llvm-project/clang/lib/StaticAnalyzer/Checkers/NullabilityChecker.cpp

1067 lines
39 KiB
C++
Raw Normal View History

//== Nullabilityhecker.cpp - Nullability checker ----------------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This checker tries to find nullability violations. There are several kinds of
// possible violations:
// * Null pointer is passed to a pointer which has a _Nonnull type.
// * Null pointer is returned from a function which has a _Nonnull return type.
// * Nullable pointer is passed to a pointer which has a _Nonnull type.
// * Nullable pointer is returned from a function which has a _Nonnull return
// type.
// * Nullable pointer is dereferenced.
//
// This checker propagates the nullability information of the pointers and looks
// for the patterns that are described above. Explicit casts are trusted and are
// considered a way to suppress false positives for this checker. The other way
// to suppress warnings would be to add asserts or guarding if statements to the
// code. In addition to the nullability propagation this checker also uses some
// heuristics to suppress potential false positives.
//
//===----------------------------------------------------------------------===//
#include "ClangSACheckers.h"
#include "llvm/Support/Path.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
using namespace clang;
using namespace ento;
namespace {
// Do not reorder! The getMostNullable method relies on the order.
// Optimization: Most pointers expected to be unspecified. When a symbol has an
// unspecified or nonnull type non of the rules would indicate any problem for
// that symbol. For this reason only nullable and contradicted nullability are
// stored for a symbol. When a symbol is already contradicted, it can not be
// casted back to nullable.
enum class Nullability : char {
Contradicted, // Tracked nullability is contradicted by an explicit cast. Do
// not report any nullability related issue for this symbol.
// This nullability is propagated agressively to avoid false
// positive results. See the comment on getMostNullable method.
Nullable,
Unspecified,
Nonnull
};
/// Returns the most nullable nullability. This is used for message expressions
/// like [reciever method], where the nullability of this expression is either
/// the nullability of the receiver or the nullability of the return type of the
/// method, depending on which is more nullable. Contradicted is considered to
/// be the most nullable, to avoid false positive results.
Nullability getMostNullable(Nullability Lhs, Nullability Rhs) {
return static_cast<Nullability>(
std::min(static_cast<char>(Lhs), static_cast<char>(Rhs)));
}
const char *getNullabilityString(Nullability Nullab) {
switch (Nullab) {
case Nullability::Contradicted:
return "contradicted";
case Nullability::Nullable:
return "nullable";
case Nullability::Unspecified:
return "unspecified";
case Nullability::Nonnull:
return "nonnull";
}
llvm_unreachable("Unexpected enumeration.");
return "";
}
// These enums are used as an index to ErrorMessages array.
enum class ErrorKind : int {
NilAssignedToNonnull,
NilPassedToNonnull,
NilReturnedToNonnull,
NullableAssignedToNonnull,
NullableReturnedToNonnull,
NullableDereferenced,
NullablePassedToNonnull
};
const char *const ErrorMessages[] = {
"Null is assigned to a pointer which is expected to have non-null value",
"Null passed to a callee that requires a non-null argument",
"Null is returned from a function that is expected to return a non-null "
"value",
"Nullable pointer is assigned to a pointer which is expected to have "
"non-null value",
"Nullable pointer is returned from a function that is expected to return a "
"non-null value",
"Nullable pointer is dereferenced",
"Nullable pointer is passed to a callee that requires a non-null argument"};
class NullabilityChecker
: public Checker<check::Bind, check::PreCall, check::PreStmt<ReturnStmt>,
check::PostCall, check::PostStmt<ExplicitCastExpr>,
check::PostObjCMessage, check::DeadSymbols,
check::Event<ImplicitNullDerefEvent>> {
mutable std::unique_ptr<BugType> BT;
public:
void checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const;
void checkPostStmt(const ExplicitCastExpr *CE, CheckerContext &C) const;
void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
void checkEvent(ImplicitNullDerefEvent Event) const;
void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
const char *Sep) const override;
struct NullabilityChecksFilter {
DefaultBool CheckNullPassedToNonnull;
DefaultBool CheckNullReturnedFromNonnull;
DefaultBool CheckNullableDereferenced;
DefaultBool CheckNullablePassedToNonnull;
DefaultBool CheckNullableReturnedFromNonnull;
CheckName CheckNameNullPassedToNonnull;
CheckName CheckNameNullReturnedFromNonnull;
CheckName CheckNameNullableDereferenced;
CheckName CheckNameNullablePassedToNonnull;
CheckName CheckNameNullableReturnedFromNonnull;
};
NullabilityChecksFilter Filter;
// When set to false no nullability information will be tracked in
// NullabilityMap. It is possible to catch errors like passing a null pointer
// to a callee that expects nonnull argument without the information that is
// stroed in the NullabilityMap. This is an optimization.
