llvm-project/llvm/lib/Object/Archive.cpp

998 lines
34 KiB
C++
Raw Normal View History

//===- Archive.cpp - ar File Format implementation ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ArchiveObjectFile class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/Archive.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/Error.h"
#include "llvm/Support/Chrono.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <memory>
#include <string>
#include <system_error>
using namespace llvm;
using namespace object;
using namespace llvm::support::endian;
static const char *const Magic = "!<arch>\n";
static const char *const ThinMagic = "!<thin>\n";
void Archive::anchor() {}
static Error
malformedError(Twine Msg) {
std::string StringMsg = "truncated or malformed archive (" + Msg.str() + ")";
return make_error<GenericBinaryError>(std::move(StringMsg),
object_error::parse_failed);
}
ArchiveMemberHeader::ArchiveMemberHeader(const Archive *Parent,
const char *RawHeaderPtr,
uint64_t Size, Error *Err)
: Parent(Parent),
ArMemHdr(reinterpret_cast<const ArMemHdrType *>(RawHeaderPtr)) {
if (RawHeaderPtr == nullptr)
return;
ErrorAsOutParameter ErrAsOutParam(Err);
if (Size < sizeof(ArMemHdrType)) {
if (Err) {
std::string Msg("remaining size of archive too small for next archive "
"member header ");
Expected<StringRef> NameOrErr = getName(Size);
if (!NameOrErr) {
consumeError(NameOrErr.takeError());
uint64_t Offset = RawHeaderPtr - Parent->getData().data();
*Err = malformedError(Msg + "at offset " + Twine(Offset));
} else
*Err = malformedError(Msg + "for " + NameOrErr.get());
}
return;
}
if (ArMemHdr->Terminator[0] != '`' || ArMemHdr->Terminator[1] != '\n') {
if (Err) {
std::string Buf;
raw_string_ostream OS(Buf);
OS.write_escaped(StringRef(ArMemHdr->Terminator,
sizeof(ArMemHdr->Terminator)));
OS.flush();
std::string Msg("terminator characters in archive member \"" + Buf +
"\" not the correct \"`\\n\" values for the archive "
"member header ");
Expected<StringRef> NameOrErr = getName(Size);
if (!NameOrErr) {
consumeError(NameOrErr.takeError());
uint64_t Offset = RawHeaderPtr - Parent->getData().data();
*Err = malformedError(Msg + "at offset " + Twine(Offset));
} else
*Err = malformedError(Msg + "for " + NameOrErr.get());
}
return;
}
}
// This gets the raw name from the ArMemHdr->Name field and checks that it is
// valid for the kind of archive. If it is not valid it returns an Error.
Expected<StringRef> ArchiveMemberHeader::getRawName() const {
char EndCond;
auto Kind = Parent->kind();
if (Kind == Archive::K_BSD || Kind == Archive::K_DARWIN64) {
if (ArMemHdr->Name[0] == ' ') {
uint64_t Offset = reinterpret_cast<const char *>(ArMemHdr) -
Parent->getData().data();
return malformedError("name contains a leading space for archive member "
"header at offset " + Twine(Offset));
}
EndCond = ' ';
}
else if (ArMemHdr->Name[0] == '/' || ArMemHdr->Name[0] == '#')
EndCond = ' ';
else
EndCond = '/';
StringRef::size_type end =
StringRef(ArMemHdr->Name, sizeof(ArMemHdr->Name)).find(EndCond);
if (end == StringRef::npos)
end = sizeof(ArMemHdr->Name);
assert(end <= sizeof(ArMemHdr->Name) && end > 0);
// Don't include the EndCond if there is one.
return StringRef(ArMemHdr->Name, end);
}
// This gets the name looking up long names. Size is the size of the archive
// member including the header, so the size of any name following the header
// is checked to make sure it does not overflow.
Expected<StringRef> ArchiveMemberHeader::getName(uint64_t Size) const {
// This can be called from the ArchiveMemberHeader constructor when the
// archive header is truncated to produce an error message with the name.
// Make sure the name field is not truncated.
if (Size < offsetof(ArMemHdrType, Name) + sizeof(ArMemHdr->Name)) {
uint64_t ArchiveOffset = reinterpret_cast<const char *>(ArMemHdr) -
Parent->getData().data();
return malformedError("archive header truncated before the name field "
"for archive member header at offset " +
Twine(ArchiveOffset));
}
// The raw name itself can be invalid.
Expected<StringRef> NameOrErr = getRawName();
if (!NameOrErr)
return NameOrErr.takeError();
StringRef Name = NameOrErr.get();
// Check if it's a special name.
if (Name[0] == '/') {
if (Name.size() == 1) // Linker member.
return Name;
if (Name.size() == 2 && Name[1] == '/') // String table.
return Name;
// It's a long name.
