llvm-project/lldb/source/Commands/CommandObjectMemory.cpp

897 lines
32 KiB
C++
Raw Normal View History

//===-- CommandObjectMemory.cpp ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "CommandObjectMemory.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Interpreter/Args.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/Options.h"
#include "lldb/Target/Process.h"
using namespace lldb;
using namespace lldb_private;
//----------------------------------------------------------------------
// Read memory from the inferior process
//----------------------------------------------------------------------
class CommandObjectMemoryRead : public CommandObject
{
public:
class CommandOptions : public Options
{
public:
CommandOptions () :
Options()
{
ResetOptionValues();
}
virtual
~CommandOptions ()
{
}
virtual Error
SetOptionValue (int option_idx, const char *option_arg)
{
Error error;
char short_option = (char) m_getopt_table[option_idx].val;
switch (short_option)
{
case 'f':
error = Args::StringToFormat (option_arg, m_format);
switch (m_format)
{
default:
break;
case eFormatBoolean:
if (m_byte_size == 0)
m_byte_size = 1;
if (m_num_per_line == 0)
m_num_per_line = 1;
break;
case eFormatCString:
if (m_num_per_line == 0)
m_num_per_line = 1;
break;
case eFormatPointer:
break;
case eFormatBinary:
case eFormatFloat:
case eFormatOctal:
case eFormatDecimal:
case eFormatEnum:
case eFormatUnicode16:
case eFormatUnicode32:
case eFormatUnsigned:
if (m_byte_size == 0)
m_byte_size = 4;
if (m_num_per_line == 0)
m_num_per_line = 1;
break;
case eFormatBytes:
case eFormatBytesWithASCII:
case eFormatChar:
case eFormatCharPrintable:
if (m_byte_size == 0)
m_byte_size = 1;
break;
case eFormatComplex:
if (m_byte_size == 0)
m_byte_size = 8;
break;
case eFormatHex:
if (m_byte_size == 0)
m_byte_size = 4;
break;
case eFormatVectorOfChar:
case eFormatVectorOfSInt8:
case eFormatVectorOfUInt8:
case eFormatVectorOfSInt16:
case eFormatVectorOfUInt16:
case eFormatVectorOfSInt32:
case eFormatVectorOfUInt32:
case eFormatVectorOfSInt64:
case eFormatVectorOfUInt64:
case eFormatVectorOfFloat32:
case eFormatVectorOfFloat64:
case eFormatVectorOfUInt128:
break;
}
break;
case 'l':
m_num_per_line = Args::StringToUInt32 (option_arg, 0);
if (m_num_per_line == 0)
error.SetErrorStringWithFormat("Invalid value for --num-per-line option '%s'. Must be positive integer value.\n", option_arg);
break;
case 'c':
m_count = Args::StringToUInt32 (option_arg, 0);
if (m_count == 0)
error.SetErrorStringWithFormat("Invalid value for --count option '%s'. Must be positive integer value.\n", option_arg);
break;
case 's':
m_byte_size = Args::StringToUInt32 (option_arg, 0);
if (m_byte_size == 0)
error.SetErrorStringWithFormat("Invalid value for --size option '%s'. Must be positive integer value.\n", option_arg);
break;
case 'o':
m_outfile_filespec.SetFile (option_arg, true);
break;
case 'b':
m_output_as_binary = true;
break;
case 'a':
m_append_to_outfile = true;
break;
default:
error.SetErrorStringWithFormat("Unrecognized short option '%c'.\n", short_option);
break;
}
return error;
}
void
ResetOptionValues ()
{
Options::ResetOptionValues();
m_format = eFormatBytesWithASCII;
m_byte_size = 0;
m_count = 0;
m_num_per_line = 0;
m_outfile_filespec.Clear();
m_append_to_outfile = false;
m_output_as_binary = false;
}
const lldb::OptionDefinition*
GetDefinitions ()
{
return g_option_table;
}
// Options table: Required for subclasses of Options.
static lldb::OptionDefinition g_option_table[];
// Instance variables to hold the values for command options.