DefaultBool NeedTracking;
private:
class NullabilityBugVisitor
: public BugReporterVisitorImpl<NullabilityBugVisitor> {
public:
NullabilityBugVisitor(const MemRegion *M) : Region(M) {}
void Profile(llvm::FoldingSetNodeID &ID) const override {
static int X = 0;
ID.AddPointer(&X);
ID.AddPointer(Region);
}
PathDiagnosticPiece *VisitNode(const ExplodedNode *N,
const ExplodedNode *PrevN,
BugReporterContext &BRC,
BugReport &BR) override;
private:
// The tracked region.
const MemRegion *Region;
};
/// When any of the nonnull arguments of the analyzed function is null, do not
/// report anything and turn off the check.
///
/// When \p SuppressPath is set to true, no more bugs will be reported on this
/// path by this checker.
void reportBugIfPreconditionHolds(ErrorKind Error, ExplodedNode *N,
const MemRegion *Region, CheckerContext &C,
const Stmt *ValueExpr = nullptr,
bool SuppressPath = false) const;
void reportBug(ErrorKind Error, ExplodedNode *N, const MemRegion *Region,
BugReporter &BR, const Stmt *ValueExpr = nullptr) const {
if (!BT)
BT.reset(new BugType(this, "Nullability", "Memory error"));
const char *Msg = ErrorMessages[static_cast<int>(Error)];
std::unique_ptr<BugReport> R(new BugReport(*BT, Msg, N));
if (Region) {
R->markInteresting(Region);
R->addVisitor(llvm::make_unique<NullabilityBugVisitor>(Region));
}
if (ValueExpr) {
R->addRange(ValueExpr->getSourceRange());
if (Error == ErrorKind::NilAssignedToNonnull ||
Error == ErrorKind::NilPassedToNonnull ||
Error == ErrorKind::NilReturnedToNonnull)
bugreporter::trackNullOrUndefValue(N, ValueExpr, *R);
}
BR.emitReport(std::move(R));
}
/// If an SVal wraps a region that should be tracked, it will return a pointer
/// to the wrapped region. Otherwise it will return a nullptr.
const SymbolicRegion *getTrackRegion(SVal Val,
bool CheckSuperRegion = false) const;
};
class NullabilityState {
public:
NullabilityState(Nullability Nullab, const Stmt *Source = nullptr)
: Nullab(Nullab), Source(Source) {}
const Stmt *getNullabilitySource() const { return Source; }
Nullability getValue() const { return Nullab; }
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(static_cast<char>(Nullab));
ID.AddPointer(Source);
}
void print(raw_ostream &Out) const {
Out << getNullabilityString(Nullab) << "\n";
}
private:
Nullability Nullab;
// Source is the expression which determined the nullability. For example in a
// message like [nullable nonnull_returning] has nullable nullability, because
// the receiver is nullable. Here the receiver will be the source of the
// nullability. This is useful information when the diagnostics are generated.
const Stmt *Source;
};
bool operator==(NullabilityState Lhs, NullabilityState Rhs) {
return Lhs.getValue() == Rhs.getValue() &&
Lhs.getNullabilitySource() == Rhs.getNullabilitySource();
}
} // end anonymous namespace
REGISTER_MAP_WITH_PROGRAMSTATE(NullabilityMap, const MemRegion *,
NullabilityState)
// If the nullability precondition of a function is violated, we should not
// report nullability related issues on that path. For this reason once a
// precondition is not met on a path, this checker will be esentially turned off
// for the rest of the analysis. We do not want to generate a sink node however,
// so this checker would not lead to reduced coverage.
