llvm-project/lldb/source/Target/ThreadPlanStepOverRange.cpp

411 lines
16 KiB
C++
Raw Normal View History

//===-- ThreadPlanStepOverRange.cpp -----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Target/ThreadPlanStepOverRange.h"
#include "lldb/Symbol/Block.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/LineTable.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadPlanStepOut.h"
#include "lldb/Target/ThreadPlanStepThrough.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Stream.h"
using namespace lldb_private;
using namespace lldb;
uint32_t ThreadPlanStepOverRange::s_default_flag_values = 0;
//----------------------------------------------------------------------
// ThreadPlanStepOverRange: Step through a stack range, either stepping over or
// into based on the value of \a type.
//----------------------------------------------------------------------
ThreadPlanStepOverRange::ThreadPlanStepOverRange(
Thread &thread, const AddressRange &range,
const SymbolContext &addr_context, lldb::RunMode stop_others,
LazyBool step_out_avoids_code_without_debug_info)
: ThreadPlanStepRange(ThreadPlan::eKindStepOverRange,
"Step range stepping over", thread, range,
addr_context, stop_others),
ThreadPlanShouldStopHere(this), m_first_resume(true) {
SetFlagsToDefault();
SetupAvoidNoDebug(step_out_avoids_code_without_debug_info);
}
ThreadPlanStepOverRange::~ThreadPlanStepOverRange() = default;
void ThreadPlanStepOverRange::GetDescription(Stream *s,
lldb::DescriptionLevel level) {
if (level == lldb::eDescriptionLevelBrief) {
s->Printf("step over");
return;
}
s->Printf("Stepping over");
bool printed_line_info = false;
if (m_addr_context.line_entry.IsValid()) {
s->Printf(" line ");
m_addr_context.line_entry.DumpStopContext(s, false);
printed_line_info = true;
}
if (!printed_line_info || level == eDescriptionLevelVerbose) {
s->Printf(" using ranges: ");
DumpRanges(s);
}
s->PutChar('.');
}
void ThreadPlanStepOverRange::SetupAvoidNoDebug(
LazyBool step_out_avoids_code_without_debug_info) {
bool avoid_nodebug = true;
switch (step_out_avoids_code_without_debug_info) {
case eLazyBoolYes:
avoid_nodebug = true;
break;
case eLazyBoolNo:
avoid_nodebug = false;
break;
case eLazyBoolCalculate:
avoid_nodebug = m_thread.GetStepOutAvoidsNoDebug();
break;
}
if (avoid_nodebug)
GetFlags().Set(ThreadPlanShouldStopHere::eStepOutAvoidNoDebug);
else
GetFlags().Clear(ThreadPlanShouldStopHere::eStepOutAvoidNoDebug);
// Step Over plans should always avoid no-debug on step in. Seems like you
// shouldn't have to say this, but a tail call looks more like a step in that
// a step out, so we want to catch this case.
GetFlags().Set(ThreadPlanShouldStopHere::eStepInAvoidNoDebug);
}
bool ThreadPlanStepOverRange::IsEquivalentContext(
const SymbolContext &context) {
// Match as much as is specified in the m_addr_context: This is a fairly
// loose sanity check. Note, sometimes the target doesn't get filled in so I
// left out the target check. And sometimes the module comes in as the .o
// file from the inlined range, so I left that out too...
if (m_addr_context.comp_unit) {
if (m_addr_context.comp_unit != context.comp_unit)
return false;
if (m_addr_context.function) {
if (m_addr_context.function != context.function)
return false;
// It is okay to return to a different block of a straight function, we
// only have to be more careful if returning from one inlined block to
// another.
if (m_addr_context.block->GetInlinedFunctionInfo() == nullptr &&
context.block->GetInlinedFunctionInfo() == nullptr)
return true;
return m_addr_context.block == context.block;
}
}
// Fall back to symbol if we have no decision from comp_unit/function/block.