lldb::Format m_format;
uint32_t m_byte_size;
uint32_t m_count;
uint32_t m_num_per_line;
FileSpec m_outfile_filespec;
bool m_append_to_outfile;
bool m_output_as_binary;
};
CommandObjectMemoryRead (CommandInterpreter &interpreter) :
CommandObject (interpreter,
"memory read",
"Read from the memory of the process being debugged.",
NULL,
eFlagProcessMustBeLaunched)
{
CommandArgumentEntry arg1;
CommandArgumentEntry arg2;
CommandArgumentData start_addr_arg;
CommandArgumentData end_addr_arg;
// Define the first (and only) variant of this arg.
start_addr_arg.arg_type = eArgTypeStartAddress;
start_addr_arg.arg_repetition = eArgRepeatPlain;
// There is only one variant this argument could be; put it into the argument entry.
arg1.push_back (start_addr_arg);
// Define the first (and only) variant of this arg.
end_addr_arg.arg_type = eArgTypeEndAddress;
end_addr_arg.arg_repetition = eArgRepeatOptional;
// There is only one variant this argument could be; put it into the argument entry.
arg2.push_back (end_addr_arg);
// Push the data for the first argument into the m_arguments vector.
m_arguments.push_back (arg1);
m_arguments.push_back (arg2);
}
virtual
~CommandObjectMemoryRead ()
{
}
Options *
GetOptions ()
{
return &m_options;
}
virtual bool
Execute (Args& command,
CommandReturnObject &result)
{
Process *process = m_interpreter.GetDebugger().GetExecutionContext().process;
if (process == NULL)
{
result.AppendError("need a process to read memory");
result.SetStatus(eReturnStatusFailed);
return false;
}
const size_t argc = command.GetArgumentCount();
if (argc == 0 || argc > 2)
{
result.AppendErrorWithFormat ("%s takes 1 or two args.\n", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
size_t item_byte_size = m_options.m_byte_size;
if (item_byte_size == 0)
{
if (m_options.m_format == eFormatPointer)
item_byte_size = process->GetTarget().GetArchitecture().GetAddressByteSize();
else
item_byte_size = 1;
}
size_t item_count = m_options.m_count;
size_t num_per_line = m_options.m_num_per_line;
if (num_per_line == 0)
{
num_per_line = (16/item_byte_size);
if (num_per_line == 0)
num_per_line = 1;
}
size_t total_byte_size = m_options.m_count * item_byte_size;
if (total_byte_size == 0)
total_byte_size = 32;
lldb::addr_t addr = Args::StringToUInt64(command.GetArgumentAtIndex(0), LLDB_INVALID_ADDRESS, 0);
if (addr == LLDB_INVALID_ADDRESS)
{
result.AppendErrorWithFormat("invalid start address string '%s'.\n", command.GetArgumentAtIndex(0));
result.SetStatus(eReturnStatusFailed);
return false;
}
if (argc == 2)
{
lldb::addr_t end_addr = Args::StringToUInt64(command.GetArgumentAtIndex(1), LLDB_INVALID_ADDRESS, 0);
if (end_addr == LLDB_INVALID_ADDRESS)
{
result.AppendErrorWithFormat("Invalid end address string '%s'.\n", command.GetArgumentAtIndex(1));
result.SetStatus(eReturnStatusFailed);
return false;
}
else if (end_addr <= addr)
{
result.AppendErrorWithFormat("End address (0x%llx) must be greater that the start address (0x%llx).\n", end_addr, addr);
result.SetStatus(eReturnStatusFailed);
return false;
}
else if (item_count != 0)
{
result.AppendErrorWithFormat("Specify either the end address (0x%llx) or the count (--count %u), not both.\n", end_addr, item_count);
result.SetStatus(eReturnStatusFailed);
return false;
}
total_byte_size = end_addr - addr;
item_count = total_byte_size / item_byte_size;
}
else
{
if (item_count == 0)
item_count = 32;
}
DataBufferSP data_sp(new DataBufferHeap (total_byte_size, '\0'));
Error error;
size_t bytes_read = process->ReadMemory(addr, data_sp->GetBytes (), data_sp->GetByteSize(), error);
if (bytes_read == 0)
{
result.AppendWarningWithFormat("Read from 0x%llx failed.\n", addr);
result.AppendError(error.AsCString());
result.SetStatus(eReturnStatusFailed);
return false;
}
if (bytes_read < total_byte_size)
result.AppendWarningWithFormat("Not all bytes (%u/%u) were able to be read from 0x%llx.\n", bytes_read, total_byte_size, addr);
result.SetStatus(eReturnStatusSuccessFinishResult);
DataExtractor data (data_sp,
process->GetTarget().GetArchitecture().GetByteOrder(),
process->GetTarget().GetArchitecture().GetAddressByteSize());
StreamFile outfile_stream;
Stream *output_stream = NULL;