REGISTER_TRAIT_WITH_PROGRAMSTATE(PreconditionViolated, bool)
enum class NullConstraint { IsNull, IsNotNull, Unknown };
static NullConstraint getNullConstraint(DefinedOrUnknownSVal Val,
ProgramStateRef State) {
ConditionTruthVal Nullness = State->isNull(Val);
if (Nullness.isConstrainedFalse())
return NullConstraint::IsNotNull;
if (Nullness.isConstrainedTrue())
return NullConstraint::IsNull;
return NullConstraint::Unknown;
}
const SymbolicRegion *
NullabilityChecker::getTrackRegion(SVal Val, bool CheckSuperRegion) const {
if (!NeedTracking)
return nullptr;
auto RegionSVal = Val.getAs<loc::MemRegionVal>();
if (!RegionSVal)
return nullptr;
const MemRegion *Region = RegionSVal->getRegion();
if (CheckSuperRegion) {
if (auto FieldReg = Region->getAs<FieldRegion>())
return dyn_cast<SymbolicRegion>(FieldReg->getSuperRegion());
if (auto ElementReg = Region->getAs<ElementRegion>())
return dyn_cast<SymbolicRegion>(ElementReg->getSuperRegion());
}
return dyn_cast<SymbolicRegion>(Region);
}
PathDiagnosticPiece *NullabilityChecker::NullabilityBugVisitor::VisitNode(
const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC,
BugReport &BR) {
ProgramStateRef State = N->getState();
ProgramStateRef StatePrev = PrevN->getState();
const NullabilityState *TrackedNullab = State->get<NullabilityMap>(Region);
const NullabilityState *TrackedNullabPrev =
StatePrev->get<NullabilityMap>(Region);
if (!TrackedNullab)
return nullptr;
if (TrackedNullabPrev &&
TrackedNullabPrev->getValue() == TrackedNullab->getValue())
return nullptr;
// Retrieve the associated statement.
const Stmt *S = TrackedNullab->getNullabilitySource();
if (!S) {
ProgramPoint ProgLoc = N->getLocation();
if (Optional<StmtPoint> SP = ProgLoc.getAs<StmtPoint>()) {
S = SP->getStmt();
}
}
if (!S)
return nullptr;
std::string InfoText =
(llvm::Twine("Nullability '") +
getNullabilityString(TrackedNullab->getValue()) + "' is infered")
.str();
// Generate the extra diagnostic.
PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
N->getLocationContext());
return new PathDiagnosticEventPiece(Pos, InfoText, true, nullptr);
}
static Nullability getNullabilityAnnotation(QualType Type) {
const auto *AttrType = Type->getAs<AttributedType>();
if (!AttrType)
return Nullability::Unspecified;
if (AttrType->getAttrKind() == AttributedType::attr_nullable)
return Nullability::Nullable;
else if (AttrType->getAttrKind() == AttributedType::attr_nonnull)
return Nullability::Nonnull;
return Nullability::Unspecified;
}
template <typename ParamVarDeclRange>
static bool
checkParamsForPreconditionViolation(const ParamVarDeclRange &Params,
ProgramStateRef State,
const LocationContext *LocCtxt) {
for (const auto *ParamDecl : Params) {
if (ParamDecl->isParameterPack())
break;
if (getNullabilityAnnotation(ParamDecl->getType()) != Nullability::Nonnull)
continue;
auto RegVal = State->getLValue(ParamDecl, LocCtxt)
.template getAs<loc::MemRegionVal>();
if (!RegVal)
continue;
auto ParamValue = State->getSVal(RegVal->getRegion())
.template getAs<DefinedOrUnknownSVal>();
if (!ParamValue)
continue;
if (getNullConstraint(*ParamValue, State) == NullConstraint::IsNull) {
return true;
}
}
return false;
}
static bool checkPreconditionViolation(ProgramStateRef State, ExplodedNode *N,
CheckerContext &C) {
if (State->get<PreconditionViolated>())
return true;
const LocationContext *LocCtxt = C.getLocationContext();
const Decl *D = LocCtxt->getDecl();
if (!D)
return false;
ArrayRef<ParmVarDecl*> Params;
if (const auto *BD = dyn_cast<BlockDecl>(D))
Params = BD->parameters();
else if (const auto *FD = dyn_cast<FunctionDecl>(D))
Params = FD->parameters();
else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
Params = MD->parameters();
else
return false;
if (checkParamsForPreconditionViolation(Params, State, LocCtxt)) {
if (!N->isSink())
C.addTransition(State->set<PreconditionViolated>(true), N);
return true;
}
return false;
}
void NullabilityChecker::reportBugIfPreconditionHolds(
ErrorKind Error, ExplodedNode *N, const MemRegion *Region,
CheckerContext &C, const Stmt *ValueExpr, bool SuppressPath) const {
ProgramStateRef OriginalState = N->getState();
if (checkPreconditionViolation(OriginalState, N, C))
return;
if (SuppressPath) {
OriginalState = OriginalState->set<PreconditionViolated>(true);
N = C.addTransition(OriginalState, N);
}
reportBug(Error, N, Region, C.getBugReporter(), ValueExpr);
}
/// Cleaning up the program state.
