llvm-project/compiler-rt/cmake/Modules/CompilerRTUtils.cmake

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

601 lines
23 KiB
CMake
Raw Normal View History

include(CMakePushCheckState)
include(CheckSymbolExists)
# Because compiler-rt spends a lot of time setting up custom compile flags,
# define a handy helper function for it. The compile flags setting in CMake
# has serious issues that make its syntax challenging at best.
function(set_target_compile_flags target)
set(argstring "")
foreach(arg ${ARGN})
set(argstring "${argstring} ${arg}")
endforeach()
set_property(TARGET ${target} PROPERTY COMPILE_FLAGS "${argstring}")
endfunction()
function(set_target_link_flags target)
set(argstring "")
foreach(arg ${ARGN})
set(argstring "${argstring} ${arg}")
endforeach()
set_property(TARGET ${target} PROPERTY LINK_FLAGS "${argstring}")
endfunction()
# Set the variable var_PYBOOL to True if var holds a true-ish string,
# otherwise set it to False.
macro(pythonize_bool var)
if (${var})
set(${var}_PYBOOL True)
else()
set(${var}_PYBOOL False)
endif()
endmacro()
# Appends value to all lists in ARGN, if the condition is true.
macro(append_list_if condition value)
if(${condition})
foreach(list ${ARGN})
list(APPEND ${list} ${value})
endforeach()
endif()
endmacro()
# Appends value to all strings in ARGN, if the condition is true.
macro(append_string_if condition value)
if(${condition})
foreach(str ${ARGN})
set(${str} "${${str}} ${value}")
endforeach()
endif()
endmacro()
macro(append_rtti_flag polarity list)
if(${polarity})
append_list_if(COMPILER_RT_HAS_FRTTI_FLAG -frtti ${list})
append_list_if(COMPILER_RT_HAS_GR_FLAG /GR ${list})
else()
append_list_if(COMPILER_RT_HAS_FNO_RTTI_FLAG -fno-rtti ${list})
append_list_if(COMPILER_RT_HAS_GR_FLAG /GR- ${list})
endif()
endmacro()
macro(list_intersect output input1 input2)
set(${output})
foreach(it ${${input1}})
list(FIND ${input2} ${it} index)
if( NOT (index EQUAL -1))
list(APPEND ${output} ${it})
endif()
endforeach()
endmacro()
function(list_replace input_list old new)
set(replaced_list)
foreach(item ${${input_list}})
if(${item} STREQUAL ${old})
list(APPEND replaced_list ${new})
else()
list(APPEND replaced_list ${item})
endif()
endforeach()
set(${input_list} "${replaced_list}" PARENT_SCOPE)
endfunction()
# Takes ${ARGN} and puts only supported architectures in @out_var list.
function(filter_available_targets out_var)
set(archs ${${out_var}})
foreach(arch ${ARGN})
list(FIND COMPILER_RT_SUPPORTED_ARCH ${arch} ARCH_INDEX)
if(NOT (ARCH_INDEX EQUAL -1) AND CAN_TARGET_${arch})
list(APPEND archs ${arch})
endif()
endforeach()
set(${out_var} ${archs} PARENT_SCOPE)
endfunction()
# Add $arch as supported with no additional flags.
macro(add_default_target_arch arch)
set(TARGET_${arch}_CFLAGS "")
set(CAN_TARGET_${arch} 1)
list(APPEND COMPILER_RT_SUPPORTED_ARCH ${arch})
endmacro()
function(check_compile_definition def argstring out_var)
if("${def}" STREQUAL "")
set(${out_var} TRUE PARENT_SCOPE)
return()
endif()
cmake_push_check_state()
set(CMAKE_REQUIRED_FLAGS "${CMAKE_REQUIRED_FLAGS} ${argstring}")
check_symbol_exists(${def} "" ${out_var})
cmake_pop_check_state()
endfunction()
# test_target_arch(<arch> <def> <target flags...>)
# Checks if architecture is supported: runs host compiler with provided
# flags to verify that:
# 1) <def> is defined (if non-empty)
# 2) simple file can be successfully built.
# If successful, saves target flags for this architecture.
macro(test_target_arch arch def)
set(TARGET_${arch}_CFLAGS ${ARGN})
set(TARGET_${arch}_LINK_FLAGS ${ARGN})
set(argstring "")
foreach(arg ${ARGN})
set(argstring "${argstring} ${arg}")
endforeach()
check_compile_definition("${def}" "${argstring}" HAS_${arch}_DEF)
if(NOT DEFINED CAN_TARGET_${arch})
if(NOT HAS_${arch}_DEF)
set(CAN_TARGET_${arch} FALSE)
elseif(TEST_COMPILE_ONLY)
try_compile_only(CAN_TARGET_${arch} FLAGS ${TARGET_${arch}_CFLAGS})
else()
set(FLAG_NO_EXCEPTIONS "")
if(COMPILER_RT_HAS_FNO_EXCEPTIONS_FLAG)
set(FLAG_NO_EXCEPTIONS " -fno-exceptions ")
endif()
set(SAVED_CMAKE_EXE_LINKER_FLAGS ${CMAKE_EXE_LINKER_FLAGS})
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${argstring}")
try_compile(CAN_TARGET_${arch} ${CMAKE_BINARY_DIR} ${SIMPLE_SOURCE}
COMPILE_DEFINITIONS "${TARGET_${arch}_CFLAGS} ${FLAG_NO_EXCEPTIONS}"
OUTPUT_VARIABLE TARGET_${arch}_OUTPUT)
set(CMAKE_EXE_LINKER_FLAGS ${SAVED_CMAKE_EXE_LINKER_FLAGS})
endif()
endif()
if(${CAN_TARGET_${arch}})
list(APPEND COMPILER_RT_SUPPORTED_ARCH ${arch})
elseif("${COMPILER_RT_DEFAULT_TARGET_ARCH}" STREQUAL "${arch}" AND
COMPILER_RT_HAS_EXPLICIT_DEFAULT_TARGET_TRIPLE)
