
LSchedulePair.second += getNumBlocksInRegionNode(RN);
BasicBlock *BB = getRegionNodeBasicBlock(RN);
ScopStmt *Stmt = getStmtForBasicBlock(BB);
if (Stmt) {
auto *UDomain = isl_union_set_from_set(Stmt->getDomain());
auto *StmtSchedule = isl_schedule_from_domain(UDomain);
LSchedulePair.first =
combineInSequence(LSchedulePair.first, StmtSchedule);
}
unsigned NumVisited = LSchedulePair.second;
while (L && NumVisited == L->getNumBlocks()) {
auto *LDomain = isl_schedule_get_domain(LSchedulePair.first);
if (auto *MUPA = mapToDimension(LDomain, LD + 1))
LSchedulePair.first =
isl_schedule_insert_partial_schedule(LSchedulePair.first, MUPA);
auto *PL = L->getParentLoop();
// Either we have a proper loop and we also build a schedule for the
// parent loop or we have a infinite loop that does not have a proper
// parent loop. In the former case this conditional will be skipped, in
// the latter case however we will break here as we do not build a domain
// nor a schedule for a infinite loop.
assert(LoopSchedules.count(PL) || LSchedulePair.first == nullptr);
if (!LoopSchedules.count(PL))
break;
auto &PSchedulePair = LoopSchedules[PL];
PSchedulePair.first =
combineInSequence(PSchedulePair.first, LSchedulePair.first);
PSchedulePair.second += NumVisited;
L = PL;
NumVisited = PSchedulePair.second;
}
}
}
ScopStmt *Scop::getStmtForBasicBlock(BasicBlock *BB) const {
auto StmtMapIt = StmtMap.find(BB);
if (StmtMapIt == StmtMap.end())
return nullptr;
return StmtMapIt->second;
}
int Scop::getRelativeLoopDepth(const Loop *L) const {
Loop *OuterLoop =
L ? R.outermostLoopInRegion(const_cast<Loop *>(L)) : nullptr;
if (!OuterLoop)
return -1;
return L->getLoopDepth() - OuterLoop->getLoopDepth();
}
void ScopInfo::buildPHIAccesses(PHINode *PHI, Region &R,
Region *NonAffineSubRegion, bool IsExitBlock) {
// PHI nodes that are in the exit block of the region, hence if IsExitBlock is
// true, are not modeled as ordinary PHI nodes as they are not part of the
// region. However, we model the operands in the predecessor blocks that are
// part of the region as regular scalar accesses.
// If we can synthesize a PHI we can skip it, however only if it is in
// the region. If it is not it can only be in the exit block of the region.
// In this case we model the operands but not the PHI itself.
if (!IsExitBlock && canSynthesize(PHI, LI, SE, &R))
return;
// PHI nodes are modeled as if they had been demoted prior to the SCoP
// detection. Hence, the PHI is a load of a new memory location in which the
// incoming value was written at the end of the incoming basic block.
bool OnlyNonAffineSubRegionOperands = true;
for (unsigned u = 0; u < PHI->getNumIncomingValues(); u++) {
Value *Op = PHI->getIncomingValue(u);
BasicBlock *OpBB = PHI->getIncomingBlock(u);
// Do not build scalar dependences inside a non-affine subregion.
if (NonAffineSubRegion && NonAffineSubRegion->contains(OpBB))
continue;
OnlyNonAffineSubRegionOperands = false;
if (!R.contains(OpBB))
continue;
Instruction *OpI = dyn_cast<Instruction>(Op);
if (OpI) {
BasicBlock *OpIBB = OpI->getParent();
// As we pretend there is a use (or more precise a write) of OpI in OpBB
// we have to insert a scalar dependence from the definition of OpI to
// OpBB if the definition is not in OpBB.