// Get the string table offset.
std::size_t StringOffset;
if (Name.substr(1).rtrim(' ').getAsInteger(10, StringOffset)) {
std::string Buf;
raw_string_ostream OS(Buf);
OS.write_escaped(Name.substr(1).rtrim(' '));
OS.flush();
uint64_t ArchiveOffset = reinterpret_cast<const char *>(ArMemHdr) -
Parent->getData().data();
return malformedError("long name offset characters after the '/' are "
"not all decimal numbers: '" + Buf + "' for "
"archive member header at offset " +
Twine(ArchiveOffset));
}
// Verify it.
if (StringOffset >= Parent->getStringTable().size()) {
uint64_t ArchiveOffset = reinterpret_cast<const char *>(ArMemHdr) -
Parent->getData().data();
return malformedError("long name offset " + Twine(StringOffset) + " past "
"the end of the string table for archive member "
"header at offset " + Twine(ArchiveOffset));
}
// GNU long file names end with a "/\n".
if (Parent->kind() == Archive::K_GNU ||
Parent->kind() == Archive::K_GNU64) {
size_t End = Parent->getStringTable().find('\n', /*From=*/StringOffset);
if (End == StringRef::npos || End < 1 ||
Parent->getStringTable()[End - 1] != '/') {
return malformedError("string table at long name offset " +
Twine(StringOffset) + "not terminated");
}
return Parent->getStringTable().slice(StringOffset, End - 1);
}
return Parent->getStringTable().begin() + StringOffset;
}
if (Name.startswith("#1/")) {
uint64_t NameLength;
if (Name.substr(3).rtrim(' ').getAsInteger(10, NameLength)) {
std::string Buf;
raw_string_ostream OS(Buf);
OS.write_escaped(Name.substr(3).rtrim(' '));
OS.flush();
uint64_t ArchiveOffset = reinterpret_cast<const char *>(ArMemHdr) -
Parent->getData().data();
return malformedError("long name length characters after the #1/ are "
"not all decimal numbers: '" + Buf + "' for "
"archive member header at offset " +
Twine(ArchiveOffset));
}
if (getSizeOf() + NameLength > Size) {
uint64_t ArchiveOffset = reinterpret_cast<const char *>(ArMemHdr) -
Parent->getData().data();
return malformedError("long name length: " + Twine(NameLength) +
" extends past the end of the member or archive "
"for archive member header at offset " +
Twine(ArchiveOffset));
}
return StringRef(reinterpret_cast<const char *>(ArMemHdr) + getSizeOf(),
NameLength).rtrim('\0');
}
// It is not a long name so trim the blanks at the end of the name.
if (Name[Name.size() - 1] != '/')
return Name.rtrim(' ');
// It's a simple name.
return Name.drop_back(1);
}
Expected<uint32_t> ArchiveMemberHeader::getSize() const {
uint32_t Ret;
if (StringRef(ArMemHdr->Size,
sizeof(ArMemHdr->Size)).rtrim(" ").getAsInteger(10, Ret)) {
std::string Buf;
raw_string_ostream OS(Buf);
OS.write_escaped(StringRef(ArMemHdr->Size,
sizeof(ArMemHdr->Size)).rtrim(" "));
OS.flush();
uint64_t Offset = reinterpret_cast<const char *>(ArMemHdr) -
Parent->getData().data();
return malformedError("characters in size field in archive header are not "
"all decimal numbers: '" + Buf + "' for archive "
"member header at offset " + Twine(Offset));
}
return Ret;
}
Expected<sys::fs::perms> ArchiveMemberHeader::getAccessMode() const {
unsigned Ret;
if (StringRef(ArMemHdr->AccessMode,
sizeof(ArMemHdr->AccessMode)).rtrim(' ').getAsInteger(8, Ret)) {
std::string Buf;
raw_string_ostream OS(Buf);
OS.write_escaped(StringRef(ArMemHdr->AccessMode,
sizeof(ArMemHdr->AccessMode)).rtrim(" "));
OS.flush();
uint64_t Offset = reinterpret_cast<const char *>(ArMemHdr) -
Parent->getData().data();
return malformedError("characters in AccessMode field in archive header "