# Bail out if we cannot target the architecture we plan to test.
message(FATAL_ERROR "Cannot compile for ${arch}:\n${TARGET_${arch}_OUTPUT}")
endif()
endmacro()
macro(detect_target_arch)
check_symbol_exists(__arm__ "" __ARM)
check_symbol_exists(__aarch64__ "" __AARCH64)
check_symbol_exists(__x86_64__ "" __X86_64)
check_symbol_exists(__i386__ "" __I386)
check_symbol_exists(__mips__ "" __MIPS)
check_symbol_exists(__mips64__ "" __MIPS64)
check_symbol_exists(__powerpc__ "" __PPC)
check_symbol_exists(__powerpc64__ "" __PPC64)
check_symbol_exists(__powerpc64le__ "" __PPC64LE)
check_symbol_exists(__riscv "" __RISCV)
check_symbol_exists(__s390x__ "" __S390X)
check_symbol_exists(__sparc "" __SPARC)
check_symbol_exists(__sparcv9 "" __SPARCV9)
check_symbol_exists(__wasm32__ "" __WEBASSEMBLY32)
check_symbol_exists(__wasm64__ "" __WEBASSEMBLY64)
check_symbol_exists(__ve__ "" __VE)
if(__ARM)
add_default_target_arch(arm)
elseif(__AARCH64)
add_default_target_arch(aarch64)
elseif(__X86_64)
if(CMAKE_SIZEOF_VOID_P EQUAL "4")
add_default_target_arch(x32)
elseif(CMAKE_SIZEOF_VOID_P EQUAL "8")
add_default_target_arch(x86_64)
else()
message(FATAL_ERROR "Unsupported pointer size for X86_64")
endif()
elseif(__I386)
add_default_target_arch(i386)
elseif(__MIPS64) # must be checked before __MIPS
add_default_target_arch(mips64)
elseif(__MIPS)
add_default_target_arch(mips)
elseif(__PPC64) # must be checked before __PPC
add_default_target_arch(powerpc64)
elseif(__PPC64LE)
add_default_target_arch(powerpc64le)
elseif(__PPC)
add_default_target_arch(powerpc)
elseif(__RISCV)
if(CMAKE_SIZEOF_VOID_P EQUAL "4")
add_default_target_arch(riscv32)
elseif(CMAKE_SIZEOF_VOID_P EQUAL "8")
add_default_target_arch(riscv64)
else()
message(FATAL_ERROR "Unsupport XLEN for RISC-V")
endif()
elseif(__S390X)
add_default_target_arch(s390x)
elseif(__SPARCV9)
add_default_target_arch(sparcv9)
elseif(__SPARC)
add_default_target_arch(sparc)
elseif(__WEBASSEMBLY32)
add_default_target_arch(wasm32)
elseif(__WEBASSEMBLY64)
add_default_target_arch(wasm64)
elseif(__VE)
add_default_target_arch(ve)
endif()
endmacro()
function(get_compiler_rt_root_source_dir ROOT_DIR_VAR)
# Compute the path to the root of the Compiler-RT source tree
# regardless of how the project was configured.
#
# This function is useful because using `${CMAKE_SOURCE_DIR}`
# is error prone due to the numerous ways Compiler-RT can be
# configured.
#
# `ROOT_DIR_VAR` - the name of the variable to write the result to.
#
# TODO(dliew): When CMake min version is 3.17 or newer use
# `CMAKE_CURRENT_FUNCTION_LIST_DIR` instead.
if ("${ROOT_DIR_VAR}" STREQUAL "")
message(FATAL_ERROR "ROOT_DIR_VAR cannot be empty")
endif()
# Compiler-rt supports different source root paths.
# Handle each case here.
set(PATH_TO_COMPILER_RT_SOURCE_ROOT "")
if (DEFINED CompilerRTBuiltins_SOURCE_DIR)
# Compiler-RT Builtins standalone build.
# `llvm-project/compiler-rt/lib/builtins`
set(PATH_TO_COMPILER_RT_SOURCE_ROOT "${CompilerRTBuiltins_SOURCE_DIR}/../../")
elseif(DEFINED CompilerRT_SOURCE_DIR)
# Compiler-RT standalone build.
# `llvm-project/compiler-rt`
set(PATH_TO_COMPILER_RT_SOURCE_ROOT "${CompilerRT_SOURCE_DIR}")
elseif (EXISTS "${CMAKE_SOURCE_DIR}/../compiler-rt")
# In tree build with LLVM as the root project.
# See `llvm-project/projects/`.
# Assumes monorepo layout.
set(PATH_TO_COMPILER_RT_SOURCE_ROOT "${CMAKE_SOURCE_DIR}/../compiler-rt")
else()
message(FATAL_ERROR "Unhandled Compiler-RT source root configuration.")
endif()
get_filename_component(ROOT_DIR "${PATH_TO_COMPILER_RT_SOURCE_ROOT}" ABSOLUTE)
if (NOT EXISTS "${ROOT_DIR}")
message(FATAL_ERROR "Path \"${ROOT_DIR}\" doesn't exist")
endif()
# Sanity check: Make sure we can locate the current source file via the
# computed path.
set(PATH_TO_CURRENT_FILE "${ROOT_DIR}/cmake/Modules/CompilerRTUtils.cmake")
if (NOT EXISTS "${PATH_TO_CURRENT_FILE}")
message(FATAL_ERROR "Could not find \"${PATH_TO_CURRENT_FILE}\"")
endif()
set("${ROOT_DIR_VAR}" "${ROOT_DIR}" PARENT_SCOPE)
endfunction()
macro(load_llvm_config)
if (NOT LLVM_CONFIG_PATH)
find_program(LLVM_CONFIG_PATH "llvm-config"
DOC "Path to llvm-config binary")
if (NOT LLVM_CONFIG_PATH)
message(WARNING "UNSUPPORTED COMPILER-RT CONFIGURATION DETECTED: "
"llvm-config not found.\n"
"Reconfigure with -DLLVM_CONFIG_PATH=path/to/llvm-config.")
endif()
endif()
# Compute path to LLVM sources assuming the monorepo layout.
# We don't set `LLVM_MAIN_SRC_DIR` directly to avoid overriding a user provided
# CMake cache value.
get_compiler_rt_root_source_dir(COMPILER_RT_ROOT_SRC_PATH)
get_filename_component(LLVM_MAIN_SRC_DIR_DEFAULT "${COMPILER_RT_ROOT_SRC_PATH}/../llvm" ABSOLUTE)
if (NOT EXISTS "${LLVM_MAIN_SRC_DIR_DEFAULT}")
# TODO(dliew): Remove this legacy fallback path.
message(WARNING
"LLVM source tree not found at \"${LLVM_MAIN_SRC_DIR_DEFAULT}\". "
"You are not using the monorepo layout. This configuration is DEPRECATED.")