if (scop->getStmtForBasicBlock(OpIBB) !=
scop->getStmtForBasicBlock(OpBB)) {
addScalarReadAccess(OpI, PHI, OpBB);
addScalarWriteAccess(OpI);
}
} else if (ModelReadOnlyScalars && !isa<Constant>(Op)) {
addScalarReadAccess(Op, PHI, OpBB);
}
addPHIWriteAccess(PHI, OpBB, Op, IsExitBlock);
}
if (!OnlyNonAffineSubRegionOperands && !IsExitBlock) {
addPHIReadAccess(PHI);
}
}
bool ScopInfo::buildScalarDependences(Instruction *Inst, Region *R,
Region *NonAffineSubRegion) {
bool canSynthesizeInst = canSynthesize(Inst, LI, SE, R);
if (isIgnoredIntrinsic(Inst))
return false;
bool AnyCrossStmtUse = false;
BasicBlock *ParentBB = Inst->getParent();
for (User *U : Inst->users()) {
Instruction *UI = dyn_cast<Instruction>(U);
// Ignore the strange user
if (UI == 0)
continue;
BasicBlock *UseParent = UI->getParent();
// Ignore basic block local uses. A value that is defined in a scop, but
// used in a PHI node in the same basic block does not count as basic block
// local, as for such cases a control flow edge is passed between definition
// and use.
if (UseParent == ParentBB && !isa<PHINode>(UI))
continue;
// Do not build scalar dependences inside a non-affine subregion.
if (NonAffineSubRegion && NonAffineSubRegion->contains(UseParent))
continue;
// Check for PHI nodes in the region exit and skip them, if they will be
// modeled as PHI nodes.
//
// PHI nodes in the region exit that have more than two incoming edges need
// to be modeled as PHI-Nodes to correctly model the fact that depending on
// the control flow a different value will be assigned to the PHI node. In
// case this is the case, there is no need to create an additional normal
// scalar dependence. Hence, bail out before we register an "out-of-region"
// use for this definition.
if (isa<PHINode>(UI) && UI->getParent() == R->getExit() &&
!R->getExitingBlock())
continue;
// Check whether or not the use is in the SCoP.
if (!R->contains(UseParent)) {
AnyCrossStmtUse = true;
continue;
}
// Uses by PHI nodes in the entry node count as external uses in case the
// use is through an incoming block that is itself not contained in the
// region.
if (R->getEntry() == UseParent) {
if (auto *PHI = dyn_cast<PHINode>(UI)) {
bool ExternalUse = false;
for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
if (PHI->getIncomingValue(i) == Inst &&
!R->contains(PHI->getIncomingBlock(i))) {
ExternalUse = true;
break;
}
}
if (ExternalUse) {
AnyCrossStmtUse = true;
continue;
}
}
}
// If the instruction can be synthesized and the user is in the region
// we do not need to add scalar dependences.
if (canSynthesizeInst)
continue;
// No need to translate these scalar dependences into polyhedral form,
// because synthesizable scalars can be generated by the code generator.
if (canSynthesize(UI, LI, SE, R))
continue;
// Skip PHI nodes in the region as they handle their operands on their own.
if (isa<PHINode>(UI))
continue;
// Now U is used in another statement.
AnyCrossStmtUse = true;
// Do not build a read access that is not in the current SCoP
// Use the def instruction as base address of the MemoryAccess, so that it
// will become the name of the scalar access in the polyhedral form.
addScalarReadAccess(Inst, UI);
}
if (ModelReadOnlyScalars && !isa<PHINode>(Inst)) {
for (Value *Op : Inst->operands()) {
if (canSynthesize(Op, LI, SE, R))
continue;
if (Instruction *OpInst = dyn_cast<Instruction>(Op))
if (R->contains(OpInst))
continue;
if (isa<Constant>(Op))
continue;
addScalarReadAccess(Op, Inst);
}
}
return AnyCrossStmtUse;
}
extern MapInsnToMemAcc InsnToMemAcc;
void ScopInfo::buildMemoryAccess(
Instruction *Inst, Loop *L, Region *R,
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
const ScopDetection::BoxedLoopsSetTy *BoxedLoops,
const InvariantLoadsSetTy &ScopRIL) {
unsigned Size;
Type *SizeType;
Value *Val;
enum MemoryAccess::AccessType Type;
if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
SizeType = Load->getType();
Size = TD->getTypeStoreSize(SizeType);
Type = MemoryAccess::READ;
Val = Load;
} else {
StoreInst *Store = cast<StoreInst>(Inst);
