llvm-project/llvm/test/CodeGen/AArch64/GlobalISel/arm64-irtranslator.ll

409 lines
12 KiB
LLVM
Raw Normal View History

; RUN: llc -O0 -stop-after=irtranslator -global-isel -verify-machineinstrs %s -o - 2>&1 | FileCheck %s
; This file checks that the translation from llvm IR to generic MachineInstr
; is correct.
target datalayout = "e-m:o-i64:64-i128:128-n32:64-S128"
target triple = "aarch64-apple-ios"
; Tests for add.
; CHECK-LABEL: name: addi64
; CHECK: [[ARG1:%[0-9]+]](64) = COPY %x0
; CHECK-NEXT: [[ARG2:%[0-9]+]](64) = COPY %x1
; CHECK-NEXT: [[RES:%[0-9]+]](64) = G_ADD s64 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %x0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %x0
define i64 @addi64(i64 %arg1, i64 %arg2) {
%res = add i64 %arg1, %arg2
ret i64 %res
}
; CHECK-LABEL: name: muli64
; CHECK: [[ARG1:%[0-9]+]](64) = COPY %x0
; CHECK-NEXT: [[ARG2:%[0-9]+]](64) = COPY %x1
; CHECK-NEXT: [[RES:%[0-9]+]](64) = G_MUL s64 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %x0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %x0
define i64 @muli64(i64 %arg1, i64 %arg2) {
%res = mul i64 %arg1, %arg2
ret i64 %res
}
; Tests for alloca
; CHECK-LABEL: name: allocai64
; CHECK: stack:
; CHECK-NEXT: - { id: 0, name: ptr1, offset: 0, size: 8, alignment: 8 }
; CHECK-NEXT: - { id: 1, name: ptr2, offset: 0, size: 8, alignment: 1 }
; CHECK-NEXT: - { id: 2, name: ptr3, offset: 0, size: 128, alignment: 8 }
; CHECK-NEXT: - { id: 3, name: ptr4, offset: 0, size: 1, alignment: 8 }
; CHECK: %{{[0-9]+}}(64) = G_FRAME_INDEX p0 %stack.0.ptr1
; CHECK: %{{[0-9]+}}(64) = G_FRAME_INDEX p0 %stack.1.ptr2
; CHECK: %{{[0-9]+}}(64) = G_FRAME_INDEX p0 %stack.2.ptr3
; CHECK: %{{[0-9]+}}(64) = G_FRAME_INDEX p0 %stack.3.ptr4
define void @allocai64() {
%ptr1 = alloca i64
%ptr2 = alloca i64, align 1
%ptr3 = alloca i64, i32 16
%ptr4 = alloca [0 x i64]
ret void
}
; Tests for br.
; CHECK-LABEL: name: uncondbr
; CHECK: body:
;
; Entry basic block.
; CHECK: {{[0-9a-zA-Z._-]+}}:
;
; Make sure we have one successor and only one.
; CHECK-NEXT: successors: %[[END:[0-9a-zA-Z._-]+]]({{0x[a-f0-9]+ / 0x[a-f0-9]+}} = 100.00%)
;
; Check that we emit the correct branch.
; CHECK: G_BR unsized %[[END]]
;
; Check that end contains the return instruction.
; CHECK: [[END]]:
; CHECK-NEXT: RET_ReallyLR
define void @uncondbr() {
br label %end
end:
ret void
}
; Tests for conditional br.
; CHECK-LABEL: name: condbr
; CHECK: body:
;
; Entry basic block.
; CHECK: {{[0-9a-zA-Z._-]+}}:
;
; Make sure we have two successors
; CHECK-NEXT: successors: %[[TRUE:[0-9a-zA-Z._-]+]]({{0x[a-f0-9]+ / 0x[a-f0-9]+}} = 50.00%),
; CHECK: %[[FALSE:[0-9a-zA-Z._-]+]]({{0x[a-f0-9]+ / 0x[a-f0-9]+}} = 50.00%)
;
; Check that we emit the correct branch.
; CHECK: [[ADDR:%.*]](64) = COPY %x0
; CHECK: [[TST:%.*]](1) = G_LOAD { s1, p0 } [[ADDR]]
; CHECK: G_BRCOND s1 [[TST]], %[[TRUE]]
; CHECK: G_BR unsized %[[FALSE]]
;
; Check that each successor contains the return instruction.
; CHECK: [[TRUE]]:
; CHECK-NEXT: RET_ReallyLR
; CHECK: [[FALSE]]:
; CHECK-NEXT: RET_ReallyLR
define void @condbr(i1* %tstaddr) {
%tst = load i1, i1* %tstaddr
br i1 %tst, label %true, label %false
true:
ret void
false:
ret void
}
; Tests for or.