endif()
[CMake][Compiler-rt] Make it possible to configure standalone compiler-rt without `LLVMConfig.cmake`. Previously it wasn't possible to configure a standalone compiler-rt build if the `LLVMConfig.cmake` file isn't present in a shipped toolchain. This patch adds a fallback behaviour for when `LLVMConfig.cmake` is not available in the toolchain being used for configure. The fallback behaviour mocks out the bare minimum required to make a configure succeed when the host is Darwin. Support for other platforms could be added in future patches. The new code path is taken either in one of the following cases: * `llvm-config` is not available. * `llvm-config` is available but it provides an invalid path for the CMake files. The motivation here is to be able to generate the compiler-rt lit test suites for an arbitrary LLVM toolchain and then run the tests against it. The invocation to do this looks something like. ``` CC=/path/to/cc \ CXX=/path/to/c++ \ cmake \ -G Ninja \ -DLLVM_CONFIG_PATH=/path/to/llvm-config \ -DCOMPILER_RT_INCLUDE_TESTS=ON \ /path/to/llvm-project/compiler-rt # Note we don't compile compiler-rt in this workflow. bin/llvm-lit -v test/path/to/generated/test_suite ``` A possible alternative approach is to configure the `cmake/modules/LLVMConfig.cmake.in` file in the LLVM source tree and then include it. This approach was not taken because it is more complicated. An interesting side benefit of this patch is that it is now possible to configure on Darwin without `llvm-config` being available by configuring with `-DLLVM_CONFIG_PATH=""`. This moves us a step closer to a world where no LLVM build artefacts are required to build compiler-rt. rdar://76016632 Differential Revision: https://reviews.llvm.org/D99621
2021-03-31 04:47:07 +08:00
set(FOUND_LLVM_CMAKE_PATH FALSE)
if (LLVM_CONFIG_PATH)
execute_process(
[XRay][compiler-rt] FDRLogWriter Abstraction Summary: This change introduces an `FDRLogWriter` type which is responsible for serialising metadata and function records to character buffers. This is the first step in a refactoring of the implementation of the FDR runtime to allow for more granular testing of the individual components of the implementation. The main contribution of this change is a means of hiding the details of how specific records are written to a buffer, and for managing the extents of these buffers. We make use of C++ features (templates and some metaprogramming) to reduce repetition in the act of writing out specific kinds of records to the buffer. In this process, we make a number of changes across both LLVM and compiler-rt to allow us to use the `Trace` abstraction defined in the LLVM project in the testing of the runtime implementation. This gives us a closer end-to-end test which version-locks the runtime implementation with the loading implementation in LLVM. We also allow using gmock in compiler-rt unit tests, by adding the requisite definitions in the `AddCompilerRT.cmake` module. We also add the terminfo library detection along with inclusion of the appropriate compiler flags for header include lookup. Finally, we've gone ahead and updated the FDR logging implementation to use the FDRLogWriter for the lowest-level record-writing details. Following patches will isolate the state machine transitions which manage the set-up and tear-down of the buffers we're using in multiple threads. Reviewers: mboerger, eizan Subscribers: mgorny, jfb, llvm-commits Differential Revision: https://reviews.llvm.org/D52220 llvm-svn: 342617
2018-09-20 13:22:37 +08:00
COMMAND ${LLVM_CONFIG_PATH} "--obj-root" "--bindir" "--libdir" "--src-root" "--includedir"
RESULT_VARIABLE HAD_ERROR
OUTPUT_VARIABLE CONFIG_OUTPUT)
if (HAD_ERROR)
message(FATAL_ERROR "llvm-config failed with status ${HAD_ERROR}")
endif()
string(REGEX REPLACE "[ \t]*[\r\n]+[ \t]*" ";" CONFIG_OUTPUT ${CONFIG_OUTPUT})
list(GET CONFIG_OUTPUT 0 BINARY_DIR)
list(GET CONFIG_OUTPUT 1 TOOLS_BINARY_DIR)
list(GET CONFIG_OUTPUT 2 LIBRARY_DIR)
list(GET CONFIG_OUTPUT 3 MAIN_SRC_DIR)
[XRay][compiler-rt] FDRLogWriter Abstraction Summary: This change introduces an `FDRLogWriter` type which is responsible for serialising metadata and function records to character buffers. This is the first step in a refactoring of the implementation of the FDR runtime to allow for more granular testing of the individual components of the implementation. The main contribution of this change is a means of hiding the details of how specific records are written to a buffer, and for managing the extents of these buffers. We make use of C++ features (templates and some metaprogramming) to reduce repetition in the act of writing out specific kinds of records to the buffer. In this process, we make a number of changes across both LLVM and compiler-rt to allow us to use the `Trace` abstraction defined in the LLVM project in the testing of the runtime implementation. This gives us a closer end-to-end test which version-locks the runtime implementation with the loading implementation in LLVM. We also allow using gmock in compiler-rt unit tests, by adding the requisite definitions in the `AddCompilerRT.cmake` module. We also add the terminfo library detection along with inclusion of the appropriate compiler flags for header include lookup. Finally, we've gone ahead and updated the FDR logging implementation to use the FDRLogWriter for the lowest-level record-writing details. Following patches will isolate the state machine transitions which manage the set-up and tear-down of the buffers we're using in multiple threads. Reviewers: mboerger, eizan Subscribers: mgorny, jfb, llvm-commits Differential Revision: https://reviews.llvm.org/D52220 llvm-svn: 342617
2018-09-20 13:22:37 +08:00
list(GET CONFIG_OUTPUT 4 INCLUDE_DIR)
set(LLVM_BINARY_DIR ${BINARY_DIR} CACHE PATH "Path to LLVM build tree")
set(LLVM_LIBRARY_DIR ${LIBRARY_DIR} CACHE PATH "Path to llvm/lib")
[XRay][compiler-rt] FDRLogWriter Abstraction Summary: This change introduces an `FDRLogWriter` type which is responsible for serialising metadata and function records to character buffers. This is the first step in a refactoring of the implementation of the FDR runtime to allow for more granular testing of the individual components of the implementation. The main contribution of this change is a means of hiding the details of how specific records are written to a buffer, and for managing the extents of these buffers. We make use of C++ features (templates and some metaprogramming) to reduce repetition in the act of writing out specific kinds of records to the buffer. In this process, we make a number of changes across both LLVM and compiler-rt to allow us to use the `Trace` abstraction defined in the LLVM project in the testing of the runtime implementation. This gives us a closer end-to-end test which version-locks the runtime implementation with the loading implementation in LLVM. We also allow using gmock in compiler-rt unit tests, by adding the requisite definitions in the `AddCompilerRT.cmake` module. We also add the terminfo library detection along with inclusion of the appropriate compiler flags for header include lookup. Finally, we've gone ahead and updated the FDR logging implementation to use the FDRLogWriter for the lowest-level record-writing details. Following patches will isolate the state machine transitions which manage the set-up and tear-down of the buffers we're using in multiple threads. Reviewers: mboerger, eizan Subscribers: mgorny, jfb, llvm-commits Differential Revision: https://reviews.llvm.org/D52220 llvm-svn: 342617
2018-09-20 13:22:37 +08:00
set(LLVM_TOOLS_BINARY_DIR ${TOOLS_BINARY_DIR} CACHE PATH "Path to llvm/bin")
set(LLVM_INCLUDE_DIR ${INCLUDE_DIR} CACHE PATH "Paths to LLVM headers")
if (NOT EXISTS "${LLVM_MAIN_SRC_DIR_DEFAULT}")
# TODO(dliew): Remove this legacy fallback path.
message(WARNING
"Consulting llvm-config for the LLVM source path "
"as a fallback. This behavior will be removed in the future.")
