llvm-project/llvm/test/Transforms/SampleProfile/propagate.ll

244 lines
10 KiB
LLVM
Raw Normal View History

Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
; RUN: opt < %s -sample-profile -sample-profile-file=%S/Inputs/propagate.prof | opt -analyze -branch-prob | FileCheck %s
; Original C++ code for this test case:
;
; #include <stdio.h>
;
; long foo(int x, int y, long N) {
; if (x < y) {
; return y - x;
; } else {
; for (long i = 0; i < N; i++) {
; if (i > N / 3)
; x--;
; if (i > N / 4) {
; y++;
; x += 3;
; } else {
; for (unsigned j = 0; j < i; j++) {
; x += j;
; y -= 3;
; }
; }
; }
; }
; return y * x;
; }
;
; int main() {
; int x = 5678;
; int y = 1234;
; long N = 999999;
; printf("foo(%d, %d, %ld) = %ld\n", x, y, N, foo(x, y, N));
; return 0;
; }
; ModuleID = 'propagate.cc'
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
@.str = private unnamed_addr constant [24 x i8] c"foo(%d, %d, %ld) = %ld\0A\00", align 1
; Function Attrs: nounwind uwtable
define i64 @_Z3fooiil(i32 %x, i32 %y, i64 %N) #0 {
entry:
%retval = alloca i64, align 8
%x.addr = alloca i32, align 4
%y.addr = alloca i32, align 4
%N.addr = alloca i64, align 8
%i = alloca i64, align 8
%j = alloca i32, align 4
store i32 %x, i32* %x.addr, align 4
store i32 %y, i32* %y.addr, align 4
store i64 %N, i64* %N.addr, align 8
%0 = load i32, i32* %x.addr, align 4, !dbg !11
%1 = load i32, i32* %y.addr, align 4, !dbg !11
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
%cmp = icmp slt i32 %0, %1, !dbg !11
br i1 %cmp, label %if.then, label %if.else, !dbg !11
if.then: ; preds = %entry
%2 = load i32, i32* %y.addr, align 4, !dbg !13
%3 = load i32, i32* %x.addr, align 4, !dbg !13
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
%sub = sub nsw i32 %2, %3, !dbg !13
%conv = sext i32 %sub to i64, !dbg !13
store i64 %conv, i64* %retval, !dbg !13
br label %return, !dbg !13
if.else: ; preds = %entry
store i64 0, i64* %i, align 8, !dbg !15
br label %for.cond, !dbg !15
for.cond: ; preds = %for.inc16, %if.else
%4 = load i64, i64* %i, align 8, !dbg !15
%5 = load i64, i64* %N.addr, align 8, !dbg !15
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
%cmp1 = icmp slt i64 %4, %5, !dbg !15
br i1 %cmp1, label %for.body, label %for.end18, !dbg !15
; CHECK: edge for.cond -> for.body probability is 10 / 10 = 100% [HOT edge]
; CHECK: edge for.cond -> for.end18 probability is 0 / 10 = 0%
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
for.body: ; preds = %for.cond
%6 = load i64, i64* %i, align 8, !dbg !18
%7 = load i64, i64* %N.addr, align 8, !dbg !18
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
%div = sdiv i64 %7, 3, !dbg !18
%cmp2 = icmp sgt i64 %6, %div, !dbg !18
br i1 %cmp2, label %if.then3, label %if.end, !dbg !18
; CHECK: edge for.body -> if.then3 probability is 1 / 5 = 20%
; CHECK: edge for.body -> if.end probability is 4 / 5 = 80%
if.then3: ; preds = %for.body
%8 = load i32, i32* %x.addr, align 4, !dbg !21
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
%dec = add nsw i32 %8, -1, !dbg !21
store i32 %dec, i32* %x.addr, align 4, !dbg !21
br label %if.end, !dbg !21
if.end: ; preds = %if.then3, %for.body
%9 = load i64, i64* %i, align 8, !dbg !22
%10 = load i64, i64* %N.addr, align 8, !dbg !22
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
%div4 = sdiv i64 %10, 4, !dbg !22
%cmp5 = icmp sgt i64 %9, %div4, !dbg !22
br i1 %cmp5, label %if.then6, label %if.else7, !dbg !22
; CHECK: edge if.end -> if.then6 probability is 3 / 6342 = 0.0473037%
; CHECK: edge if.end -> if.else7 probability is 6339 / 6342 = 99.9527% [HOT edge]
if.then6: ; preds = %if.end