void NullabilityChecker::checkDeadSymbols(SymbolReaper &SR,
CheckerContext &C) const {
if (!SR.hasDeadSymbols())
return;
ProgramStateRef State = C.getState();
NullabilityMapTy Nullabilities = State->get<NullabilityMap>();
for (NullabilityMapTy::iterator I = Nullabilities.begin(),
E = Nullabilities.end();
I != E; ++I) {
const auto *Region = I->first->getAs<SymbolicRegion>();
assert(Region && "Non-symbolic region is tracked.");
if (SR.isDead(Region->getSymbol())) {
State = State->remove<NullabilityMap>(I->first);
}
}
// When one of the nonnull arguments are constrained to be null, nullability
// preconditions are violated. It is not enough to check this only when we
// actually report an error, because at that time interesting symbols might be
// reaped.
if (checkPreconditionViolation(State, C.getPredecessor(), C))
return;
C.addTransition(State);
}
/// This callback triggers when a pointer is dereferenced and the analyzer does
/// not know anything about the value of that pointer. When that pointer is
/// nullable, this code emits a warning.
void NullabilityChecker::checkEvent(ImplicitNullDerefEvent Event) const {
if (Event.SinkNode->getState()->get<PreconditionViolated>())
return;
const MemRegion *Region =
getTrackRegion(Event.Location, /*CheckSuperregion=*/true);
if (!Region)
return;
ProgramStateRef State = Event.SinkNode->getState();
const NullabilityState *TrackedNullability =
State->get<NullabilityMap>(Region);
if (!TrackedNullability)
return;
if (Filter.CheckNullableDereferenced &&
TrackedNullability->getValue() == Nullability::Nullable) {
BugReporter &BR = *Event.BR;
// Do not suppress errors on defensive code paths, because dereferencing
// a nullable pointer is always an error.
if (Event.IsDirectDereference)
reportBug(ErrorKind::NullableDereferenced, Event.SinkNode, Region, BR);
else
reportBug(ErrorKind::NullablePassedToNonnull, Event.SinkNode, Region, BR);
}
}
/// This method check when nullable pointer or null value is returned from a
/// function that has nonnull return type.
///
/// TODO: when nullability preconditons are violated, it is ok to violate the
/// nullability postconditons (i.e.: when one of the nonnull parameters are null
/// this check should not report any nullability related issue).
void NullabilityChecker::checkPreStmt(const ReturnStmt *S,
CheckerContext &C) const {
auto RetExpr = S->getRetValue();
if (!RetExpr)
return;
if (!RetExpr->getType()->isAnyPointerType())
return;
ProgramStateRef State = C.getState();
if (State->get<PreconditionViolated>())
return;
auto RetSVal =
State->getSVal(S, C.getLocationContext()).getAs<DefinedOrUnknownSVal>();
if (!RetSVal)
return;
QualType RequiredRetType;
AnalysisDeclContext *DeclCtxt =
C.getLocationContext()->getAnalysisDeclContext();
const Decl *D = DeclCtxt->getDecl();
if (auto *MD = dyn_cast<ObjCMethodDecl>(D))
RequiredRetType = MD->getReturnType();
else if (auto *FD = dyn_cast<FunctionDecl>(D))
RequiredRetType = FD->getReturnType();
else
return;
NullConstraint Nullness = getNullConstraint(*RetSVal, State);
Nullability RequiredNullability = getNullabilityAnnotation(RequiredRetType);
// If the returned value is null but the type of the expression
// generating it is nonnull then we will suppress the diagnostic.
// This enables explicit suppression when returning a nil literal in a
// function with a _Nonnull return type:
// return (NSString * _Nonnull)0;
Nullability RetExprTypeLevelNullability =
getNullabilityAnnotation(RetExpr->getType());
if (Filter.CheckNullReturnedFromNonnull &&
Nullness == NullConstraint::IsNull &&
RetExprTypeLevelNullability != Nullability::Nonnull &&
RequiredNullability == Nullability::Nonnull) {
static CheckerProgramPointTag Tag(this, "NullReturnedFromNonnull");
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
ExplodedNode *N = C.generateErrorNode(State, &Tag);
if (!N)
return;
reportBugIfPreconditionHolds(ErrorKind::NilReturnedToNonnull, N, nullptr, C,
RetExpr);
return;
}
const MemRegion *Region = getTrackRegion(*RetSVal);
if (!Region)
return;
const NullabilityState *TrackedNullability =
State->get<NullabilityMap>(Region);
if (TrackedNullability) {
Nullability TrackedNullabValue = TrackedNullability->getValue();
if (Filter.CheckNullableReturnedFromNonnull &&
Nullness != NullConstraint::IsNotNull &&
TrackedNullabValue == Nullability::Nullable &&
RequiredNullability == Nullability::Nonnull) {
static CheckerProgramPointTag Tag(this, "NullableReturnedFromNonnull");
ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
reportBugIfPreconditionHolds(ErrorKind::NullableReturnedToNonnull, N,
Region, C);
}
return;
}
if (RequiredNullability == Nullability::Nullable) {
State = State->set<NullabilityMap>(Region,
NullabilityState(RequiredNullability,
S));
C.addTransition(State);
}
}
/// This callback warns when a nullable pointer or a null value is passed to a
/// function that expects its argument to be nonnull.