if (m_addr_context.symbol && m_addr_context.symbol == context.symbol) {
return true;
}
return false;
}
bool ThreadPlanStepOverRange::ShouldStop(Event *event_ptr) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP));
if (log) {
StreamString s;
s.Address(
m_thread.GetRegisterContext()->GetPC(),
m_thread.CalculateTarget()->GetArchitecture().GetAddressByteSize());
log->Printf("ThreadPlanStepOverRange reached %s.", s.GetData());
}
// If we're out of the range but in the same frame or in our caller's frame
// then we should stop. When stepping out we only stop others if we are
// forcing running one thread.
bool stop_others = (m_stop_others == lldb::eOnlyThisThread);
ThreadPlanSP new_plan_sp;
FrameComparison frame_order = CompareCurrentFrameToStartFrame();
if (frame_order == eFrameCompareOlder) {
// If we're in an older frame then we should stop.
//
// A caveat to this is if we think the frame is older but we're actually in
// a trampoline.
// I'm going to make the assumption that you wouldn't RETURN to a
// trampoline. So if we are in a trampoline we think the frame is older
// because the trampoline confused the backtracer. As below, we step
// through first, and then try to figure out how to get back out again.
new_plan_sp =
m_thread.QueueThreadPlanForStepThrough(m_stack_id, false, stop_others);
if (new_plan_sp && log)
log->Printf(
"Thought I stepped out, but in fact arrived at a trampoline.");
} else if (frame_order == eFrameCompareYounger) {
// Make sure we really are in a new frame. Do that by unwinding and seeing
// if the start function really is our start function...
for (uint32_t i = 1;; ++i) {
StackFrameSP older_frame_sp = m_thread.GetStackFrameAtIndex(i);
if (!older_frame_sp) {
// We can't unwind the next frame we should just get out of here &
// stop...
break;
}
const SymbolContext &older_context =
older_frame_sp->GetSymbolContext(eSymbolContextEverything);
if (IsEquivalentContext(older_context)) {
new_plan_sp = m_thread.QueueThreadPlanForStepOutNoShouldStop(
false, nullptr, true, stop_others, eVoteNo, eVoteNoOpinion, 0,
true);
break;
} else {
new_plan_sp = m_thread.QueueThreadPlanForStepThrough(m_stack_id, false,
stop_others);
// If we found a way through, then we should stop recursing.
if (new_plan_sp)
break;
}
}
} else {
// If we're still in the range, keep going.
if (InRange()) {
SetNextBranchBreakpoint();
return false;
}
if (!InSymbol()) {
// This one is a little tricky. Sometimes we may be in a stub or
// something similar, in which case we need to get out of there. But if
// we are in a stub then it's likely going to be hard to get out from
// here. It is probably easiest to step into the stub, and then it will
// be straight-forward to step out.
new_plan_sp = m_thread.QueueThreadPlanForStepThrough(m_stack_id, false,
stop_others);
} else {
// The current clang (at least through 424) doesn't always get the
// address range for the DW_TAG_inlined_subroutines right, so that when
// you leave the inlined range the line table says you are still in the
// source file of the inlining function. This is bad, because now you
// are missing the stack frame for the function containing the inlining,
// and if you sensibly do "finish" to get out of this function you will
// instead exit the containing function. To work around this, we check
// whether we are still in the source file we started in, and if not
// assume it is an error, and push a plan to get us out of this line and
// back to the containing file.
if (m_addr_context.line_entry.IsValid()) {
SymbolContext sc;
StackFrameSP frame_sp = m_thread.GetStackFrameAtIndex(0);
sc = frame_sp->GetSymbolContext(eSymbolContextEverything);
if (sc.line_entry.IsValid()) {
if (sc.line_entry.original_file !=
m_addr_context.line_entry.original_file &&
sc.comp_unit == m_addr_context.comp_unit &&
sc.function == m_addr_context.function) {
// Okay, find the next occurrence of this file in the line table:
LineTable *line_table = m_addr_context.comp_unit->GetLineTable();
if (line_table) {
Address cur_address = frame_sp->GetFrameCodeAddress();
uint32_t entry_idx;
LineEntry line_entry;
if (line_table->FindLineEntryByAddress(cur_address, line_entry,
&entry_idx)) {
LineEntry next_line_entry;
bool step_past_remaining_inline = false;
if (entry_idx > 0) {
// We require the previous line entry and the current line
// entry come from the same file. The other requirement is
// that the previous line table entry be part of an inlined
// block, we don't want to step past cases where people have
// inlined some code fragment by using #include <source-
// fragment.c> directly.