SizeType = Store->getValueOperand()->getType();
Size = TD->getTypeStoreSize(SizeType);
Type = MemoryAccess::MUST_WRITE;
Val = Store->getValueOperand();
}
auto Address = getPointerOperand(*Inst);
const SCEV *AccessFunction = SE->getSCEVAtScope(Address, L);
const SCEVUnknown *BasePointer =
dyn_cast<SCEVUnknown>(SE->getPointerBase(AccessFunction));
assert(BasePointer && "Could not find base pointer");
AccessFunction = SE->getMinusSCEV(AccessFunction, BasePointer);
if (isa<GetElementPtrInst>(Address) || isa<BitCastInst>(Address)) {
auto NewAddress = Address;
if (auto *BitCast = dyn_cast<BitCastInst>(Address)) {
auto Src = BitCast->getOperand(0);
auto SrcTy = Src->getType();
auto DstTy = BitCast->getType();
if (SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits())
NewAddress = Src;
}
if (auto *GEP = dyn_cast<GetElementPtrInst>(NewAddress)) {
std::vector<const SCEV *> Subscripts;
std::vector<int> Sizes;
std::tie(Subscripts, Sizes) = getIndexExpressionsFromGEP(GEP, *SE);
auto BasePtr = GEP->getOperand(0);
std::vector<const SCEV *> SizesSCEV;
bool AllAffineSubcripts = true;
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
for (auto Subscript : Subscripts) {
InvariantLoadsSetTy AccessILS;
AllAffineSubcripts =
isAffineExpr(R, Subscript, *SE, nullptr, &AccessILS);
for (LoadInst *LInst : AccessILS)
if (!ScopRIL.count(LInst))
AllAffineSubcripts = false;
if (!AllAffineSubcripts)
break;
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
}
if (AllAffineSubcripts && Sizes.size() > 0) {
for (auto V : Sizes)
SizesSCEV.push_back(SE->getSCEV(ConstantInt::get(
IntegerType::getInt64Ty(BasePtr->getContext()), V)));
SizesSCEV.push_back(SE->getSCEV(ConstantInt::get(
IntegerType::getInt64Ty(BasePtr->getContext()), Size)));
addExplicitAccess(Inst, Type, BasePointer->getValue(), Size, true,
Subscripts, SizesSCEV, Val);
return;
}
}
}
auto AccItr = InsnToMemAcc.find(Inst);
if (PollyDelinearize && AccItr != InsnToMemAcc.end()) {
addExplicitAccess(Inst, Type, BasePointer->getValue(), Size, true,
AccItr->second.DelinearizedSubscripts,
AccItr->second.Shape->DelinearizedSizes, Val);
return;
}
// Check if the access depends on a loop contained in a non-affine subregion.
bool isVariantInNonAffineLoop = false;
if (BoxedLoops) {
SetVector<const Loop *> Loops;
findLoops(AccessFunction, Loops);
for (const Loop *L : Loops)
if (BoxedLoops->count(L))
isVariantInNonAffineLoop = true;
}
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
InvariantLoadsSetTy AccessILS;
bool IsAffine =
!isVariantInNonAffineLoop &&
isAffineExpr(R, AccessFunction, *SE, BasePointer->getValue(), &AccessILS);
for (LoadInst *LInst : AccessILS)
if (!ScopRIL.count(LInst))
IsAffine = false;
2015-09-26 23:51:44 +08:00
// FIXME: Size of the number of bytes of an array element, not the number of
// elements as probably intended here.
2015-09-28 01:54:50 +08:00
const SCEV *SizeSCEV =
SE->getConstant(TD->getIntPtrType(Inst->getContext()), Size);
if (!IsAffine && Type == MemoryAccess::MUST_WRITE)
Type = MemoryAccess::MAY_WRITE;
addExplicitAccess(Inst, Type, BasePointer->getValue(), Size, IsAffine,
ArrayRef<const SCEV *>(AccessFunction),
ArrayRef<const SCEV *>(SizeSCEV), Val);
}
void ScopInfo::buildAccessFunctions(Region &R, Region &SR) {
if (SD->isNonAffineSubRegion(&SR, &R)) {
for (BasicBlock *BB : SR.blocks())
buildAccessFunctions(R, *BB, &SR);
return;
}
for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I)
if (I->isSubRegion())
buildAccessFunctions(R, *I->getNodeAs<Region>());
else
buildAccessFunctions(R, *I->getNodeAs<BasicBlock>());
}
void ScopInfo::buildStmts(Region &SR) {
Region *R = getRegion();
if (SD->isNonAffineSubRegion(&SR, R)) {
scop->addScopStmt(nullptr, &SR);
return;
}
for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I)
if (I->isSubRegion())
buildStmts(*I->getNodeAs<Region>());
else
scop->addScopStmt(I->getNodeAs<BasicBlock>(), nullptr);
}
void ScopInfo::buildAccessFunctions(Region &R, BasicBlock &BB,
Region *NonAffineSubRegion,
bool IsExitBlock) {
Loop *L = LI->getLoopFor(&BB);
// The set of loops contained in non-affine subregions that are part of R.