"are not all decimal numbers: '" + Buf + "' for the "
"archive member header at offset " + Twine(Offset));
}
return static_cast<sys::fs::perms>(Ret);
}
Expected<sys::TimePoint<std::chrono::seconds>>
ArchiveMemberHeader::getLastModified() const {
unsigned Seconds;
if (StringRef(ArMemHdr->LastModified,
sizeof(ArMemHdr->LastModified)).rtrim(' ')
.getAsInteger(10, Seconds)) {
std::string Buf;
raw_string_ostream OS(Buf);
OS.write_escaped(StringRef(ArMemHdr->LastModified,
sizeof(ArMemHdr->LastModified)).rtrim(" "));
OS.flush();
uint64_t Offset = reinterpret_cast<const char *>(ArMemHdr) -
Parent->getData().data();
return malformedError("characters in LastModified field in archive header "
"are not all decimal numbers: '" + Buf + "' for the "
"archive member header at offset " + Twine(Offset));
}
return sys::toTimePoint(Seconds);
}
Expected<unsigned> ArchiveMemberHeader::getUID() const {
unsigned Ret;
StringRef User = StringRef(ArMemHdr->UID, sizeof(ArMemHdr->UID)).rtrim(' ');
if (User.empty())
return 0;
if (User.getAsInteger(10, Ret)) {
std::string Buf;
raw_string_ostream OS(Buf);
OS.write_escaped(User);
OS.flush();
uint64_t Offset = reinterpret_cast<const char *>(ArMemHdr) -
Parent->getData().data();
return malformedError("characters in UID field in archive header "
"are not all decimal numbers: '" + Buf + "' for the "
"archive member header at offset " + Twine(Offset));
}
return Ret;
}
Expected<unsigned> ArchiveMemberHeader::getGID() const {
unsigned Ret;
StringRef Group = StringRef(ArMemHdr->GID, sizeof(ArMemHdr->GID)).rtrim(' ');
if (Group.empty())
return 0;
if (Group.getAsInteger(10, Ret)) {
std::string Buf;
raw_string_ostream OS(Buf);
OS.write_escaped(Group);
OS.flush();
uint64_t Offset = reinterpret_cast<const char *>(ArMemHdr) -
Parent->getData().data();
return malformedError("characters in GID field in archive header "
"are not all decimal numbers: '" + Buf + "' for the "
"archive member header at offset " + Twine(Offset));
}
return Ret;
}
Archive::Child::Child(const Archive *Parent, StringRef Data,
uint16_t StartOfFile)
: Parent(Parent), Header(Parent, Data.data(), Data.size(), nullptr),
Data(Data), StartOfFile(StartOfFile) {
}
Archive::Child::Child(const Archive *Parent, const char *Start, Error *Err)
: Parent(Parent),
Header(Parent, Start,
Parent
? Parent->getData().size() - (Start - Parent->getData().data())
: 0, Err) {
if (!Start)
return;
// If we are pointed to real data, Start is not a nullptr, then there must be
// a non-null Err pointer available to report malformed data on. Only in
// the case sentinel value is being constructed is Err is permitted to be a
// nullptr.
assert(Err && "Err can't be nullptr if Start is not a nullptr");
ErrorAsOutParameter ErrAsOutParam(Err);
// If there was an error in the construction of the Header
// then just return with the error now set.
if (*Err)
return;
uint64_t Size = Header.getSizeOf();
Data = StringRef(Start, Size);
Expected<bool> isThinOrErr = isThinMember();
if (!isThinOrErr) {
*Err = isThinOrErr.takeError();
return;
}
bool isThin = isThinOrErr.get();
if (!isThin) {
Expected<uint64_t> MemberSize = getRawSize();
if (!MemberSize) {
*Err = MemberSize.takeError();
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
return;
}
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
Size += MemberSize.get();
Data = StringRef(Start, Size);
}
// Setup StartOfFile and PaddingBytes.
StartOfFile = Header.getSizeOf();
// Don't include attached name.