LineEntry prev_line_entry;
if (line_table->GetLineEntryAtIndex(entry_idx - 1,
prev_line_entry) &&
prev_line_entry.original_file ==
line_entry.original_file) {
SymbolContext prev_sc;
Address prev_address =
prev_line_entry.range.GetBaseAddress();
prev_address.CalculateSymbolContext(&prev_sc);
if (prev_sc.block) {
Block *inlined_block =
prev_sc.block->GetContainingInlinedBlock();
if (inlined_block) {
AddressRange inline_range;
inlined_block->GetRangeContainingAddress(prev_address,
inline_range);
if (!inline_range.ContainsFileAddress(cur_address)) {
step_past_remaining_inline = true;
}
}
}
}
}
if (step_past_remaining_inline) {
uint32_t look_ahead_step = 1;
while (line_table->GetLineEntryAtIndex(
entry_idx + look_ahead_step, next_line_entry)) {
// Make sure we haven't wandered out of the function we
// started from...
Address next_line_address =
next_line_entry.range.GetBaseAddress();
Function *next_line_function =
next_line_address.CalculateSymbolContextFunction();
if (next_line_function != m_addr_context.function)
break;
if (next_line_entry.original_file ==
m_addr_context.line_entry.original_file) {
const bool abort_other_plans = false;
const RunMode stop_other_threads = RunMode::eAllThreads;
lldb::addr_t cur_pc = m_thread.GetStackFrameAtIndex(0)
->GetRegisterContext()
->GetPC();
AddressRange step_range(
cur_pc,
next_line_address.GetLoadAddress(&GetTarget()) -
cur_pc);
new_plan_sp = m_thread.QueueThreadPlanForStepOverRange(
abort_other_plans, step_range, sc,
stop_other_threads);
break;
}
look_ahead_step++;
}
}
}
}
}
}
}
}
}
// If we get to this point, we're not going to use a previously set "next
// branch" breakpoint, so delete it:
ClearNextBranchBreakpoint();
// If we haven't figured out something to do yet, then ask the ShouldStopHere
// callback:
if (!new_plan_sp) {
new_plan_sp = CheckShouldStopHereAndQueueStepOut(frame_order);
}
if (!new_plan_sp)
m_no_more_plans = true;
else {
// Any new plan will be an implementation plan, so mark it private:
new_plan_sp->SetPrivate(true);
m_no_more_plans = false;
}
if (!new_plan_sp) {
// For efficiencies sake, we know we're done here so we don't have to do
// this calculation again in MischiefManaged.
SetPlanComplete();
return true;
} else
return false;
}
bool ThreadPlanStepOverRange::DoPlanExplainsStop(Event *event_ptr) {
// For crashes, breakpoint hits, signals, etc, let the base plan (or some
// plan above us) handle the stop. That way the user can see the stop, step
// around, and then when they are done, continue and have their step
// complete. The exception is if we've hit our "run to next branch"
// breakpoint. Note, unlike the step in range plan, we don't mark ourselves
// complete if we hit an unexplained breakpoint/crash.