void NullabilityChecker::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
if (!Call.getDecl())
return;
ProgramStateRef State = C.getState();
if (State->get<PreconditionViolated>())
return;
ProgramStateRef OrigState = State;
unsigned Idx = 0;
for (const ParmVarDecl *Param : Call.parameters()) {
if (Param->isParameterPack())
break;
const Expr *ArgExpr = nullptr;
if (Idx < Call.getNumArgs())
ArgExpr = Call.getArgExpr(Idx);
auto ArgSVal = Call.getArgSVal(Idx++).getAs<DefinedOrUnknownSVal>();
if (!ArgSVal)
continue;
if (!Param->getType()->isAnyPointerType() &&
!Param->getType()->isReferenceType())
continue;
NullConstraint Nullness = getNullConstraint(*ArgSVal, State);
Nullability RequiredNullability =
getNullabilityAnnotation(Param->getType());
Nullability ArgExprTypeLevelNullability =
getNullabilityAnnotation(ArgExpr->getType());
if (Filter.CheckNullPassedToNonnull && Nullness == NullConstraint::IsNull &&
ArgExprTypeLevelNullability != Nullability::Nonnull &&
RequiredNullability == Nullability::Nonnull) {
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
ExplodedNode *N = C.generateErrorNode(State);
if (!N)
return;
reportBugIfPreconditionHolds(ErrorKind::NilPassedToNonnull, N, nullptr, C,
ArgExpr);
return;
}
const MemRegion *Region = getTrackRegion(*ArgSVal);
if (!Region)
continue;
const NullabilityState *TrackedNullability =
State->get<NullabilityMap>(Region);
if (TrackedNullability) {
if (Nullness == NullConstraint::IsNotNull ||
TrackedNullability->getValue() != Nullability::Nullable)
continue;
if (Filter.CheckNullablePassedToNonnull &&
RequiredNullability == Nullability::Nonnull) {
ExplodedNode *N = C.addTransition(State);
reportBugIfPreconditionHolds(ErrorKind::NullablePassedToNonnull, N,
Region, C, ArgExpr, /*SuppressPath=*/true);
return;
}
if (Filter.CheckNullableDereferenced &&
Param->getType()->isReferenceType()) {
ExplodedNode *N = C.addTransition(State);
reportBugIfPreconditionHolds(ErrorKind::NullableDereferenced, N, Region,
C, ArgExpr, /*SuppressPath=*/true);
return;
}
continue;
}
// No tracked nullability yet.
if (ArgExprTypeLevelNullability != Nullability::Nullable)
continue;
State = State->set<NullabilityMap>(
Region, NullabilityState(ArgExprTypeLevelNullability, ArgExpr));
}
if (State != OrigState)
C.addTransition(State);
}
/// Suppress the nullability warnings for some functions.
void NullabilityChecker::checkPostCall(const CallEvent &Call,
CheckerContext &C) const {
auto Decl = Call.getDecl();
if (!Decl)
return;
// ObjC Messages handles in a different callback.
if (Call.getKind() == CE_ObjCMessage)
return;
const FunctionType *FuncType = Decl->getFunctionType();
if (!FuncType)
return;
QualType ReturnType = FuncType->getReturnType();
if (!ReturnType->isAnyPointerType())
return;
ProgramStateRef State = C.getState();
if (State->get<PreconditionViolated>())
return;
const MemRegion *Region = getTrackRegion(Call.getReturnValue());
if (!Region)
return;
// CG headers are misannotated. Do not warn for symbols that are the results
// of CG calls.
const SourceManager &SM = C.getSourceManager();
StringRef FilePath = SM.getFilename(SM.getSpellingLoc(Decl->getLocStart()));
if (llvm::sys::path::filename(FilePath).startswith("CG")) {
State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
C.addTransition(State);
return;
}
const NullabilityState *TrackedNullability =
State->get<NullabilityMap>(Region);
if (!TrackedNullability &&
getNullabilityAnnotation(ReturnType) == Nullability::Nullable) {
State = State->set<NullabilityMap>(Region, Nullability::Nullable);
C.addTransition(State);
}
}
static Nullability getReceiverNullability(const ObjCMethodCall &M,
ProgramStateRef State) {
if (M.isReceiverSelfOrSuper()) {
// For super and super class receivers we assume that the receiver is
// nonnull.
return Nullability::Nonnull;
}
// Otherwise look up nullability in the state.