# We don't set `LLVM_MAIN_SRC_DIR` directly to avoid overriding a user
# provided CMake cache value.
set(LLVM_MAIN_SRC_DIR_DEFAULT "${MAIN_SRC_DIR}")
message(STATUS "Using LLVM source path (${LLVM_MAIN_SRC_DIR_DEFAULT}) from llvm-config")
endif()
# Detect if we have the LLVMXRay and TestingSupport library installed and
# available from llvm-config.
execute_process(
COMMAND ${LLVM_CONFIG_PATH} "--ldflags" "--libs" "xray"
RESULT_VARIABLE HAD_ERROR
OUTPUT_VARIABLE CONFIG_OUTPUT
ERROR_QUIET)
if (HAD_ERROR)
message(WARNING "llvm-config finding xray failed with status ${HAD_ERROR}")
set(COMPILER_RT_HAS_LLVMXRAY FALSE)
else()
string(REGEX REPLACE "[ \t]*[\r\n]+[ \t]*" ";" CONFIG_OUTPUT ${CONFIG_OUTPUT})
list(GET CONFIG_OUTPUT 0 LDFLAGS)
list(GET CONFIG_OUTPUT 1 LIBLIST)
file(TO_CMAKE_PATH "${LDFLAGS}" LDFLAGS)
file(TO_CMAKE_PATH "${LIBLIST}" LIBLIST)
set(LLVM_XRAY_LDFLAGS ${LDFLAGS} CACHE STRING "Linker flags for LLVMXRay library")
set(LLVM_XRAY_LIBLIST ${LIBLIST} CACHE STRING "Library list for LLVMXRay")
set(COMPILER_RT_HAS_LLVMXRAY TRUE)
endif()
set(COMPILER_RT_HAS_LLVMTESTINGSUPPORT FALSE)
execute_process(
COMMAND ${LLVM_CONFIG_PATH} "--ldflags" "--libs" "testingsupport"
RESULT_VARIABLE HAD_ERROR
OUTPUT_VARIABLE CONFIG_OUTPUT
ERROR_QUIET)
if (HAD_ERROR)
message(WARNING "llvm-config finding testingsupport failed with status ${HAD_ERROR}")
elseif(COMPILER_RT_INCLUDE_TESTS)
string(REGEX REPLACE "[ \t]*[\r\n]+[ \t]*" ";" CONFIG_OUTPUT ${CONFIG_OUTPUT})
list(GET CONFIG_OUTPUT 0 LDFLAGS)
list(GET CONFIG_OUTPUT 1 LIBLIST)
if (LIBLIST STREQUAL "")
message(WARNING "testingsupport library not installed, some tests will be skipped")
else()
file(TO_CMAKE_PATH "${LDFLAGS}" LDFLAGS)
file(TO_CMAKE_PATH "${LIBLIST}" LIBLIST)
set(LLVM_TESTINGSUPPORT_LDFLAGS ${LDFLAGS} CACHE STRING "Linker flags for LLVMTestingSupport library")
set(LLVM_TESTINGSUPPORT_LIBLIST ${LIBLIST} CACHE STRING "Library list for LLVMTestingSupport")
set(COMPILER_RT_HAS_LLVMTESTINGSUPPORT TRUE)
endif()
endif()
# Make use of LLVM CMake modules.
# --cmakedir is supported since llvm r291218 (4.0 release)
execute_process(
COMMAND ${LLVM_CONFIG_PATH} --cmakedir
RESULT_VARIABLE HAD_ERROR
OUTPUT_VARIABLE CONFIG_OUTPUT)
if(NOT HAD_ERROR)
string(STRIP "${CONFIG_OUTPUT}" LLVM_CMAKE_PATH_FROM_LLVM_CONFIG)
file(TO_CMAKE_PATH ${LLVM_CMAKE_PATH_FROM_LLVM_CONFIG} LLVM_CMAKE_PATH)
else()
file(TO_CMAKE_PATH ${LLVM_BINARY_DIR} LLVM_BINARY_DIR_CMAKE_STYLE)
set(LLVM_CMAKE_PATH "${LLVM_BINARY_DIR_CMAKE_STYLE}/lib${LLVM_LIBDIR_SUFFIX}/cmake/llvm")
endif()
set(LLVM_CMAKE_INCLUDE_FILE "${LLVM_CMAKE_PATH}/LLVMConfig.cmake")
if (EXISTS "${LLVM_CMAKE_INCLUDE_FILE}")
[CMake][Compiler-rt] Make it possible to configure standalone compiler-rt without `LLVMConfig.cmake`. Previously it wasn't possible to configure a standalone compiler-rt build if the `LLVMConfig.cmake` file isn't present in a shipped toolchain. This patch adds a fallback behaviour for when `LLVMConfig.cmake` is not available in the toolchain being used for configure. The fallback behaviour mocks out the bare minimum required to make a configure succeed when the host is Darwin. Support for other platforms could be added in future patches. The new code path is taken either in one of the following cases: * `llvm-config` is not available. * `llvm-config` is available but it provides an invalid path for the CMake files. The motivation here is to be able to generate the compiler-rt lit test suites for an arbitrary LLVM toolchain and then run the tests against it. The invocation to do this looks something like. ``` CC=/path/to/cc \ CXX=/path/to/c++ \ cmake \ -G Ninja \ -DLLVM_CONFIG_PATH=/path/to/llvm-config \ -DCOMPILER_RT_INCLUDE_TESTS=ON \ /path/to/llvm-project/compiler-rt # Note we don't compile compiler-rt in this workflow. bin/llvm-lit -v test/path/to/generated/test_suite ``` A possible alternative approach is to configure the `cmake/modules/LLVMConfig.cmake.in` file in the LLVM source tree and then include it. This approach was not taken because it is more complicated. An interesting side benefit of this patch is that it is now possible to configure on Darwin without `llvm-config` being available by configuring with `-DLLVM_CONFIG_PATH=""`. This moves us a step closer to a world where no LLVM build artefacts are required to build compiler-rt. rdar://76016632 Differential Revision: https://reviews.llvm.org/D99621
2021-03-31 04:47:07 +08:00
list(APPEND CMAKE_MODULE_PATH "${LLVM_CMAKE_PATH}")