if (m_options.m_outfile_filespec)
{
char path[PATH_MAX];
m_options.m_outfile_filespec.GetPath (path, sizeof(path));
char mode[16] = { 'w', '\0' };
if (m_options.m_append_to_outfile)
mode[0] = 'a';
if (outfile_stream.GetFile ().Open (path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success())
{
if (m_options.m_output_as_binary)
{
int bytes_written = outfile_stream.Write (data_sp->GetBytes(), bytes_read);
if (bytes_written > 0)
{
result.GetOutputStream().Printf ("%i bytes %s to '%s'\n",
bytes_written,
m_options.m_append_to_outfile ? "appended" : "written",
path);
return true;
}
else
{
result.AppendErrorWithFormat("Failed to write %zu bytes to '%s'.\n", bytes_read, path);
result.SetStatus(eReturnStatusFailed);
return false;
}
}
else
{
// We are going to write ASCII to the file just point the
// output_stream to our outfile_stream...
output_stream = &outfile_stream;
}
}
else
{
result.AppendErrorWithFormat("Failed to open file '%s' with a mode of '%s'.\n", path, mode);
result.SetStatus(eReturnStatusFailed);
return false;
}
}
else
{
output_stream = &result.GetOutputStream();
}
assert (output_stream);
data.Dump (output_stream,
0,
m_options.m_format,
item_byte_size,
item_count,
num_per_line,
addr,
0,
0);
output_stream->EOL();
return true;
}
protected:
CommandOptions m_options;
};
#define SET1 LLDB_OPT_SET_1
#define SET2 LLDB_OPT_SET_2
lldb::OptionDefinition
CommandObjectMemoryRead::CommandOptions::g_option_table[] =
{
{ SET1 , false, "format", 'f', required_argument, NULL, 0, eArgTypeFormat, "The format that will be used to display the memory. Defaults to bytes with ASCII (--format=Y)."},
{ SET1 , false, "size", 's', required_argument, NULL, 0, eArgTypeByteSize, "The size in bytes to use when displaying with the selected format."},
{ SET1 , false, "num-per-line", 'l', required_argument, NULL, 0, eArgTypeNumberPerLine,"The number of items per line to display."},
{ SET1 , false, "count", 'c', required_argument, NULL, 0, eArgTypeCount, "The number of total items to display."},
{ SET1 | SET2, false, "outfile", 'o', required_argument, NULL, 0, eArgTypeFilename, "Dump memory read results into a file."},
{ SET1 | SET2, false, "append", 'a', no_argument, NULL, 0, eArgTypeNone, "Append memory read results to 'outfile'."},
{ SET2, false, "binary", 'b', no_argument, NULL, 0, eArgTypeNone, "If true, memory will be saved as binary. If false, the memory is saved save as an ASCII dump that uses the format, size, count and number per line settings."},
{ 0, false, NULL, 0, 0, NULL, 0, eArgTypeNone, NULL }
};
#undef SET1
#undef SET2
//----------------------------------------------------------------------
// Write memory to the inferior process
//----------------------------------------------------------------------
class CommandObjectMemoryWrite : public CommandObject
{
public:
class CommandOptions : public Options
{
public:
CommandOptions () :
Options()
{
ResetOptionValues();
}
virtual
~CommandOptions ()
{
}
virtual Error
SetOptionValue (int option_idx, const char *option_arg)
{
Error error;
char short_option = (char) m_getopt_table[option_idx].val;
switch (short_option)
{
case 'f':
error = Args::StringToFormat (option_arg, m_format);
break;
case 's':
m_byte_size = Args::StringToUInt32 (option_arg, 0);
if (m_byte_size == 0)
error.SetErrorStringWithFormat("Invalid value for --size option '%s'. Must be positive integer value.\n", option_arg);
break;
case 'i':
m_infile.SetFile (option_arg, true);
if (!m_infile.Exists())
{
m_infile.Clear();
error.SetErrorStringWithFormat("Input file does not exist: '%s'\n", option_arg);
}
break;
case 'o':
{
bool success;
m_infile_offset = Args::StringToUInt64(option_arg, 0, 0, &success);
if (!success)
{
error.SetErrorStringWithFormat("Invalid offset string '%s'\n", option_arg);
}
}
break;
default:
error.SetErrorStringWithFormat("Unrecognized short option '%c'\n", short_option);
break;
}
return error;
}
void
ResetOptionValues ()
{
Options::ResetOptionValues();
m_format = eFormatBytes;
m_byte_size = 1;
m_infile.Clear();
m_infile_offset = 0;
}
const lldb::OptionDefinition*
GetDefinitions ()
{
return g_option_table;
}
// Options table: Required for subclasses of Options.