%11 = load i32, i32* %y.addr, align 4, !dbg !24
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
%inc = add nsw i32 %11, 1, !dbg !24
store i32 %inc, i32* %y.addr, align 4, !dbg !24
%12 = load i32, i32* %x.addr, align 4, !dbg !26
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
%add = add nsw i32 %12, 3, !dbg !26
store i32 %add, i32* %x.addr, align 4, !dbg !26
br label %if.end15, !dbg !27
if.else7: ; preds = %if.end
store i32 0, i32* %j, align 4, !dbg !28
br label %for.cond8, !dbg !28
for.cond8: ; preds = %for.inc, %if.else7
%13 = load i32, i32* %j, align 4, !dbg !28
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
%conv9 = zext i32 %13 to i64, !dbg !28
%14 = load i64, i64* %i, align 8, !dbg !28
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
%cmp10 = icmp slt i64 %conv9, %14, !dbg !28
br i1 %cmp10, label %for.body11, label %for.end, !dbg !28
; CHECK: edge for.cond8 -> for.body11 probability is 16191 / 16191 = 100% [HOT edge]
; CHECK: edge for.cond8 -> for.end probability is 0 / 16191 = 0%
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
for.body11: ; preds = %for.cond8
%15 = load i32, i32* %j, align 4, !dbg !31
%16 = load i32, i32* %x.addr, align 4, !dbg !31
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
%add12 = add i32 %16, %15, !dbg !31
store i32 %add12, i32* %x.addr, align 4, !dbg !31
%17 = load i32, i32* %y.addr, align 4, !dbg !33
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
%sub13 = sub nsw i32 %17, 3, !dbg !33
store i32 %sub13, i32* %y.addr, align 4, !dbg !33
br label %for.inc, !dbg !34
for.inc: ; preds = %for.body11
%18 = load i32, i32* %j, align 4, !dbg !28
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
%inc14 = add i32 %18, 1, !dbg !28
store i32 %inc14, i32* %j, align 4, !dbg !28
br label %for.cond8, !dbg !28
for.end: ; preds = %for.cond8
br label %if.end15
if.end15: ; preds = %for.end, %if.then6
br label %for.inc16, !dbg !35
for.inc16: ; preds = %if.end15
%19 = load i64, i64* %i, align 8, !dbg !15
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
%inc17 = add nsw i64 %19, 1, !dbg !15
store i64 %inc17, i64* %i, align 8, !dbg !15
br label %for.cond, !dbg !15
for.end18: ; preds = %for.cond
br label %if.end19
if.end19: ; preds = %for.end18
%20 = load i32, i32* %y.addr, align 4, !dbg !36
%21 = load i32, i32* %x.addr, align 4, !dbg !36
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
%mul = mul nsw i32 %20, %21, !dbg !36
%conv20 = sext i32 %mul to i64, !dbg !36
store i64 %conv20, i64* %retval, !dbg !36
br label %return, !dbg !36
return: ; preds = %if.end19, %if.then
%22 = load i64, i64* %retval, !dbg !37
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
ret i64 %22, !dbg !37
}
; Function Attrs: uwtable
define i32 @main() #1 {
entry:
%retval = alloca i32, align 4
%x = alloca i32, align 4
%y = alloca i32, align 4
%N = alloca i64, align 8
store i32 0, i32* %retval
store i32 5678, i32* %x, align 4, !dbg !38
store i32 1234, i32* %y, align 4, !dbg !39
store i64 999999, i64* %N, align 8, !dbg !40
%0 = load i32, i32* %x, align 4, !dbg !41
%1 = load i32, i32* %y, align 4, !dbg !41
%2 = load i64, i64* %N, align 8, !dbg !41
%3 = load i32, i32* %x, align 4, !dbg !41
%4 = load i32, i32* %y, align 4, !dbg !41
%5 = load i64, i64* %N, align 8, !dbg !41
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
%call = call i64 @_Z3fooiil(i32 %3, i32 %4, i64 %5), !dbg !41