# Get some LLVM variables from LLVMConfig.
include("${LLVM_CMAKE_INCLUDE_FILE}")
[CMake][Compiler-rt] Make it possible to configure standalone compiler-rt without `LLVMConfig.cmake`. Previously it wasn't possible to configure a standalone compiler-rt build if the `LLVMConfig.cmake` file isn't present in a shipped toolchain. This patch adds a fallback behaviour for when `LLVMConfig.cmake` is not available in the toolchain being used for configure. The fallback behaviour mocks out the bare minimum required to make a configure succeed when the host is Darwin. Support for other platforms could be added in future patches. The new code path is taken either in one of the following cases: * `llvm-config` is not available. * `llvm-config` is available but it provides an invalid path for the CMake files. The motivation here is to be able to generate the compiler-rt lit test suites for an arbitrary LLVM toolchain and then run the tests against it. The invocation to do this looks something like. ``` CC=/path/to/cc \ CXX=/path/to/c++ \ cmake \ -G Ninja \ -DLLVM_CONFIG_PATH=/path/to/llvm-config \ -DCOMPILER_RT_INCLUDE_TESTS=ON \ /path/to/llvm-project/compiler-rt # Note we don't compile compiler-rt in this workflow. bin/llvm-lit -v test/path/to/generated/test_suite ``` A possible alternative approach is to configure the `cmake/modules/LLVMConfig.cmake.in` file in the LLVM source tree and then include it. This approach was not taken because it is more complicated. An interesting side benefit of this patch is that it is now possible to configure on Darwin without `llvm-config` being available by configuring with `-DLLVM_CONFIG_PATH=""`. This moves us a step closer to a world where no LLVM build artefacts are required to build compiler-rt. rdar://76016632 Differential Revision: https://reviews.llvm.org/D99621
2021-03-31 04:47:07 +08:00
set(FOUND_LLVM_CMAKE_PATH TRUE)
else()
set(FOUND_LLVM_CMAKE_PATH FALSE)
message(WARNING "LLVM CMake path (${LLVM_CMAKE_INCLUDE_FILE}) reported by llvm-config does not exist")
[CMake][Compiler-rt] Make it possible to configure standalone compiler-rt without `LLVMConfig.cmake`. Previously it wasn't possible to configure a standalone compiler-rt build if the `LLVMConfig.cmake` file isn't present in a shipped toolchain. This patch adds a fallback behaviour for when `LLVMConfig.cmake` is not available in the toolchain being used for configure. The fallback behaviour mocks out the bare minimum required to make a configure succeed when the host is Darwin. Support for other platforms could be added in future patches. The new code path is taken either in one of the following cases: * `llvm-config` is not available. * `llvm-config` is available but it provides an invalid path for the CMake files. The motivation here is to be able to generate the compiler-rt lit test suites for an arbitrary LLVM toolchain and then run the tests against it. The invocation to do this looks something like. ``` CC=/path/to/cc \ CXX=/path/to/c++ \ cmake \ -G Ninja \ -DLLVM_CONFIG_PATH=/path/to/llvm-config \ -DCOMPILER_RT_INCLUDE_TESTS=ON \ /path/to/llvm-project/compiler-rt # Note we don't compile compiler-rt in this workflow. bin/llvm-lit -v test/path/to/generated/test_suite ``` A possible alternative approach is to configure the `cmake/modules/LLVMConfig.cmake.in` file in the LLVM source tree and then include it. This approach was not taken because it is more complicated. An interesting side benefit of this patch is that it is now possible to configure on Darwin without `llvm-config` being available by configuring with `-DLLVM_CONFIG_PATH=""`. This moves us a step closer to a world where no LLVM build artefacts are required to build compiler-rt. rdar://76016632 Differential Revision: https://reviews.llvm.org/D99621
2021-03-31 04:47:07 +08:00
endif()
unset(LLVM_CMAKE_INCLUDE_FILE)
set(LLVM_LIBRARY_OUTPUT_INTDIR
${LLVM_BINARY_DIR}/${CMAKE_CFG_INTDIR}/lib${LLVM_LIBDIR_SUFFIX})
endif()
# Finally set the cache variable now that `llvm-config` has also had a chance
# to set `LLVM_MAIN_SRC_DIR_DEFAULT`.
set(LLVM_MAIN_SRC_DIR "${LLVM_MAIN_SRC_DIR_DEFAULT}" CACHE PATH "Path to LLVM source tree")
message(STATUS "LLVM_MAIN_SRC_DIR: \"${LLVM_MAIN_SRC_DIR}\"")
if (NOT EXISTS "${LLVM_MAIN_SRC_DIR}")
# TODO(dliew): Make this a hard error
message(WARNING "LLVM_MAIN_SRC_DIR (${LLVM_MAIN_SRC_DIR}) does not exist. "
"You can override the inferred path by adding "
"`-DLLVM_MAIN_SRC_DIR=<path_to_llvm_src>` to your CMake invocation "
"where `<path_to_llvm_src>` is the path to the `llvm` directory in "
"the `llvm-project` repo. "
"This will be treated as error in the future.")
endif()
[CMake][Compiler-rt] Make it possible to configure standalone compiler-rt without `LLVMConfig.cmake`. Previously it wasn't possible to configure a standalone compiler-rt build if the `LLVMConfig.cmake` file isn't present in a shipped toolchain. This patch adds a fallback behaviour for when `LLVMConfig.cmake` is not available in the toolchain being used for configure. The fallback behaviour mocks out the bare minimum required to make a configure succeed when the host is Darwin. Support for other platforms could be added in future patches. The new code path is taken either in one of the following cases: * `llvm-config` is not available. * `llvm-config` is available but it provides an invalid path for the CMake files. The motivation here is to be able to generate the compiler-rt lit test suites for an arbitrary LLVM toolchain and then run the tests against it. The invocation to do this looks something like. ``` CC=/path/to/cc \ CXX=/path/to/c++ \ cmake \ -G Ninja \ -DLLVM_CONFIG_PATH=/path/to/llvm-config \ -DCOMPILER_RT_INCLUDE_TESTS=ON \ /path/to/llvm-project/compiler-rt # Note we don't compile compiler-rt in this workflow. bin/llvm-lit -v test/path/to/generated/test_suite ``` A possible alternative approach is to configure the `cmake/modules/LLVMConfig.cmake.in` file in the LLVM source tree and then include it. This approach was not taken because it is more complicated. An interesting side benefit of this patch is that it is now possible to configure on Darwin without `llvm-config` being available by configuring with `-DLLVM_CONFIG_PATH=""`. This moves us a step closer to a world where no LLVM build artefacts are required to build compiler-rt. rdar://76016632 Differential Revision: https://reviews.llvm.org/D99621
2021-03-31 04:47:07 +08:00
if (NOT FOUND_LLVM_CMAKE_PATH)