static lldb::OptionDefinition g_option_table[];
// Instance variables to hold the values for command options.
lldb::Format m_format;
uint32_t m_byte_size;
FileSpec m_infile;
off_t m_infile_offset;
};
CommandObjectMemoryWrite (CommandInterpreter &interpreter) :
CommandObject (interpreter,
"memory write",
"Write to the memory of the process being debugged.",
//"memory write [<cmd-options>] <addr> [value1 value2 ...]",
NULL,
eFlagProcessMustBeLaunched)
{
CommandArgumentEntry arg1;
CommandArgumentEntry arg2;
CommandArgumentData addr_arg;
CommandArgumentData value_arg;
// Define the first (and only) variant of this arg.
addr_arg.arg_type = eArgTypeAddress;
addr_arg.arg_repetition = eArgRepeatPlain;
// There is only one variant this argument could be; put it into the argument entry.
arg1.push_back (addr_arg);
// Define the first (and only) variant of this arg.
value_arg.arg_type = eArgTypeValue;
value_arg.arg_repetition = eArgRepeatPlus;
// There is only one variant this argument could be; put it into the argument entry.
arg2.push_back (value_arg);
// Push the data for the first argument into the m_arguments vector.
m_arguments.push_back (arg1);
m_arguments.push_back (arg2);
}
virtual
~CommandObjectMemoryWrite ()
{
}
Options *
GetOptions ()
{
return &m_options;
}
bool
UIntValueIsValidForSize (uint64_t uval64, size_t total_byte_size)
{
if (total_byte_size > 8)
return false;
if (total_byte_size == 8)
return true;
const uint64_t max = ((uint64_t)1 << (uint64_t)(total_byte_size * 8)) - 1;
return uval64 <= max;
}
bool
SIntValueIsValidForSize (int64_t sval64, size_t total_byte_size)
{
if (total_byte_size > 8)
return false;
if (total_byte_size == 8)
return true;
const int64_t max = ((int64_t)1 << (uint64_t)(total_byte_size * 8 - 1)) - 1;
const int64_t min = ~(max);
return min <= sval64 && sval64 <= max;
}
virtual bool
Execute (Args& command,
CommandReturnObject &result)
{
Process *process = m_interpreter.GetDebugger().GetExecutionContext().process;
if (process == NULL)
{
result.AppendError("need a process to read memory");
result.SetStatus(eReturnStatusFailed);
return false;
}
const size_t argc = command.GetArgumentCount();
if (m_options.m_infile)
{
if (argc < 1)
{
result.AppendErrorWithFormat ("%s takes a destination address when writing file contents.\n", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
}
else if (argc < 2)
{
result.AppendErrorWithFormat ("%s takes a destination address and at least one value.\n", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
StreamString buffer (Stream::eBinary,
process->GetTarget().GetArchitecture().GetAddressByteSize(),
process->GetTarget().GetArchitecture().GetByteOrder());
size_t item_byte_size = m_options.m_byte_size;
lldb::addr_t addr = Args::StringToUInt64(command.GetArgumentAtIndex(0), LLDB_INVALID_ADDRESS, 0);
if (addr == LLDB_INVALID_ADDRESS)
{
result.AppendErrorWithFormat("Invalid address string '%s'.\n", command.GetArgumentAtIndex(0));
result.SetStatus(eReturnStatusFailed);
return false;
}
if (m_options.m_infile)
{
size_t length = SIZE_MAX;
if (m_options.m_byte_size > 0)
length = m_options.m_byte_size;
lldb::DataBufferSP data_sp (m_options.m_infile.ReadFileContents (m_options.m_infile_offset, length));
if (data_sp)
{
length = data_sp->GetByteSize();
if (length > 0)
{
Error error;
size_t bytes_written = process->WriteMemory (addr, data_sp->GetBytes(), length, error);