[opaque pointer type] Add textual IR support for explicit type parameter to the call instruction See r230786 and r230794 for similar changes to gep and load respectively. Call is a bit different because it often doesn't have a single explicit type - usually the type is deduced from the arguments, and just the return type is explicit. In those cases there's no need to change the IR. When that's not the case, the IR usually contains the pointer type of the first operand - but since typed pointers are going away, that representation is insufficient so I'm just stripping the "pointerness" of the explicit type away. This does make the IR a bit weird - it /sort of/ reads like the type of the first operand: "call void () %x(" but %x is actually of type "void ()*" and will eventually be just of type "ptr". But this seems not too bad and I don't think it would benefit from repeating the type ("void (), void () * %x(" and then eventually "void (), ptr %x(") as has been done with gep and load. This also has a side benefit: since the explicit type is no longer a pointer, there's no ambiguity between an explicit type and a function that returns a function pointer. Previously this case needed an explicit type (eg: a function returning a void() function was written as "call void () () * @x(" rather than "call void () * @x(" because of the ambiguity between a function returning a pointer to a void() function and a function returning void). No ambiguity means even function pointer return types can just be written alone, without writing the whole function's type. This leaves /only/ the varargs case where the explicit type is required. Given the special type syntax in call instructions, the regex-fu used for migration was a bit more involved in its own unique way (as every one of these is) so here it is. Use it in conjunction with the apply.sh script and associated find/xargs commands I've provided in rr230786 to migrate your out of tree tests. Do let me know if any of this doesn't cover your cases & we can iterate on a more general script/regexes to help others with out of tree tests. About 9 test cases couldn't be automatically migrated - half of those were functions returning function pointers, where I just had to manually delete the function argument types now that we didn't need an explicit function type there. The other half were typedefs of function types used in calls - just had to manually drop the * from those. import fileinput import sys import re pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)') addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$") func_end = re.compile("(?:void.*|\)\s*)\*$") def conv(match, line): if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)): return line return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():] for line in sys.stdin: sys.stdout.write(conv(re.search(pat, line), line)) llvm-svn: 235145
2015-04-17 07:24:18 +08:00
%call1 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([24 x i8], [24 x i8]* @.str, i32 0, i32 0), i32 %0, i32 %1, i64 %2, i64 %call), !dbg !41
Propagation of profile samples through the CFG. This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
2014-01-11 07:23:46 +08:00
ret i32 0, !dbg !42
}
declare i32 @printf(i8*, ...) #2
attributes #0 = { nounwind uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
attributes #1 = { uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
attributes #2 = { "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
!llvm.dbg.cu = !{!0}
!llvm.module.flags = !{!8, !9}
!llvm.ident = !{!10}
!0 = distinct !DICompileUnit(language: DW_LANG_C_plus_plus, producer: "clang version 3.5 ", isOptimized: false, emissionKind: 0, file: !1, enums: !2, retainedTypes: !2, subprograms: !3, globals: !2, imports: !2)
!1 = !DIFile(filename: "propagate.cc", directory: ".")