const ScopDetection::BoxedLoopsSetTy *BoxedLoops = SD->getBoxedLoops(&R);
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
// The set of loads that are required to be invariant.
auto &ScopRIL = *SD->getRequiredInvariantLoads(&R);
for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I) {
Instruction *Inst = I;
PHINode *PHI = dyn_cast<PHINode>(Inst);
if (PHI)
buildPHIAccesses(PHI, R, NonAffineSubRegion, IsExitBlock);
// For the exit block we stop modeling after the last PHI node.
if (!PHI && IsExitBlock)
break;
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
// TODO: At this point we only know that elements of ScopRIL have to be
// invariant and will be hoisted for the SCoP to be processed. Though,
// there might be other invariant accesses that will be hoisted and
// that would allow to make a non-affine access affine.
if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
buildMemoryAccess(Inst, L, &R, BoxedLoops, ScopRIL);
if (isIgnoredIntrinsic(Inst))
continue;
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
// Do not build scalar dependences for required invariant loads as we will
// hoist them later on anyway or drop the SCoP if we cannot.
if (ScopRIL.count(dyn_cast<LoadInst>(Inst)))
continue;
if (buildScalarDependences(Inst, &R, NonAffineSubRegion)) {
if (!isa<StoreInst>(Inst))
addScalarWriteAccess(Inst);
}
}
}
void ScopInfo::addMemoryAccess(BasicBlock *BB, Instruction *Inst,
MemoryAccess::AccessType Type,
Value *BaseAddress, unsigned ElemBytes,
bool Affine, Value *AccessValue,
ArrayRef<const SCEV *> Subscripts,
ArrayRef<const SCEV *> Sizes,
MemoryAccess::AccessOrigin Origin) {
ScopStmt *Stmt = scop->getStmtForBasicBlock(BB);
// Do not create a memory access for anything not in the SCoP. It would be
// ignored anyway.
if (!Stmt)
return;
AccFuncSetType &AccList = AccFuncMap[BB];
size_t Identifier = AccList.size();
Value *BaseAddr = BaseAddress;
std::string BaseName = getIslCompatibleName("MemRef_", BaseAddr, "");
std::string IdName = "__polly_array_ref_" + std::to_string(Identifier);
isl_id *Id = isl_id_alloc(ctx, IdName.c_str(), nullptr);
bool isApproximated =
Stmt->isRegionStmt() && (Stmt->getRegion()->getEntry() != BB);
if (isApproximated && Type == MemoryAccess::MUST_WRITE)
Type = MemoryAccess::MAY_WRITE;
AccList.emplace_back(Stmt, Inst, Id, Type, BaseAddress, ElemBytes, Affine,
Subscripts, Sizes, AccessValue, Origin, BaseName);
Stmt->addAccess(&AccList.back());
}
void ScopInfo::addExplicitAccess(
Instruction *MemAccInst, MemoryAccess::AccessType Type, Value *BaseAddress,
unsigned ElemBytes, bool IsAffine, ArrayRef<const SCEV *> Subscripts,
ArrayRef<const SCEV *> Sizes, Value *AccessValue) {
assert(isa<LoadInst>(MemAccInst) || isa<StoreInst>(MemAccInst));
assert(isa<LoadInst>(MemAccInst) == (Type == MemoryAccess::READ));
addMemoryAccess(MemAccInst->getParent(), MemAccInst, Type, BaseAddress,
ElemBytes, IsAffine, AccessValue, Subscripts, Sizes,
MemoryAccess::EXPLICIT);
}
void ScopInfo::addScalarWriteAccess(Instruction *Value) {
addMemoryAccess(Value->getParent(), Value, MemoryAccess::MUST_WRITE, Value, 1,
true, Value, ArrayRef<const SCEV *>(),
ArrayRef<const SCEV *>(), MemoryAccess::SCALAR);
}
void ScopInfo::addScalarReadAccess(Value *Value, Instruction *User) {
assert(!isa<PHINode>(User));
addMemoryAccess(User->getParent(), User, MemoryAccess::READ, Value, 1, true,
Value, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