Expected<StringRef> NameOrErr = getRawName();
if (!NameOrErr){
*Err = NameOrErr.takeError();
return;
}
StringRef Name = NameOrErr.get();
if (Name.startswith("#1/")) {
uint64_t NameSize;
if (Name.substr(3).rtrim(' ').getAsInteger(10, NameSize)) {
std::string Buf;
raw_string_ostream OS(Buf);
OS.write_escaped(Name.substr(3).rtrim(' '));
OS.flush();
uint64_t Offset = Start - Parent->getData().data();
*Err = malformedError("long name length characters after the #1/ are "
"not all decimal numbers: '" + Buf + "' for "
"archive member header at offset " +
Twine(Offset));
return;
}
StartOfFile += NameSize;
}
}
Expected<uint64_t> Archive::Child::getSize() const {
if (Parent->IsThin) {
Expected<uint32_t> Size = Header.getSize();
if (!Size)
return Size.takeError();
return Size.get();
}
return Data.size() - StartOfFile;
}
Expected<uint64_t> Archive::Child::getRawSize() const {
return Header.getSize();
}
Expected<bool> Archive::Child::isThinMember() const {
Expected<StringRef> NameOrErr = Header.getRawName();
if (!NameOrErr)
return NameOrErr.takeError();
StringRef Name = NameOrErr.get();
return Parent->IsThin && Name != "/" && Name != "//";
}
Expected<std::string> Archive::Child::getFullName() const {
Expected<bool> isThin = isThinMember();
if (!isThin)
return isThin.takeError();
assert(isThin.get());
Expected<StringRef> NameOrErr = getName();
if (!NameOrErr)
return NameOrErr.takeError();
StringRef Name = *NameOrErr;
if (sys::path::is_absolute(Name))
return Name;
SmallString<128> FullName = sys::path::parent_path(
Parent->getMemoryBufferRef().getBufferIdentifier());
sys::path::append(FullName, Name);
return StringRef(FullName);
}
Expected<StringRef> Archive::Child::getBuffer() const {
Expected<bool> isThinOrErr = isThinMember();
if (!isThinOrErr)
return isThinOrErr.takeError();
bool isThin = isThinOrErr.get();
if (!isThin) {
Expected<uint32_t> Size = getSize();
if (!Size)
return Size.takeError();
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
return StringRef(Data.data() + StartOfFile, Size.get());
}
Expected<std::string> FullNameOrErr = getFullName();
if (!FullNameOrErr)
return FullNameOrErr.takeError();
const std::string &FullName = *FullNameOrErr;
ErrorOr<std::unique_ptr<MemoryBuffer>> Buf = MemoryBuffer::getFile(FullName);
if (std::error_code EC = Buf.getError())
return errorCodeToError(EC);
Parent->ThinBuffers.push_back(std::move(*Buf));
return Parent->ThinBuffers.back()->getBuffer();
}
Expected<Archive::Child> Archive::Child::getNext() const {
size_t SpaceToSkip = Data.size();
// If it's odd, add 1 to make it even.
if (SpaceToSkip & 1)
++SpaceToSkip;
const char *NextLoc = Data.data() + SpaceToSkip;
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
// Check to see if this is at the end of the archive.
if (NextLoc == Parent->Data.getBufferEnd())
return Child(nullptr, nullptr, nullptr);
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
// Check to see if this is past the end of the archive.
if (NextLoc > Parent->Data.getBufferEnd()) {
std::string Msg("offset to next archive member past the end of the archive "
"after member ");
Expected<StringRef> NameOrErr = getName();
if (!NameOrErr) {
consumeError(NameOrErr.takeError());
uint64_t Offset = Data.data() - Parent->getData().data();
return malformedError(Msg + "at offset " + Twine(Offset));
} else
return malformedError(Msg + NameOrErr.get());
}
Error Err = Error::success();
Child Ret(Parent, NextLoc, &Err);
if (Err)
return std::move(Err);
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
return Ret;
}
uint64_t Archive::Child::getChildOffset() const {
const char *a = Parent->Data.getBuffer().data();
const char *c = Data.data();
uint64_t offset = c - a;
return offset;
}
Expected<StringRef> Archive::Child::getName() const {
Expected<uint64_t> RawSizeOrErr = getRawSize();
if (!RawSizeOrErr)
return RawSizeOrErr.takeError();
uint64_t RawSize = RawSizeOrErr.get();
Expected<StringRef> NameOrErr = Header.getName(Header.getSizeOf() + RawSize);
if (!NameOrErr)
return NameOrErr.takeError();
StringRef Name = NameOrErr.get();
return Name;
}
Expected<MemoryBufferRef> Archive::Child::getMemoryBufferRef() const {
Expected<StringRef> NameOrErr = getName();
if (!NameOrErr)
return NameOrErr.takeError();
StringRef Name = NameOrErr.get();
Expected<StringRef> Buf = getBuffer();
if (!Buf)
return Buf.takeError();
return MemoryBufferRef(*Buf, Name);
}
Expected<std::unique_ptr<Binary>>
Archive::Child::getAsBinary(LLVMContext *Context) const {
Expected<MemoryBufferRef> BuffOrErr = getMemoryBufferRef();
if (!BuffOrErr)
return BuffOrErr.takeError();