!2 = !{}
IR: Make metadata typeless in assembly Now that `Metadata` is typeless, reflect that in the assembly. These are the matching assembly changes for the metadata/value split in r223802. - Only use the `metadata` type when referencing metadata from a call intrinsic -- i.e., only when it's used as a `Value`. - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode` when referencing it from call intrinsics. So, assembly like this: define @foo(i32 %v) { call void @llvm.foo(metadata !{i32 %v}, metadata !0) call void @llvm.foo(metadata !{i32 7}, metadata !0) call void @llvm.foo(metadata !1, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{metadata !3}, metadata !0) ret void, !bar !2 } !0 = metadata !{metadata !2} !1 = metadata !{i32* @global} !2 = metadata !{metadata !3} !3 = metadata !{} turns into this: define @foo(i32 %v) { call void @llvm.foo(metadata i32 %v, metadata !0) call void @llvm.foo(metadata i32 7, metadata !0) call void @llvm.foo(metadata i32* @global, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{!3}, metadata !0) ret void, !bar !2 } !0 = !{!2} !1 = !{i32* @global} !2 = !{!3} !3 = !{} I wrote an upgrade script that handled almost all of the tests in llvm and many of the tests in cfe (even handling many `CHECK` lines). I've attached it (or will attach it in a moment if you're speedy) to PR21532 to help everyone update their out-of-tree testcases. This is part of PR21532. llvm-svn: 224257
2014-12-16 03:07:53 +08:00
!3 = !{!4, !7}
!4 = !DISubprogram(name: "foo", line: 3, isLocal: false, isDefinition: true, virtualIndex: 6, flags: DIFlagPrototyped, isOptimized: false, scopeLine: 3, file: !1, scope: !5, type: !6, function: i64 (i32, i32, i64)* @_Z3fooiil, variables: !2)
!5 = !DIFile(filename: "propagate.cc", directory: ".")
!6 = !DISubroutineType(types: !{null})
!7 = !DISubprogram(name: "main", line: 24, isLocal: false, isDefinition: true, virtualIndex: 6, flags: DIFlagPrototyped, isOptimized: false, scopeLine: 24, file: !1, scope: !5, type: !6, function: i32 ()* @main, variables: !2)
IR: Make metadata typeless in assembly Now that `Metadata` is typeless, reflect that in the assembly. These are the matching assembly changes for the metadata/value split in r223802. - Only use the `metadata` type when referencing metadata from a call intrinsic -- i.e., only when it's used as a `Value`. - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode` when referencing it from call intrinsics. So, assembly like this: define @foo(i32 %v) { call void @llvm.foo(metadata !{i32 %v}, metadata !0) call void @llvm.foo(metadata !{i32 7}, metadata !0) call void @llvm.foo(metadata !1, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{metadata !3}, metadata !0) ret void, !bar !2 } !0 = metadata !{metadata !2} !1 = metadata !{i32* @global} !2 = metadata !{metadata !3} !3 = metadata !{} turns into this: define @foo(i32 %v) { call void @llvm.foo(metadata i32 %v, metadata !0) call void @llvm.foo(metadata i32 7, metadata !0) call void @llvm.foo(metadata i32* @global, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{!3}, metadata !0) ret void, !bar !2 } !0 = !{!2} !1 = !{i32* @global} !2 = !{!3} !3 = !{} I wrote an upgrade script that handled almost all of the tests in llvm and many of the tests in cfe (even handling many `CHECK` lines). I've attached it (or will attach it in a moment if you're speedy) to PR21532 to help everyone update their out-of-tree testcases. This is part of PR21532. llvm-svn: 224257
2014-12-16 03:07:53 +08:00
!8 = !{i32 2, !"Dwarf Version", i32 4}
DebugInfo: Move new hierarchy into place Move the specialized metadata nodes for the new debug info hierarchy into place, finishing off PR22464. I've done bootstraps (and all that) and I'm confident this commit is NFC as far as DWARF output is concerned. Let me know if I'm wrong :). The code changes are fairly mechanical: - Bumped the "Debug Info Version". - `DIBuilder` now creates the appropriate subclass of `MDNode`. - Subclasses of DIDescriptor now expect to hold their "MD" counterparts (e.g., `DIBasicType` expects `MDBasicType`). - Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp` for printing comments. - Big update to