SVal Receiver = M.getReceiverSVal();
if (auto DefOrUnknown = Receiver.getAs<DefinedOrUnknownSVal>()) {
// If the receiver is constrained to be nonnull, assume that it is nonnull
// regardless of its type.
NullConstraint Nullness = getNullConstraint(*DefOrUnknown, State);
if (Nullness == NullConstraint::IsNotNull)
return Nullability::Nonnull;
}
auto ValueRegionSVal = Receiver.getAs<loc::MemRegionVal>();
if (ValueRegionSVal) {
const MemRegion *SelfRegion = ValueRegionSVal->getRegion();
assert(SelfRegion);
const NullabilityState *TrackedSelfNullability =
State->get<NullabilityMap>(SelfRegion);
if (TrackedSelfNullability)
return TrackedSelfNullability->getValue();
}
return Nullability::Unspecified;
}
/// Calculate the nullability of the result of a message expr based on the
/// nullability of the receiver, the nullability of the return value, and the
/// constraints.
void NullabilityChecker::checkPostObjCMessage(const ObjCMethodCall &M,
CheckerContext &C) const {
auto Decl = M.getDecl();
if (!Decl)
return;
QualType RetType = Decl->getReturnType();
if (!RetType->isAnyPointerType())
return;
ProgramStateRef State = C.getState();
if (State->get<PreconditionViolated>())
return;
const MemRegion *ReturnRegion = getTrackRegion(M.getReturnValue());
if (!ReturnRegion)
return;
auto Interface = Decl->getClassInterface();
auto Name = Interface ? Interface->getName() : "";
// In order to reduce the noise in the diagnostics generated by this checker,
// some framework and programming style based heuristics are used. These
// heuristics are for Cocoa APIs which have NS prefix.
if (Name.startswith("NS")) {
// Developers rely on dynamic invariants such as an item should be available
// in a collection, or a collection is not empty often. Those invariants can
// not be inferred by any static analysis tool. To not to bother the users
// with too many false positives, every item retrieval function should be
// ignored for collections. The instance methods of dictionaries in Cocoa
// are either item retrieval related or not interesting nullability wise.
// Using this fact, to keep the code easier to read just ignore the return
// value of every instance method of dictionaries.
if (M.isInstanceMessage() && Name.find("Dictionary") != StringRef::npos) {
State =
State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
C.addTransition(State);
return;
}
// For similar reasons ignore some methods of Cocoa arrays.
StringRef FirstSelectorSlot = M.getSelector().getNameForSlot(0);
if (Name.find("Array") != StringRef::npos &&
(FirstSelectorSlot == "firstObject" ||
FirstSelectorSlot == "lastObject")) {
State =
State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
C.addTransition(State);
return;
}
// Encoding related methods of string should not fail when lossless
// encodings are used. Using lossless encodings is so frequent that ignoring
// this class of methods reduced the emitted diagnostics by about 30% on
// some projects (and all of that was false positives).
if (Name.find("String") != StringRef::npos) {
for (auto Param : M.parameters()) {
if (Param->getName() == "encoding") {
State = State->set<NullabilityMap>(ReturnRegion,
Nullability::Contradicted);
C.addTransition(State);
return;
}
}
}
}
const ObjCMessageExpr *Message = M.getOriginExpr();
Nullability SelfNullability = getReceiverNullability(M, State);
const NullabilityState *NullabilityOfReturn =
State->get<NullabilityMap>(ReturnRegion);
if (NullabilityOfReturn) {
// When we have a nullability tracked for the return value, the nullability
// of the expression will be the most nullable of the receiver and the
// return value.
Nullability RetValTracked = NullabilityOfReturn->getValue();
Nullability ComputedNullab =
getMostNullable(RetValTracked, SelfNullability);
if (ComputedNullab != RetValTracked &&
ComputedNullab != Nullability::Unspecified) {
const Stmt *NullabilitySource =
ComputedNullab == RetValTracked
? NullabilityOfReturn->getNullabilitySource()
: Message->getInstanceReceiver();
State = State->set<NullabilityMap>(
ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
C.addTransition(State);
}
return;
}
// No tracked information. Use static type information for return value.