Thread Expected<...> up from createMachOObjectFile() to allow llvm-objdump to produce a real error message Produce the first specific error message for a malformed Mach-O file describing the problem instead of the generic message for object_error::parse_failed of "Invalid data was encountered while parsing the file”.  Many more good error messages will follow after this first one. This is built on Lang Hames’ great work of adding the ’Error' class for structured error handling and threading Error through MachOObjectFile construction. And making createMachOObjectFile return Expected<...> . So to to get the error to the llvm-obdump tool, I changed the stack of these methods to also return Expected<...> : object::ObjectFile::createObjectFile() object::SymbolicFile::createSymbolicFile() object::createBinary() Then finally in ParseInputMachO() in MachODump.cpp the error can be reported and the specific error message can be printed in llvm-objdump and can be seen in the existing test case for the existing malformed binary but with the updated error message. Converting these interfaces to Expected<> from ErrorOr<> does involve touching a number of places. To contain the changes for now use of errorToErrorCode() and errorOrToExpected() are used where the callers are yet to be converted. Also there some were bugs in the existing code that did not deal with the old ErrorOr<> return values. So now with Expected<> since they must be checked and the error handled, I added a TODO and a comment: “// TODO: Actually report errors helpfully” and a call something like consumeError(ObjOrErr.takeError()) so the buggy code will not crash since needed to deal with the Error. Note there is one fix also needed to lld/COFF/InputFiles.cpp that goes along with this that I will commit right after this. So expect lld not to built after this commit and before the next one. llvm-svn: 265606
2016-04-07 06:14:09 +08:00
auto BinaryOrErr = createBinary(BuffOrErr.get(), Context);
if (BinaryOrErr)
return std::move(*BinaryOrErr);
return BinaryOrErr.takeError();
}
Expected<std::unique_ptr<Archive>> Archive::create(MemoryBufferRef Source) {
Error Err = Error::success();
std::unique_ptr<Archive> Ret(new Archive(Source, Err));
if (Err)
return std::move(Err);
return std::move(Ret);
}
void Archive::setFirstRegular(const Child &C) {
FirstRegularData = C.Data;
FirstRegularStartOfFile = C.StartOfFile;
}
Archive::Archive(MemoryBufferRef Source, Error &Err)
: Binary(Binary::ID_Archive, Source) {
ErrorAsOutParameter ErrAsOutParam(&Err);
StringRef Buffer = Data.getBuffer();
// Check for sufficient magic.
if (Buffer.startswith(ThinMagic)) {
IsThin = true;
} else if (Buffer.startswith(Magic)) {
IsThin = false;
} else {
Err = make_error<GenericBinaryError>("File too small to be an archive",
object_error::invalid_file_type);
return;
}
// Make sure Format is initialized before any call to
// ArchiveMemberHeader::getName() is made. This could be a valid empty
// archive which is the same in all formats. So claiming it to be gnu to is
// fine if not totally correct before we look for a string table or table of
// contents.
Format = K_GNU;
// Get the special members.
child_iterator I = child_begin(Err, false);
if (Err)
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
return;
child_iterator E = child_end();
// See if this is a valid empty archive and if so return.
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
if (I == E) {
Err = Error::success();
return;
}
const Child *C = &*I;
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
auto Increment = [&]() {
++I;
if (Err)
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
return true;
C = &*I;
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
return false;
};
Expected<StringRef> NameOrErr = C->getRawName();
if (!NameOrErr) {
Err = NameOrErr.takeError();
return;
}
StringRef Name = NameOrErr.get();
// Below is the pattern that is used to figure out the archive format
// GNU archive format
// First member : / (may exist, if it exists, points to the symbol table )
// Second member : // (may exist, if it exists, points to the string table)
// Note : The string table is used if the filename exceeds 15 characters
// BSD archive format
// First member : __.SYMDEF or "__.SYMDEF SORTED" (the symbol table)
// There is no string table, if the filename exceeds 15 characters or has a
// embedded space, the filename has #1/<size>, The size represents the size
// of the filename that needs to be read after the archive header
// COFF archive format
// First member : /
// Second member : / (provides a directory of symbols)
// Third member : // (may exist, if it exists, contains the string table)
// Note: Microsoft PE/COFF Spec 8.3 says that the third member is present
// even if the string table is empty. However, lib.exe does not in fact
// seem to create the third member if there's no member whose filename
// exceeds 15 characters. So the third member is optional.
if (Name == "__.SYMDEF" || Name == "__.SYMDEF_64") {
if (Name == "__.SYMDEF")
Format = K_BSD;
else // Name == "__.SYMDEF_64"
Format = K_DARWIN64;
// We know that the symbol table is not an external file, but we still must
// check any Expected<> return value.