MemoryAccess::SCALAR);
}
void ScopInfo::addScalarReadAccess(Value *Value, PHINode *User,
BasicBlock *UserBB) {
addMemoryAccess(UserBB, User, MemoryAccess::READ, Value, 1, true, Value,
ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
MemoryAccess::SCALAR);
}
void ScopInfo::addPHIWriteAccess(PHINode *PHI, BasicBlock *IncomingBlock,
Value *IncomingValue, bool IsExitBlock) {
addMemoryAccess(IncomingBlock, IncomingBlock->getTerminator(),
MemoryAccess::MUST_WRITE, PHI, 1, true, IncomingValue,
ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
IsExitBlock ? MemoryAccess::SCALAR : MemoryAccess::PHI);
}
void ScopInfo::addPHIReadAccess(PHINode *PHI) {
addMemoryAccess(PHI->getParent(), PHI, MemoryAccess::READ, PHI, 1, true, PHI,
ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
MemoryAccess::PHI);
}
void ScopInfo::buildScop(Region &R, DominatorTree &DT) {
unsigned MaxLoopDepth = getMaxLoopDepthInRegion(R, *LI, *SD);
scop = new Scop(R, AccFuncMap, *SD, *SE, DT, *LI, ctx, MaxLoopDepth);
buildStmts(R);
buildAccessFunctions(R, R);
// In case the region does not have an exiting block we will later (during
// code generation) split the exit block. This will move potential PHI nodes
// from the current exit block into the new region exiting block. Hence, PHI
// nodes that are at this point not part of the region will be.
// To handle these PHI nodes later we will now model their operands as scalar
// accesses. Note that we do not model anything in the exit block if we have
// an exiting block in the region, as there will not be any splitting later.
if (!R.getExitingBlock())
buildAccessFunctions(R, *R.getExit(), nullptr, /* IsExitBlock */ true);
scop->init(*AA);
}
void ScopInfo::print(raw_ostream &OS, const Module *) const {
if (!scop) {
OS << "Invalid Scop!\n";
return;
}
scop->print(OS);
}
void ScopInfo::clear() {
AccFuncMap.clear();
if (scop) {
delete scop;
scop = 0;
}
}
//===----------------------------------------------------------------------===//
ScopInfo::ScopInfo() : RegionPass(ID), scop(0) {
ctx = isl_ctx_alloc();
isl_options_set_on_error(ctx, ISL_ON_ERROR_ABORT);
}
ScopInfo::~ScopInfo() {
clear();
isl_ctx_free(ctx);
}
void ScopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<RegionInfoPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
AU.addRequiredTransitive<ScopDetection>();
AU.addRequired<AAResultsWrapperPass>();
AU.setPreservesAll();
}
bool ScopInfo::runOnRegion(Region *R, RGPassManager &RGM) {
SD = &getAnalysis<ScopDetection>();
if (!SD->isMaxRegionInScop(*R))
return false;
Function *F = R->getEntry()->getParent();
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
TD = &F->getParent()->getDataLayout();
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
buildScop(*R, DT);
DEBUG(scop->print(dbgs()));
if (scop->isEmpty() || !scop->hasFeasibleRuntimeContext()) {
delete scop;
scop = nullptr;
return false;
}
// Statistics.
++ScopFound;
if (scop->getMaxLoopDepth() > 0)
++RichScopFound;
return false;
}
char ScopInfo::ID = 0;
Pass *polly::createScopInfoPass() { return new ScopInfo(); }
INITIALIZE_PASS_BEGIN(ScopInfo, "polly-scops",
"Polly - Create polyhedral description of Scops", false,
false);
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(ScopDetection);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
INITIALIZE_PASS_END(ScopInfo, "polly-scops",
"Polly - Create polyhedral description of Scops", false,
false)