Nullability RetNullability = getNullabilityAnnotation(RetType);
// Properties might be computed. For this reason the static analyzer creates a
// new symbol each time an unknown property is read. To avoid false pozitives
// do not treat unknown properties as nullable, even when they explicitly
// marked nullable.
if (M.getMessageKind() == OCM_PropertyAccess && !C.wasInlined)
RetNullability = Nullability::Nonnull;
Nullability ComputedNullab = getMostNullable(RetNullability, SelfNullability);
if (ComputedNullab == Nullability::Nullable) {
const Stmt *NullabilitySource = ComputedNullab == RetNullability
? Message
: Message->getInstanceReceiver();
State = State->set<NullabilityMap>(
ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
C.addTransition(State);
}
}
/// Explicit casts are trusted. If there is a disagreement in the nullability
/// annotations in the destination and the source or '0' is casted to nonnull
/// track the value as having contraditory nullability. This will allow users to
/// suppress warnings.
void NullabilityChecker::checkPostStmt(const ExplicitCastExpr *CE,
CheckerContext &C) const {
QualType OriginType = CE->getSubExpr()->getType();
QualType DestType = CE->getType();
if (!OriginType->isAnyPointerType())
return;
if (!DestType->isAnyPointerType())
return;
ProgramStateRef State = C.getState();
if (State->get<PreconditionViolated>())
return;
Nullability DestNullability = getNullabilityAnnotation(DestType);
// No explicit nullability in the destination type, so this cast does not
// change the nullability.
if (DestNullability == Nullability::Unspecified)
return;
auto RegionSVal =
State->getSVal(CE, C.getLocationContext()).getAs<DefinedOrUnknownSVal>();
const MemRegion *Region = getTrackRegion(*RegionSVal);
if (!Region)
return;
// When 0 is converted to nonnull mark it as contradicted.
if (DestNullability == Nullability::Nonnull) {
NullConstraint Nullness = getNullConstraint(*RegionSVal, State);
if (Nullness == NullConstraint::IsNull) {
State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
C.addTransition(State);
return;
}
}
const NullabilityState *TrackedNullability =
State->get<NullabilityMap>(Region);
if (!TrackedNullability) {
if (DestNullability != Nullability::Nullable)
return;
State = State->set<NullabilityMap>(Region,
NullabilityState(DestNullability, CE));
C.addTransition(State);
return;
}
if (TrackedNullability->getValue() != DestNullability &&
TrackedNullability->getValue() != Nullability::Contradicted) {
State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
C.addTransition(State);
}
}
/// For a given statement performing a bind, attempt to syntactically
/// match the expression resulting in the bound value.
static const Expr * matchValueExprForBind(const Stmt *S) {
// For `x = e` the value expression is the right-hand side.
if (auto *BinOp = dyn_cast<BinaryOperator>(S)) {
if (BinOp->getOpcode() == BO_Assign)
return BinOp->getRHS();
}
// For `int x = e` the value expression is the initializer.
if (auto *DS = dyn_cast<DeclStmt>(S)) {
if (DS->isSingleDecl()) {
auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
if (!VD)
return nullptr;
if (const Expr *Init = VD->getInit())
return Init;
}
}
return nullptr;
}
/// Returns true if \param S is a DeclStmt for a local variable that
/// ObjC automated reference counting initialized with zero.
static bool isARCNilInitializedLocal(CheckerContext &C, const Stmt *S) {
// We suppress diagnostics for ARC zero-initialized _Nonnull locals. This
// prevents false positives when a _Nonnull local variable cannot be
// initialized with an initialization expression:
// NSString * _Nonnull s; // no-warning
// @autoreleasepool {
// s = ...
// }
//
// FIXME: We should treat implicitly zero-initialized _Nonnull locals as
// uninitialized in Sema's UninitializedValues analysis to warn when a use of
// the zero-initialized definition will unexpectedly yield nil.