Expected<StringRef> BufOrErr = C->getBuffer();
if (!BufOrErr) {
Err = BufOrErr.takeError();
return;
}
SymbolTable = BufOrErr.get();
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
if (Increment())
return;
setFirstRegular(*C);
Err = Error::success();
return;
}
if (Name.startswith("#1/")) {
Format = K_BSD;
// We know this is BSD, so getName will work since there is no string table.
Expected<StringRef> NameOrErr = C->getName();
if (!NameOrErr) {
Err = NameOrErr.takeError();
return;
}
Name = NameOrErr.get();
if (Name == "__.SYMDEF SORTED" || Name == "__.SYMDEF") {
// We know that the symbol table is not an external file, but we still
// must check any Expected<> return value.
Expected<StringRef> BufOrErr = C->getBuffer();
if (!BufOrErr) {
Err = BufOrErr.takeError();
return;
}
SymbolTable = BufOrErr.get();
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
if (Increment())
return;
}
else if (Name == "__.SYMDEF_64 SORTED" || Name == "__.SYMDEF_64") {
Format = K_DARWIN64;
// We know that the symbol table is not an external file, but we still
// must check any Expected<> return value.
Expected<StringRef> BufOrErr = C->getBuffer();
if (!BufOrErr) {
Err = BufOrErr.takeError();
return;
}
SymbolTable = BufOrErr.get();
if (Increment())
return;
}
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
setFirstRegular(*C);
return;
}
// MIPS 64-bit ELF archives use a special format of a symbol table.
// This format is marked by `ar_name` field equals to "/SYM64/".
// For detailed description see page 96 in the following document:
// http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf
bool has64SymTable = false;
if (Name == "/" || Name == "/SYM64/") {
// We know that the symbol table is not an external file, but we still
// must check any Expected<> return value.
Expected<StringRef> BufOrErr = C->getBuffer();
if (!BufOrErr) {
Err = BufOrErr.takeError();
return;
}
SymbolTable = BufOrErr.get();
if (Name == "/SYM64/")
has64SymTable = true;
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
if (Increment())
return;
if (I == E) {
Err = Error::success();
return;
}
Expected<StringRef> NameOrErr = C->getRawName();
if (!NameOrErr) {
Err = NameOrErr.takeError();
return;
}
Name = NameOrErr.get();
}
if (Name == "//") {
Format = has64SymTable ? K_GNU64 : K_GNU;
// The string table is never an external member, but we still
// must check any Expected<> return value.
Expected<StringRef> BufOrErr = C->getBuffer();
if (!BufOrErr) {
Err = BufOrErr.takeError();
return;
}
StringTable = BufOrErr.get();
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
if (Increment())
return;
setFirstRegular(*C);
Err = Error::success();
return;
}
if (Name[0] != '/') {
Format = has64SymTable ? K_GNU64 : K_GNU;
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
setFirstRegular(*C);
Err = Error::success();
return;
}
if (Name != "/") {
Err = errorCodeToError(object_error::parse_failed);
return;
}
Format = K_COFF;
// We know that the symbol table is not an external file, but we still
// must check any Expected<> return value.
Expected<StringRef> BufOrErr = C->getBuffer();
if (!BufOrErr) {
Err = BufOrErr.takeError();
return;
}
SymbolTable = BufOrErr.get();
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
if (Increment())
return;
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
if (I == E) {
setFirstRegular(*C);
Err = Error::success();
return;
}
NameOrErr = C->getRawName();
if (!NameOrErr) {
Err = NameOrErr.takeError();
return;
}
Name = NameOrErr.get();
if (Name == "//") {
// The string table is never an external member, but we still
// must check any Expected<> return value.
Expected<StringRef> BufOrErr = C->getBuffer();
if (!BufOrErr) {
Err = BufOrErr.takeError();
return;
}
StringTable = BufOrErr.get();
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
if (Increment())
return;
}
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
setFirstRegular(*C);
Err = Error::success();
}
Archive::child_iterator Archive::child_begin(Error &Err,
bool SkipInternal) const {
if (isEmpty())
return child_end();
if (SkipInternal)
return child_iterator(Child(this, FirstRegularData,
FirstRegularStartOfFile),
&Err);
const char *Loc = Data.getBufferStart() + strlen(Magic);
Child C(this, Loc, &Err);
if (Err)
return child_end();
return child_iterator(C, &Err);
}
Archive::child_iterator Archive::child_end() const {
return child_iterator(Child(nullptr, nullptr, nullptr), nullptr);
}
StringRef Archive::Symbol::getName() const {
return Parent->getSymbolTable().begin() + StringIndex;
}
Expected<Archive::Child> Archive::Symbol::getMember() const {
const char *Buf = Parent->getSymbolTable().begin();
const char *Offsets = Buf;
if (Parent->kind() == K_GNU64 || Parent->kind() == K_DARWIN64)
Offsets += sizeof(uint64_t);
else
Offsets += sizeof(uint32_t);
uint64_t Offset = 0;
if (Parent->kind() == K_GNU) {
Offset = read32be(Offsets + SymbolIndex * 4);
} else if (Parent->kind() == K_GNU64) {
Offset = read64be(Offsets + SymbolIndex * 8);
} else if (Parent->kind() == K_BSD) {
// The SymbolIndex is an index into the ranlib structs that start at
// Offsets (the first uint32_t is the number of bytes of the ranlib
// structs). The ranlib structs are a pair of uint32_t's the first
// being a string table offset and the second being the offset into
// the archive of the member that defines the symbol. Which is what
// is needed here.