# This configuration tries to configure without the prescence of `LLVMConfig.cmake`. It is
# intended for testing purposes (generating the lit test suites) and will likely not support
# a build of the runtimes in compiler-rt.
include(CompilerRTMockLLVMCMakeConfig)
compiler_rt_mock_llvm_cmake_config()
endif()
endmacro()
macro(construct_compiler_rt_default_triple)
if(COMPILER_RT_DEFAULT_TARGET_ONLY)
if(DEFINED COMPILER_RT_DEFAULT_TARGET_TRIPLE)
message(FATAL_ERROR "COMPILER_RT_DEFAULT_TARGET_TRIPLE isn't supported when building for default target only")
endif()
set(COMPILER_RT_DEFAULT_TARGET_TRIPLE ${CMAKE_C_COMPILER_TARGET})
else()
set(COMPILER_RT_DEFAULT_TARGET_TRIPLE ${TARGET_TRIPLE} CACHE STRING
"Default triple for which compiler-rt runtimes will be built.")
endif()
if(DEFINED COMPILER_RT_TEST_TARGET_TRIPLE)
# Backwards compatibility: this variable used to be called
# COMPILER_RT_TEST_TARGET_TRIPLE.
set(COMPILER_RT_DEFAULT_TARGET_TRIPLE ${COMPILER_RT_TEST_TARGET_TRIPLE})
endif()
string(REPLACE "-" ";" TARGET_TRIPLE_LIST ${COMPILER_RT_DEFAULT_TARGET_TRIPLE})
list(GET TARGET_TRIPLE_LIST 0 COMPILER_RT_DEFAULT_TARGET_ARCH)
# Map various forms of the architecture names to the canonical forms
# (as they are used by clang, see getArchNameForCompilerRTLib).
if("${COMPILER_RT_DEFAULT_TARGET_ARCH}" MATCHES "^i.86$")
# Android uses i686, but that's remapped at a later stage.
set(COMPILER_RT_DEFAULT_TARGET_ARCH "i386")
endif()
# Determine if test target triple is specified explicitly, and doesn't match the
# default.
if(NOT COMPILER_RT_DEFAULT_TARGET_TRIPLE STREQUAL TARGET_TRIPLE)
set(COMPILER_RT_HAS_EXPLICIT_DEFAULT_TARGET_TRIPLE TRUE)
else()
set(COMPILER_RT_HAS_EXPLICIT_DEFAULT_TARGET_TRIPLE FALSE)
endif()
endmacro()
# Filter out generic versions of routines that are re-implemented in an
# architecture specific manner. This prevents multiple definitions of the same
# symbols, making the symbol selection non-deterministic.
#
# We follow the convention that a source file that exists in a sub-directory
# (e.g. `ppc/divtc3.c`) is architecture-specific and that if a generic
# implementation exists it will be a top-level source file with the same name
# modulo the file extension (e.g. `divtc3.c`).
function(filter_builtin_sources inout_var name)
set(intermediate ${${inout_var}})
foreach(_file ${intermediate})
get_filename_component(_file_dir ${_file} DIRECTORY)
if (NOT "${_file_dir}" STREQUAL "")
# Architecture specific file. If a generic version exists, print a notice
# and ensure that it is removed from the file list.
get_filename_component(_name ${_file} NAME)
string(REGEX REPLACE "\\.S$" ".c" _cname "${_name}")
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/${_cname}")
message(STATUS "For ${name} builtins preferring ${_file} to ${_cname}")
list(REMOVE_ITEM intermediate ${_cname})
endif()
endif()
endforeach()
set(${inout_var} ${intermediate} PARENT_SCOPE)
endfunction()
function(get_compiler_rt_target arch variable)
string(FIND ${COMPILER_RT_DEFAULT_TARGET_TRIPLE} "-" dash_index)
string(SUBSTRING ${COMPILER_RT_DEFAULT_TARGET_TRIPLE} ${dash_index} -1 triple_suffix)
if(COMPILER_RT_DEFAULT_TARGET_ONLY)
# Use exact spelling when building only for the target specified to CMake.
set(target "${COMPILER_RT_DEFAULT_TARGET_TRIPLE}")
elseif(ANDROID AND ${arch} STREQUAL "i386")
set(target "i686${triple_suffix}")
else()
set(target "${arch}${triple_suffix}")
endif()
set(${variable} ${target} PARENT_SCOPE)
endfunction()
function(get_compiler_rt_install_dir arch install_dir)
if(LLVM_ENABLE_PER_TARGET_RUNTIME_DIR AND NOT APPLE)
get_compiler_rt_target(${arch} target)
Prepare Compiler-RT for GnuInstallDirs, matching libcxx, document all This is a second attempt at D101497, which landed as 9a9bc76c0eb72f0f2732c729a460abbd5239c2e3 but had to be reverted in 8cf7ddbdd4e5af966a369e170c73250f2e3920e7. This issue was that in the case that `COMPILER_RT_INSTALL_PATH` is empty, expressions like "${COMPILER_RT_INSTALL_PATH}/bin" evaluated to "/bin" not "bin" as intended and as was originally. One solution is to make `COMPILER_RT_INSTALL_PATH` always non-empty, defaulting it to `CMAKE_INSTALL_PREFIX`. D99636 adopted that approach. But, I think it is more ergonomic to allow those project-specific paths to be relative the global ones. Also, making install paths absolute by default inhibits the proper behavior of functions like `GNUInstallDirs_get_absolute_install_dir` which make relative install paths absolute in a more complicated way. Given all this, I will define a function like the one asked for in https://gitlab.kitware.com/cmake/cmake/-/issues/19568 (and needed for a similar use-case). --- Original message: Instead of using `COMPILER_RT_INSTALL_PATH` through the CMake for complier-rt, just use it to define variables for the subdirs which themselves are used. This preserves compatibility, but later on we might consider getting rid of `COMPILER_RT_INSTALL_PATH` and just changing the defaults for the subdir variables directly. --- There was a seaming bug where the (non-Apple) per-target libdir was `${target}` not `lib/${target}`. I suspect that has to do with the docs on `COMPILER_RT_INSTALL_PATH` saying was the library dir when that's no longer true, so I just went ahead and fixed it, allowing me to define fewer and more sensible variables. That last part should be the only behavior changes; everything else should be a pure refactoring. --- I added some documentation of these variables too. In particular, I wanted to highlight the gotcha where `-DSomeCachePath=...` without the `:PATH` will lead CMake to make the path absolute. See [1] for discussion of the problem, and [2] for the brief official documentation they added as a result. [1]: https://cmake.org/pipermail/cmake/2015-March/060204.html [2]: https://cmake.org/cmake/help/latest/manual/cmake.1.html#options In 38b2dec37ee735d5409148e71ecba278caf0f969 the problem was somewhat misidentified and so `:STRING` was used, but `:PATH` is better as it sets the correct type from the get-go. --- D99484 is the main thrust of the `GnuInstallDirs` work. Once this lands, it should be feasible to follow both of these up with a simple patch for compiler-rt analogous to the one for libcxx. Reviewed By: phosek, #libc_abi, #libunwind Differential Revision: https://reviews.llvm.org/D105765