if (bytes_written == length)
{
// All bytes written
result.GetOutputStream().Printf("%zu bytes were written to 0x%llx\n", bytes_written, addr);
result.SetStatus(eReturnStatusSuccessFinishResult);
}
else if (bytes_written > 0)
{
// Some byte written
result.GetOutputStream().Printf("%zu bytes of %zu requested were written to 0x%llx\n", bytes_written, length, addr);
result.SetStatus(eReturnStatusSuccessFinishResult);
}
else
{
result.AppendErrorWithFormat ("Memory write to 0x%llx failed: %s.\n", addr, error.AsCString());
result.SetStatus(eReturnStatusFailed);
}
}
}
else
{
result.AppendErrorWithFormat ("Unable to read contents of file.\n");
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
}
else if (m_options.m_byte_size == 0)
{
if (m_options.m_format == eFormatPointer)
item_byte_size = buffer.GetAddressByteSize();
else
item_byte_size = 1;
}
command.Shift(); // shift off the address argument
uint64_t uval64;
int64_t sval64;
bool success = false;
const uint32_t num_value_args = command.GetArgumentCount();
uint32_t i;
for (i=0; i<num_value_args; ++i)
{
const char *value_str = command.GetArgumentAtIndex(i);
switch (m_options.m_format)
{
case eFormatFloat: // TODO: add support for floats soon
case eFormatCharPrintable:
case eFormatBytesWithASCII:
case eFormatComplex:
case eFormatEnum:
case eFormatUnicode16:
case eFormatUnicode32:
case eFormatVectorOfChar:
case eFormatVectorOfSInt8:
case eFormatVectorOfUInt8:
case eFormatVectorOfSInt16:
case eFormatVectorOfUInt16:
case eFormatVectorOfSInt32:
case eFormatVectorOfUInt32:
case eFormatVectorOfSInt64:
case eFormatVectorOfUInt64:
case eFormatVectorOfFloat32:
case eFormatVectorOfFloat64:
case eFormatVectorOfUInt128:
case eFormatOSType:
case eFormatComplexInteger:
result.AppendError("unsupported format for writing memory");
result.SetStatus(eReturnStatusFailed);
return false;
case eFormatDefault:
case eFormatBytes:
case eFormatHex:
case eFormatPointer:
// Decode hex bytes
uval64 = Args::StringToUInt64(value_str, UINT64_MAX, 16, &success);
if (!success)
{
result.AppendErrorWithFormat ("'%s' is not a valid hex string value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
}
else if (!UIntValueIsValidForSize (uval64, item_byte_size))
{
result.AppendErrorWithFormat ("Value 0x%llx is too large to fit in a %u byte unsigned integer value.\n", uval64, item_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64 (uval64, item_byte_size);
break;
case eFormatBoolean:
uval64 = Args::StringToBoolean(value_str, false, &success);
if (!success)
{
result.AppendErrorWithFormat ("'%s' is not a valid boolean string value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64 (uval64, item_byte_size);
break;
case eFormatBinary:
uval64 = Args::StringToUInt64(value_str, UINT64_MAX, 2, &success);
if (!success)
{
result.AppendErrorWithFormat ("'%s' is not a valid binary string value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
}
else if (!UIntValueIsValidForSize (uval64, item_byte_size))
{
result.AppendErrorWithFormat ("Value 0x%llx is too large to fit in a %u byte unsigned integer value.\n", uval64, item_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64 (uval64, item_byte_size);
break;
case eFormatChar:
case eFormatCString:
if (value_str[0])
{
size_t len = strlen (value_str);
// Include the NULL for C strings...