Offset = read32le(Offsets + SymbolIndex * 8 + 4);
} else if (Parent->kind() == K_DARWIN64) {
// The SymbolIndex is an index into the ranlib_64 structs that start at
// Offsets (the first uint64_t is the number of bytes of the ranlib_64
// structs). The ranlib_64 structs are a pair of uint64_t's the first
// being a string table offset and the second being the offset into
// the archive of the member that defines the symbol. Which is what
// is needed here.
Offset = read64le(Offsets + SymbolIndex * 16 + 8);
} else {
// Skip offsets.
uint32_t MemberCount = read32le(Buf);
Buf += MemberCount * 4 + 4;
uint32_t SymbolCount = read32le(Buf);
if (SymbolIndex >= SymbolCount)
return errorCodeToError(object_error::parse_failed);
// Skip SymbolCount to get to the indices table.
const char *Indices = Buf + 4;
// Get the index of the offset in the file member offset table for this
// symbol.
uint16_t OffsetIndex = read16le(Indices + SymbolIndex * 2);
// Subtract 1 since OffsetIndex is 1 based.
--OffsetIndex;
if (OffsetIndex >= MemberCount)
return errorCodeToError(object_error::parse_failed);
Offset = read32le(Offsets + OffsetIndex * 4);
}
const char *Loc = Parent->getData().begin() + Offset;
Error Err = Error::success();
Child C(Parent, Loc, &Err);
if (Err)
return std::move(Err);
Reapply r250906 with many suggested updates from Rafael Espindola. The needed lld matching changes to be submitted immediately next, but this revision will cause lld failures with this alone which is expected. This removes the eating of the error in Archive::Child::getSize() when the characters in the size field in the archive header for the member is not a number. To do this we have all of the needed methods return ErrorOr to push them up until we get out of lib. Then the tools and can handle the error in whatever way is appropriate for that tool. So the solution is to plumb all the ErrorOr stuff through everything that touches archives. This include its iterators as one can create an Archive object but the first or any other Child object may fail to be created due to a bad size field in its header. Thanks to Lang Hames on the changes making child_iterator contain an ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add operator overloading for * and -> . We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash” and using report_fatal_error() to move the error checking will cause the program to stop, neither of which are really correct in library code. There are still some uses of these that should be cleaned up in this library code for other than the size field. The test cases use archives with text files so one can see the non-digit character, in this case a ‘%’, in the size field. These changes will require corresponding changes to the lld project. That will be committed immediately after this change. But this revision will cause lld failures with this alone which is expected. llvm-svn: 252192
2015-11-06 03:24:56 +08:00
return C;
}
Archive::Symbol Archive::Symbol::getNext() const {
Symbol t(*this);
if (Parent->kind() == K_BSD) {
// t.StringIndex is an offset from the start of the __.SYMDEF or
// "__.SYMDEF SORTED" member into the string table for the ranlib
// struct indexed by t.SymbolIndex . To change t.StringIndex to the
// offset in the string table for t.SymbolIndex+1 we subtract the
// its offset from the start of the string table for t.SymbolIndex
// and add the offset of the string table for t.SymbolIndex+1.