LangRef to describe the nodes in the new hierarchy. Feel free to make it better. Testcase changes are enormous. There's an accompanying clang commit on its way. If you have out-of-tree debug info testcases, I just broke your build. - `upgrade-specialized-nodes.sh` is attached to PR22564. I used it to update all the IR testcases. - Unfortunately I failed to find way to script the updates to CHECK lines, so I updated all of these by hand. This was fairly painful, since the old CHECKs are difficult to reason about. That's one of the benefits of the new hierarchy. This work isn't quite finished, BTW. The `DIDescriptor` subclasses are almost empty wrappers, but not quite: they still have loose casting checks (see the `RETURN_FROM_RAW()` macro). Once they're completely gutted, I'll rename the "MD" classes to "DI" and kill the wrappers. I also expect to make a few schema changes now that it's easier to reason about everything. llvm-svn: 231082
2015-03-04 01:24:31 +08:00
!9 = !{i32 1, !"Debug Info Version", i32 3}
IR: Make metadata typeless in assembly Now that `Metadata` is typeless, reflect that in the assembly. These are the matching assembly changes for the metadata/value split in r223802. - Only use the `metadata` type when referencing metadata from a call intrinsic -- i.e., only when it's used as a `Value`. - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode` when referencing it from call intrinsics. So, assembly like this: define @foo(i32 %v) { call void @llvm.foo(metadata !{i32 %v}, metadata !0) call void @llvm.foo(metadata !{i32 7}, metadata !0) call void @llvm.foo(metadata !1, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{metadata !3}, metadata !0) ret void, !bar !2 } !0 = metadata !{metadata !2} !1 = metadata !{i32* @global} !2 = metadata !{metadata !3} !3 = metadata !{} turns into this: define @foo(i32 %v) { call void @llvm.foo(metadata i32 %v, metadata !0) call void @llvm.foo(metadata i32 7, metadata !0) call void @llvm.foo(metadata i32* @global, metadata !0) call void @llvm.foo(metadata !3, metadata !0) call void @llvm.foo(metadata !{!3}, metadata !0) ret void, !bar !2 } !0 = !{!2} !1 = !{i32* @global} !2 = !{!3} !3 = !{} I wrote an upgrade script that handled almost all of the tests in llvm and many of the tests in cfe (even handling many `CHECK` lines). I've attached it (or will attach it in a moment if you're speedy) to PR21532 to help everyone update their out-of-tree testcases. This is part of PR21532. llvm-svn: 224257
2014-12-16 03:07:53 +08:00
!10 = !{!"clang version 3.5 "}
!11 = !DILocation(line: 4, scope: !12)
!12 = distinct !DILexicalBlock(line: 4, column: 0, file: !1, scope: !4)
!13 = !DILocation(line: 5, scope: !14)
!14 = distinct !DILexicalBlock(line: 4, column: 0, file: !1, scope: !12)
!15 = !DILocation(line: 7, scope: !16)
!16 = distinct !DILexicalBlock(line: 7, column: 0, file: !1, scope: !17)
!17 = distinct !DILexicalBlock(line: 6, column: 0, file: !1, scope: !12)
!18 = !DILocation(line: 8, scope: !19)
!19 = distinct !DILexicalBlock(line: 8, column: 0, file: !1, scope: !20)
!20 = distinct !DILexicalBlock(line: 7, column: 0, file: !1, scope: !16)
!21 = !DILocation(line: 9, scope: !19)
!22 = !DILocation(line: 10, scope: !23)
!23 = distinct !DILexicalBlock(line: 10, column: 0, file: !1, scope: !20)
!24 = !DILocation(line: 11, scope: !25)
!25 = distinct !DILexicalBlock(line: 10, column: 0, file: !1, scope: !23)
!26 = !DILocation(line: 12, scope: !25)
!27 = !DILocation(line: 13, scope: !25)
!28 = !DILocation(line: 14, scope: !29)
!29 = distinct !DILexicalBlock(line: 14, column: 0, file: !1, scope: !30)
!30 = distinct !DILexicalBlock(line: 13, column: 0, file: !1, scope: !23)
!31 = !DILocation(line: 15, scope: !32)
!32 = distinct !DILexicalBlock(line: 14, column: 0, file: !1, scope: !29)
!33 = !DILocation(line: 16, scope: !32)
!34 = !DILocation(line: 17, scope: !32)
!35 = !DILocation(line: 19, scope: !20)
!36 = !DILocation(line: 21, scope: !4)
!37 = !DILocation(line: 22, scope: !4)
!38 = !DILocation(line: 25, scope: !7)
!39 = !DILocation(line: 26, scope: !7)
!40 = !DILocation(line: 27, scope: !7)
!41 = !DILocation(line: 28, scope: !7)
!42 = !DILocation(line: 29, scope: !7)