2021-04-29 06:36:47 +08:00
set(${install_dir} ${COMPILER_RT_INSTALL_LIBRARY_DIR}/${target} PARENT_SCOPE)
else()
Prepare Compiler-RT for GnuInstallDirs, matching libcxx, document all This is a second attempt at D101497, which landed as 9a9bc76c0eb72f0f2732c729a460abbd5239c2e3 but had to be reverted in 8cf7ddbdd4e5af966a369e170c73250f2e3920e7. This issue was that in the case that `COMPILER_RT_INSTALL_PATH` is empty, expressions like "${COMPILER_RT_INSTALL_PATH}/bin" evaluated to "/bin" not "bin" as intended and as was originally. One solution is to make `COMPILER_RT_INSTALL_PATH` always non-empty, defaulting it to `CMAKE_INSTALL_PREFIX`. D99636 adopted that approach. But, I think it is more ergonomic to allow those project-specific paths to be relative the global ones. Also, making install paths absolute by default inhibits the proper behavior of functions like `GNUInstallDirs_get_absolute_install_dir` which make relative install paths absolute in a more complicated way. Given all this, I will define a function like the one asked for in https://gitlab.kitware.com/cmake/cmake/-/issues/19568 (and needed for a similar use-case). --- Original message: Instead of using `COMPILER_RT_INSTALL_PATH` through the CMake for complier-rt, just use it to define variables for the subdirs which themselves are used. This preserves compatibility, but later on we might consider getting rid of `COMPILER_RT_INSTALL_PATH` and just changing the defaults for the subdir variables directly. --- There was a seaming bug where the (non-Apple) per-target libdir was `${target}` not `lib/${target}`. I suspect that has to do with the docs on `COMPILER_RT_INSTALL_PATH` saying was the library dir when that's no longer true, so I just went ahead and fixed it, allowing me to define fewer and more sensible variables. That last part should be the only behavior changes; everything else should be a pure refactoring. --- I added some documentation of these variables too. In particular, I wanted to highlight the gotcha where `-DSomeCachePath=...` without the `:PATH` will lead CMake to make the path absolute. See [1] for discussion of the problem, and [2] for the brief official documentation they added as a result. [1]: https://cmake.org/pipermail/cmake/2015-March/060204.html [2]: https://cmake.org/cmake/help/latest/manual/cmake.1.html#options In 38b2dec37ee735d5409148e71ecba278caf0f969 the problem was somewhat misidentified and so `:STRING` was used, but `:PATH` is better as it sets the correct type from the get-go. --- D99484 is the main thrust of the `GnuInstallDirs` work. Once this lands, it should be feasible to follow both of these up with a simple patch for compiler-rt analogous to the one for libcxx. Reviewed By: phosek, #libc_abi, #libunwind Differential Revision: https://reviews.llvm.org/D105765
2021-04-29 06:36:47 +08:00
set(${install_dir} ${COMPILER_RT_INSTALL_LIBRARY_DIR} PARENT_SCOPE)
endif()
endfunction()
function(get_compiler_rt_output_dir arch output_dir)
if(LLVM_ENABLE_PER_TARGET_RUNTIME_DIR AND NOT APPLE)
get_compiler_rt_target(${arch} target)
Prepare Compiler-RT for GnuInstallDirs, matching libcxx, document all This is a second attempt at D101497, which landed as 9a9bc76c0eb72f0f2732c729a460abbd5239c2e3 but had to be reverted in 8cf7ddbdd4e5af966a369e170c73250f2e3920e7. This issue was that in the case that `COMPILER_RT_INSTALL_PATH` is empty, expressions like "${COMPILER_RT_INSTALL_PATH}/bin" evaluated to "/bin" not "bin" as intended and as was originally. One solution is to make `COMPILER_RT_INSTALL_PATH` always non-empty, defaulting it to `CMAKE_INSTALL_PREFIX`. D99636 adopted that approach. But, I think it is more ergonomic to allow those project-specific paths to be relative the global ones. Also, making install paths absolute by default inhibits the proper behavior of functions like `GNUInstallDirs_get_absolute_install_dir` which make relative install paths absolute in a more complicated way. Given all this, I will define a function like the one asked for in https://gitlab.kitware.com/cmake/cmake/-/issues/19568 (and needed for a similar use-case). --- Original message: Instead of using `COMPILER_RT_INSTALL_PATH` through the CMake for complier-rt, just use it to define variables for the subdirs which themselves are used. This preserves compatibility, but later on we might consider getting rid of `COMPILER_RT_INSTALL_PATH` and just changing the defaults for the subdir variables directly. --- There was a seaming bug where the (non-Apple) per-target libdir was `${target}` not `lib/${target}`. I suspect that has to do with the docs on `COMPILER_RT_INSTALL_PATH` saying was the library dir when that's no longer true, so I just went ahead and fixed it, allowing me to define fewer and more sensible variables. That last part should be the only behavior changes; everything else should be a pure refactoring. --- I added some documentation of these variables too. In particular, I wanted to highlight the gotcha where `-DSomeCachePath=...` without the `:PATH` will lead CMake to make the path absolute. See [1] for discussion of the problem, and [2] for the brief official documentation they added as a result. [1]: https://cmake.org/pipermail/cmake/2015-March/060204.html [2]: https://cmake.org/cmake/help/latest/manual/cmake.1.html#options In 38b2dec37ee735d5409148e71ecba278caf0f969 the problem was somewhat misidentified and so `:STRING` was used, but `:PATH` is better as it sets the correct type from the get-go. --- D99484 is the main thrust of the `GnuInstallDirs` work. Once this lands, it should be feasible to follow both of these up with a simple patch for compiler-rt analogous to the one for libcxx. Reviewed By: phosek, #libc_abi, #libunwind Differential Revision: https://reviews.llvm.org/D105765