// The __.SYMDEF or "__.SYMDEF SORTED" member starts with a uint32_t
// which is the number of bytes of ranlib structs that follow. The ranlib
// structs are a pair of uint32_t's the first being a string table offset
// and the second being the offset into the archive of the member that
// define the symbol. After that the next uint32_t is the byte count of
// the string table followed by the string table.
const char *Buf = Parent->getSymbolTable().begin();
uint32_t RanlibCount = 0;
RanlibCount = read32le(Buf) / 8;
// If t.SymbolIndex + 1 will be past the count of symbols (the RanlibCount)
// don't change the t.StringIndex as we don't want to reference a ranlib
// past RanlibCount.
if (t.SymbolIndex + 1 < RanlibCount) {
const char *Ranlibs = Buf + 4;
uint32_t CurRanStrx = 0;
uint32_t NextRanStrx = 0;
CurRanStrx = read32le(Ranlibs + t.SymbolIndex * 8);
NextRanStrx = read32le(Ranlibs + (t.SymbolIndex + 1) * 8);
t.StringIndex -= CurRanStrx;
t.StringIndex += NextRanStrx;
}
} else {
// Go to one past next null.
t.StringIndex = Parent->getSymbolTable().find('\0', t.StringIndex) + 1;
}
++t.SymbolIndex;
return t;
}
Archive::symbol_iterator Archive::symbol_begin() const {
if (!hasSymbolTable())
return symbol_iterator(Symbol(this, 0, 0));
const char *buf = getSymbolTable().begin();
if (kind() == K_GNU) {
uint32_t symbol_count = 0;
symbol_count = read32be(buf);
buf += sizeof(uint32_t) + (symbol_count * (sizeof(uint32_t)));
} else if (kind() == K_GNU64) {
uint64_t symbol_count = read64be(buf);
buf += sizeof(uint64_t) + (symbol_count * (sizeof(uint64_t)));
} else if (kind() == K_BSD) {
// The __.SYMDEF or "__.SYMDEF SORTED" member starts with a uint32_t
// which is the number of bytes of ranlib structs that follow. The ranlib
// structs are a pair of uint32_t's the first being a string table offset
// and the second being the offset into the archive of the member that
// define the symbol. After that the next uint32_t is the byte count of
// the string table followed by the string table.
uint32_t ranlib_count = 0;
ranlib_count = read32le(buf) / 8;
const char *ranlibs = buf + 4;
uint32_t ran_strx = 0;
ran_strx = read32le(ranlibs);
buf += sizeof(uint32_t) + (ranlib_count * (2 * (sizeof(uint32_t))));
// Skip the byte count of the string table.
buf += sizeof(uint32_t);
buf += ran_strx;
} else if (kind() == K_DARWIN64) {
// The __.SYMDEF_64 or "__.SYMDEF_64 SORTED" member starts with a uint64_t
// which is the number of bytes of ranlib_64 structs that follow. The
// ranlib_64 structs are a pair of uint64_t's the first being a string
// table offset and the second being the offset into the archive of the
// member that define the symbol. After that the next uint64_t is the byte
// count of the string table followed by the string table.
uint64_t ranlib_count = 0;
ranlib_count = read64le(buf) / 16;
const char *ranlibs = buf + 8;
uint64_t ran_strx = 0;
ran_strx = read64le(ranlibs);
buf += sizeof(uint64_t) + (ranlib_count * (2 * (sizeof(uint64_t))));
// Skip the byte count of the string table.
buf += sizeof(uint64_t);
buf += ran_strx;
} else {
uint32_t member_count = 0;
uint32_t symbol_count = 0;
member_count = read32le(buf);
buf += 4 + (member_count * 4); // Skip offsets.
symbol_count = read32le(buf);
buf += 4 + (symbol_count * 2); // Skip indices.
}
uint32_t string_start_offset = buf - getSymbolTable().begin();
return symbol_iterator(Symbol(this, 0, string_start_offset));
}
Archive::symbol_iterator Archive::symbol_end() const {
return symbol_iterator(Symbol(this, getNumberOfSymbols(), 0));
}
uint32_t Archive::getNumberOfSymbols() const {
if (!hasSymbolTable())
return 0;
const char *buf = getSymbolTable().begin();
if (kind() == K_GNU)
return read32be(buf);
if (kind() == K_GNU64)
return read64be(buf);
if (kind() == K_BSD)
return read32le(buf) / 8;
if (kind() == K_DARWIN64)
return read64le(buf) / 16;
uint32_t member_count = 0;
member_count = read32le(buf);
buf += 4 + (member_count * 4); // Skip offsets.
return read32le(buf);
}
Expected<Optional<Archive::Child>> Archive::findSym(StringRef name) const {
Archive::symbol_iterator bs = symbol_begin();
Archive::symbol_iterator es = symbol_end();
for (; bs != es; ++bs) {
StringRef SymName = bs->getName();
if (SymName == name) {
if (auto MemberOrErr = bs->getMember())
return Child(*MemberOrErr);
else
return MemberOrErr.takeError();
}
}
return Optional<Child>();
}
// Returns true if archive file contains no member file.
bool Archive::isEmpty() const { return Data.getBufferSize() == 8; }
bool Archive::hasSymbolTable() const { return !SymbolTable.empty(); }