// Locals are only zero-initialized when automated reference counting
// is turned on.
if (!C.getASTContext().getLangOpts().ObjCAutoRefCount)
return false;
auto *DS = dyn_cast<DeclStmt>(S);
if (!DS || !DS->isSingleDecl())
return false;
auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
if (!VD)
return false;
// Sema only zero-initializes locals with ObjCLifetimes.
if(!VD->getType().getQualifiers().hasObjCLifetime())
return false;
const Expr *Init = VD->getInit();
assert(Init && "ObjC local under ARC without initializer");
// Return false if the local is explicitly initialized (e.g., with '= nil').
if (!isa<ImplicitValueInitExpr>(Init))
return false;
return true;
}
/// Propagate the nullability information through binds and warn when nullable
/// pointer or null symbol is assigned to a pointer with a nonnull type.
void NullabilityChecker::checkBind(SVal L, SVal V, const Stmt *S,
CheckerContext &C) const {
const TypedValueRegion *TVR =
dyn_cast_or_null<TypedValueRegion>(L.getAsRegion());
if (!TVR)
return;
QualType LocType = TVR->getValueType();
if (!LocType->isAnyPointerType())
return;
ProgramStateRef State = C.getState();
if (State->get<PreconditionViolated>())
return;
auto ValDefOrUnknown = V.getAs<DefinedOrUnknownSVal>();
if (!ValDefOrUnknown)
return;
NullConstraint RhsNullness = getNullConstraint(*ValDefOrUnknown, State);
Nullability ValNullability = Nullability::Unspecified;
if (SymbolRef Sym = ValDefOrUnknown->getAsSymbol())
ValNullability = getNullabilityAnnotation(Sym->getType());
Nullability LocNullability = getNullabilityAnnotation(LocType);
if (Filter.CheckNullPassedToNonnull &&
RhsNullness == NullConstraint::IsNull &&
ValNullability != Nullability::Nonnull &&
LocNullability == Nullability::Nonnull &&
!isARCNilInitializedLocal(C, S)) {
static CheckerProgramPointTag Tag(this, "NullPassedToNonnull");
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
ExplodedNode *N = C.generateErrorNode(State, &Tag);
if (!N)
return;
const Stmt *ValueExpr = matchValueExprForBind(S);
if (!ValueExpr)
ValueExpr = S;
reportBugIfPreconditionHolds(ErrorKind::NilAssignedToNonnull, N, nullptr, C,
ValueExpr);
return;
}
// Intentionally missing case: '0' is bound to a reference. It is handled by
// the DereferenceChecker.
const MemRegion *ValueRegion = getTrackRegion(*ValDefOrUnknown);
if (!ValueRegion)
return;
const NullabilityState *TrackedNullability =
State->get<NullabilityMap>(ValueRegion);
if (TrackedNullability) {
if (RhsNullness == NullConstraint::IsNotNull ||
TrackedNullability->getValue() != Nullability::Nullable)
return;
if (Filter.CheckNullablePassedToNonnull &&
LocNullability == Nullability::Nonnull) {
static CheckerProgramPointTag Tag(this, "NullablePassedToNonnull");
ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
reportBugIfPreconditionHolds(ErrorKind::NullableAssignedToNonnull, N,
ValueRegion, C);
}
return;
}
const auto *BinOp = dyn_cast<BinaryOperator>(S);
if (ValNullability == Nullability::Nullable) {
// Trust the static information of the value more than the static
// information on the location.
const Stmt *NullabilitySource = BinOp ? BinOp->getRHS() : S;
State = State->set<NullabilityMap>(
ValueRegion, NullabilityState(ValNullability, NullabilitySource));
C.addTransition(State);
return;
}
if (LocNullability == Nullability::Nullable) {
const Stmt *NullabilitySource = BinOp ? BinOp->getLHS() : S;
State = State->set<NullabilityMap>(
ValueRegion, NullabilityState(LocNullability, NullabilitySource));
C.addTransition(State);
}
}
void NullabilityChecker::printState(raw_ostream &Out, ProgramStateRef State,
const char *NL, const char *Sep) const {
NullabilityMapTy B = State->get<NullabilityMap>();
if (B.isEmpty())
return;
Out << Sep << NL;
for (NullabilityMapTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
Out << I->first << " : ";
I->second.print(Out);
Out << NL;
}
}
#define REGISTER_CHECKER(name, trackingRequired) \
void ento::register##name##Checker(CheckerManager &mgr) { \
NullabilityChecker *checker = mgr.registerChecker<NullabilityChecker>(); \
checker->Filter.Check##name = true; \
checker->Filter.CheckName##name = mgr.getCurrentCheckName(); \
checker->NeedTracking = checker->NeedTracking || trackingRequired; \
}
// The checks are likely to be turned on by default and it is possible to do
// them without tracking any nullability related information. As an optimization
// no nullability information will be tracked when only these two checks are
// enables.
REGISTER_CHECKER(NullPassedToNonnull, false)
REGISTER_CHECKER(NullReturnedFromNonnull, false)
REGISTER_CHECKER(NullableDereferenced, true)
REGISTER_CHECKER(NullablePassedToNonnull, true)
REGISTER_CHECKER(NullableReturnedFromNonnull, true)