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP));
StopInfoSP stop_info_sp = GetPrivateStopInfo();
bool return_value;
if (stop_info_sp) {
StopReason reason = stop_info_sp->GetStopReason();
if (reason == eStopReasonTrace) {
return_value = true;
} else if (reason == eStopReasonBreakpoint) {
return_value = NextRangeBreakpointExplainsStop(stop_info_sp);
} else {
if (log)
log->PutCString("ThreadPlanStepInRange got asked if it explains the "
"stop for some reason other than step.");
return_value = false;
}
} else
return_value = true;
Figure out the reply to "PlanExplainsStop" once when we stop and then use the cached value. This fixes problems, for instance, with the StepRange plans, where they know that they explained the stop because they were at their "run to here" breakpoint, then deleted that breakpoint, so when they got asked again, doh! I had done this for a couple of plans in an ad hoc fashion, this just formalizes it. Also add a "ResumeRequested" in Process so that the code in the completion handlers can tell the ShouldStop logic they want to resume rather than just directly resuming. That allows us to handle resuming in a more controlled fashion. Also, SetPublicState can take a "restarted" flag, so that it doesn't drop the run lock when the target was immediately restarted. --This line, and those below , will be ignored-- M test/lang/objc/objc-dynamic-value/TestObjCDynamicValue.py M include/lldb/Target/ThreadList.h M include/lldb/Target/ThreadPlanStepOut.h M include/lldb/Target/Thread.h M include/lldb/Target/ThreadPlanBase.h M include/lldb/Target/ThreadPlanStepThrough.h M include/lldb/Target/ThreadPlanStepInstruction.h M include/lldb/Target/ThreadPlanStepInRange.h M include/lldb/Target/ThreadPlanStepOverBreakpoint.h M include/lldb/Target/ThreadPlanStepUntil.h M include/lldb/Target/StopInfo.h M include/lldb/Target/Process.h M include/lldb/Target/ThreadPlanRunToAddress.h M include/lldb/Target/ThreadPlan.h M include/lldb/Target/ThreadPlanCallFunction.h M include/lldb/Target/ThreadPlanStepOverRange.h M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.h M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.cpp M source/Target/StopInfo.cpp M source/Target/Process.cpp M source/Target/ThreadPlanRunToAddress.cpp M source/Target/ThreadPlan.cpp M source/Target/ThreadPlanCallFunction.cpp M source/Target/ThreadPlanStepOverRange.cpp M source/Target/ThreadList.cpp M source/Target/ThreadPlanStepOut.cpp M source/Target/Thread.cpp M source/Target/ThreadPlanBase.cpp M source/Target/ThreadPlanStepThrough.cpp M source/Target/ThreadPlanStepInstruction.cpp M source/Target/ThreadPlanStepInRange.cpp M source/Target/ThreadPlanStepOverBreakpoint.cpp M source/Target/ThreadPlanStepUntil.cpp M lldb.xcodeproj/xcshareddata/xcschemes/Run Testsuite.xcscheme llvm-svn: 181381
2013-05-08 08:35:16 +08:00
return return_value;
}
bool ThreadPlanStepOverRange::DoWillResume(lldb::StateType resume_state,
bool current_plan) {
if (resume_state != eStateSuspended && m_first_resume) {
m_first_resume = false;
if (resume_state == eStateStepping && current_plan) {
// See if we are about to step over an inlined call in the middle of the
// inlined stack, if so figure out its extents and reset our range to
// step over that.
bool in_inlined_stack = m_thread.DecrementCurrentInlinedDepth();
if (in_inlined_stack) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP));
if (log)
log->Printf("ThreadPlanStepInRange::DoWillResume: adjusting range to "
"the frame at inlined depth %d.",
m_thread.GetCurrentInlinedDepth());
StackFrameSP stack_sp = m_thread.GetStackFrameAtIndex(0);
if (stack_sp) {
Block *frame_block = stack_sp->GetFrameBlock();
lldb::addr_t curr_pc = m_thread.GetRegisterContext()->GetPC();
AddressRange my_range;
if (frame_block->GetRangeContainingLoadAddress(
curr_pc, m_thread.GetProcess()->GetTarget(), my_range)) {
m_address_ranges.clear();
m_address_ranges.push_back(my_range);
if (log) {
StreamString s;
const InlineFunctionInfo *inline_info =
frame_block->GetInlinedFunctionInfo();
const char *name;
if (inline_info)
name =
inline_info
->GetName(frame_block->CalculateSymbolContextFunction()
->GetLanguage())
.AsCString();
else
name = "<unknown-notinlined>";
s.Printf(
"Stepping over inlined function \"%s\" in inlined stack: ",
name);
DumpRanges(&s);
log->PutString(s.GetString());
}
}
}
}
}
}
return true;
}