2021-04-29 06:36:47 +08:00
set(${output_dir} ${COMPILER_RT_OUTPUT_LIBRARY_DIR}/${target} PARENT_SCOPE)
else()
Prepare Compiler-RT for GnuInstallDirs, matching libcxx, document all This is a second attempt at D101497, which landed as 9a9bc76c0eb72f0f2732c729a460abbd5239c2e3 but had to be reverted in 8cf7ddbdd4e5af966a369e170c73250f2e3920e7. This issue was that in the case that `COMPILER_RT_INSTALL_PATH` is empty, expressions like "${COMPILER_RT_INSTALL_PATH}/bin" evaluated to "/bin" not "bin" as intended and as was originally. One solution is to make `COMPILER_RT_INSTALL_PATH` always non-empty, defaulting it to `CMAKE_INSTALL_PREFIX`. D99636 adopted that approach. But, I think it is more ergonomic to allow those project-specific paths to be relative the global ones. Also, making install paths absolute by default inhibits the proper behavior of functions like `GNUInstallDirs_get_absolute_install_dir` which make relative install paths absolute in a more complicated way. Given all this, I will define a function like the one asked for in https://gitlab.kitware.com/cmake/cmake/-/issues/19568 (and needed for a similar use-case). --- Original message: Instead of using `COMPILER_RT_INSTALL_PATH` through the CMake for complier-rt, just use it to define variables for the subdirs which themselves are used. This preserves compatibility, but later on we might consider getting rid of `COMPILER_RT_INSTALL_PATH` and just changing the defaults for the subdir variables directly. --- There was a seaming bug where the (non-Apple) per-target libdir was `${target}` not `lib/${target}`. I suspect that has to do with the docs on `COMPILER_RT_INSTALL_PATH` saying was the library dir when that's no longer true, so I just went ahead and fixed it, allowing me to define fewer and more sensible variables. That last part should be the only behavior changes; everything else should be a pure refactoring. --- I added some documentation of these variables too. In particular, I wanted to highlight the gotcha where `-DSomeCachePath=...` without the `:PATH` will lead CMake to make the path absolute. See [1] for discussion of the problem, and [2] for the brief official documentation they added as a result. [1]: https://cmake.org/pipermail/cmake/2015-March/060204.html [2]: https://cmake.org/cmake/help/latest/manual/cmake.1.html#options In 38b2dec37ee735d5409148e71ecba278caf0f969 the problem was somewhat misidentified and so `:STRING` was used, but `:PATH` is better as it sets the correct type from the get-go. --- D99484 is the main thrust of the `GnuInstallDirs` work. Once this lands, it should be feasible to follow both of these up with a simple patch for compiler-rt analogous to the one for libcxx. Reviewed By: phosek, #libc_abi, #libunwind Differential Revision: https://reviews.llvm.org/D105765
2021-04-29 06:36:47 +08:00
set(${output_dir} ${COMPILER_RT_OUTPUT_LIBRARY_DIR} PARENT_SCOPE)
endif()
endfunction()
2018-07-10 21:00:17 +08:00
# compiler_rt_process_sources(
# <OUTPUT_VAR>
# <SOURCE_FILE> ...
# [ADDITIONAL_HEADERS <header> ...]
# )
#
# Process the provided sources and write the list of new sources
# into `<OUTPUT_VAR>`.
#
# ADDITIONAL_HEADERS - Adds the supplied header to list of sources for IDEs.
#
# This function is very similar to `llvm_process_sources()` but exists here
# because we need to support standalone builds of compiler-rt.
function(compiler_rt_process_sources OUTPUT_VAR)
cmake_parse_arguments(
ARG
""
""
"ADDITIONAL_HEADERS"
${ARGN}
)
set(sources ${ARG_UNPARSED_ARGUMENTS})
set(headers "")
if (XCODE OR MSVC_IDE OR CMAKE_EXTRA_GENERATOR)
# For IDEs we need to tell CMake about header files.
# Otherwise they won't show up in UI.
set(headers ${ARG_ADDITIONAL_HEADERS})
list(LENGTH headers headers_length)
if (${headers_length} GREATER 0)
set_source_files_properties(${headers}
PROPERTIES HEADER_FILE_ONLY ON)
endif()
endif()
set("${OUTPUT_VAR}" ${sources} ${headers} PARENT_SCOPE)
endfunction()
# Create install targets for a library and its parent component (if specified).
function(add_compiler_rt_install_targets name)
cmake_parse_arguments(ARG "" "PARENT_TARGET" "" ${ARGN})
if(ARG_PARENT_TARGET AND NOT TARGET install-${ARG_PARENT_TARGET})
# The parent install target specifies the parent component to scrape up
# anything not installed by the individual install targets, and to handle
# installation when running the multi-configuration generators.
add_custom_target(install-${ARG_PARENT_TARGET}
DEPENDS ${ARG_PARENT_TARGET}
COMMAND "${CMAKE_COMMAND}"
-DCMAKE_INSTALL_COMPONENT=${ARG_PARENT_TARGET}
-P "${CMAKE_BINARY_DIR}/cmake_install.cmake")
add_custom_target(install-${ARG_PARENT_TARGET}-stripped
DEPENDS ${ARG_PARENT_TARGET}
COMMAND "${CMAKE_COMMAND}"
-DCMAKE_INSTALL_COMPONENT=${ARG_PARENT_TARGET}
-DCMAKE_INSTALL_DO_STRIP=1
-P "${CMAKE_BINARY_DIR}/cmake_install.cmake")
set_target_properties(install-${ARG_PARENT_TARGET} PROPERTIES
FOLDER "Compiler-RT Misc")
set_target_properties(install-${ARG_PARENT_TARGET}-stripped PROPERTIES
FOLDER "Compiler-RT Misc")
add_dependencies(install-compiler-rt install-${ARG_PARENT_TARGET})
add_dependencies(install-compiler-rt-stripped install-${ARG_PARENT_TARGET}-stripped)
endif()
# We only want to generate per-library install targets if you aren't using
# an IDE because the extra targets get cluttered in IDEs.
if(NOT CMAKE_CONFIGURATION_TYPES)
add_custom_target(install-${name}
DEPENDS ${name}
COMMAND "${CMAKE_COMMAND}"
-DCMAKE_INSTALL_COMPONENT=${name}
-P "${CMAKE_BINARY_DIR}/cmake_install.cmake")
add_custom_target(install-${name}-stripped
DEPENDS ${name}
COMMAND "${CMAKE_COMMAND}"
-DCMAKE_INSTALL_COMPONENT=${name}
-DCMAKE_INSTALL_DO_STRIP=1
-P "${CMAKE_BINARY_DIR}/cmake_install.cmake")
# If you have a parent target specified, we bind the new install target
# to the parent install target.
if(LIB_PARENT_TARGET)
add_dependencies(install-${LIB_PARENT_TARGET} install-${name})
add_dependencies(install-${LIB_PARENT_TARGET}-stripped install-${name}-stripped)
endif()
endif()
endfunction()