if (m_options.m_format == eFormatCString)
++len;
Error error;
if (process->WriteMemory (addr, value_str, len, error) == len)
{
addr += len;
}
else
{
result.AppendErrorWithFormat ("Memory write to 0x%llx failed: %s.\n", addr, error.AsCString());
result.SetStatus(eReturnStatusFailed);
return false;
}
}
break;
case eFormatDecimal:
sval64 = Args::StringToSInt64(value_str, INT64_MAX, 0, &success);
if (!success)
{
result.AppendErrorWithFormat ("'%s' is not a valid signed decimal value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
}
else if (!SIntValueIsValidForSize (sval64, item_byte_size))
{
result.AppendErrorWithFormat ("Value %lli is too large or small to fit in a %u byte signed integer value.\n", sval64, item_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64 (sval64, item_byte_size);
break;
case eFormatUnsigned:
uval64 = Args::StringToUInt64(value_str, UINT64_MAX, 0, &success);
if (!success)
{
result.AppendErrorWithFormat ("'%s' is not a valid unsigned decimal string value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
}
else if (!UIntValueIsValidForSize (uval64, item_byte_size))
{
result.AppendErrorWithFormat ("Value %llu is too large to fit in a %u byte unsigned integer value.\n", uval64, item_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64 (uval64, item_byte_size);
break;
case eFormatOctal:
uval64 = Args::StringToUInt64(value_str, UINT64_MAX, 8, &success);
if (!success)
{
result.AppendErrorWithFormat ("'%s' is not a valid octal string value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
}
else if (!UIntValueIsValidForSize (uval64, item_byte_size))
{
result.AppendErrorWithFormat ("Value %llo is too large to fit in a %u byte unsigned integer value.\n", uval64, item_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64 (uval64, item_byte_size);
break;
}
}
if (!buffer.GetString().empty())
{
Error error;
if (process->WriteMemory (addr, buffer.GetString().c_str(), buffer.GetString().size(), error) == buffer.GetString().size())
return true;
else
{
result.AppendErrorWithFormat ("Memory write to 0x%llx failed: %s.\n", addr, error.AsCString());
result.SetStatus(eReturnStatusFailed);
return false;
}
}
return true;
}
protected:
CommandOptions m_options;
};
#define SET1 LLDB_OPT_SET_1
#define SET2 LLDB_OPT_SET_2
lldb::OptionDefinition
CommandObjectMemoryWrite::CommandOptions::g_option_table[] =
{
{ SET1 , false, "format", 'f', required_argument, NULL, 0, eArgTypeFormat, "The format value types that will be decoded and written to memory."},
{ SET1 | SET2, false, "size", 's', required_argument, NULL, 0, eArgTypeByteSize, "The size in bytes of the values to write to memory."},
{ SET2, true, "infile", 'i', required_argument, NULL, 0, eArgTypeFilename, "Write memory using the contents of a file."},
{ SET2, false, "offset", 'o', required_argument, NULL, 0, eArgTypeOffset, "Start writng bytes from an offset within the input file."},
{ 0 , false, NULL , 0 , 0 , NULL, 0, eArgTypeNone, NULL }
};
#undef SET1
#undef SET2
//-------------------------------------------------------------------------
// CommandObjectMemory
//-------------------------------------------------------------------------
CommandObjectMemory::CommandObjectMemory (CommandInterpreter &interpreter) :
CommandObjectMultiword (interpreter,
"memory",
"A set of commands for operating on memory.",
"memory <subcommand> [<subcommand-options>]")
{
LoadSubCommand ("read", CommandObjectSP (new CommandObjectMemoryRead (interpreter)));
LoadSubCommand ("write", CommandObjectSP (new CommandObjectMemoryWrite (interpreter)));
}
CommandObjectMemory::~CommandObjectMemory ()
{
}