; CHECK-LABEL: name: ori64
; CHECK: [[ARG1:%[0-9]+]](64) = COPY %x0
; CHECK-NEXT: [[ARG2:%[0-9]+]](64) = COPY %x1
; CHECK-NEXT: [[RES:%[0-9]+]](64) = G_OR s64 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %x0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %x0
define i64 @ori64(i64 %arg1, i64 %arg2) {
%res = or i64 %arg1, %arg2
ret i64 %res
}
; CHECK-LABEL: name: ori32
; CHECK: [[ARG1:%[0-9]+]](32) = COPY %w0
; CHECK-NEXT: [[ARG2:%[0-9]+]](32) = COPY %w1
; CHECK-NEXT: [[RES:%[0-9]+]](32) = G_OR s32 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %w0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %w0
define i32 @ori32(i32 %arg1, i32 %arg2) {
%res = or i32 %arg1, %arg2
ret i32 %res
}
; Tests for xor.
; CHECK-LABEL: name: xori64
; CHECK: [[ARG1:%[0-9]+]](64) = COPY %x0
; CHECK-NEXT: [[ARG2:%[0-9]+]](64) = COPY %x1
; CHECK-NEXT: [[RES:%[0-9]+]](64) = G_XOR s64 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %x0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %x0
define i64 @xori64(i64 %arg1, i64 %arg2) {
%res = xor i64 %arg1, %arg2
ret i64 %res
}
; CHECK-LABEL: name: xori32
; CHECK: [[ARG1:%[0-9]+]](32) = COPY %w0
; CHECK-NEXT: [[ARG2:%[0-9]+]](32) = COPY %w1
; CHECK-NEXT: [[RES:%[0-9]+]](32) = G_XOR s32 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %w0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %w0
define i32 @xori32(i32 %arg1, i32 %arg2) {
%res = xor i32 %arg1, %arg2
ret i32 %res
}
; Tests for and.
; CHECK-LABEL: name: andi64
; CHECK: [[ARG1:%[0-9]+]](64) = COPY %x0
; CHECK-NEXT: [[ARG2:%[0-9]+]](64) = COPY %x1
; CHECK-NEXT: [[RES:%[0-9]+]](64) = G_AND s64 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %x0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %x0
define i64 @andi64(i64 %arg1, i64 %arg2) {
%res = and i64 %arg1, %arg2
ret i64 %res
}
; CHECK-LABEL: name: andi32
; CHECK: [[ARG1:%[0-9]+]](32) = COPY %w0
; CHECK-NEXT: [[ARG2:%[0-9]+]](32) = COPY %w1
; CHECK-NEXT: [[RES:%[0-9]+]](32) = G_AND s32 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %w0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %w0
define i32 @andi32(i32 %arg1, i32 %arg2) {
%res = and i32 %arg1, %arg2
ret i32 %res
}
; Tests for sub.
; CHECK-LABEL: name: subi64
; CHECK: [[ARG1:%[0-9]+]](64) = COPY %x0
; CHECK-NEXT: [[ARG2:%[0-9]+]](64) = COPY %x1
; CHECK-NEXT: [[RES:%[0-9]+]](64) = G_SUB s64 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %x0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %x0
define i64 @subi64(i64 %arg1, i64 %arg2) {
%res = sub i64 %arg1, %arg2
ret i64 %res
}
; CHECK-LABEL: name: subi32
; CHECK: [[ARG1:%[0-9]+]](32) = COPY %w0
; CHECK-NEXT: [[ARG2:%[0-9]+]](32) = COPY %w1
; CHECK-NEXT: [[RES:%[0-9]+]](32) = G_SUB s32 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %w0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %w0
define i32 @subi32(i32 %arg1, i32 %arg2) {
%res = sub i32 %arg1, %arg2
ret i32 %res
}
; CHECK-LABEL: name: ptrtoint
; CHECK: [[ARG1:%[0-9]+]](64) = COPY %x0
; CHECK: [[RES:%[0-9]+]](64) = G_PTRTOINT { s64, p0 } [[ARG1]]
; CHECK: %x0 = COPY [[RES]]
; CHECK: RET_ReallyLR implicit %x0
define i64 @ptrtoint(i64* %a) {
%val = ptrtoint i64* %a to i64
ret i64 %val
}
; CHECK-LABEL: name: inttoptr
; CHECK: [[ARG1:%[0-9]+]](64) = COPY %x0
; CHECK: [[RES:%[0-9]+]](64) = G_INTTOPTR { p0, s64 } [[ARG1]]
; CHECK: %x0 = COPY [[RES]]
; CHECK: RET_ReallyLR implicit %x0
define i64* @inttoptr(i64 %a) {
%val = inttoptr i64 %a to i64*
ret i64* %val
}
; CHECK-LABEL: name: trivial_bitcast
; CHECK: [[ARG1:%[0-9]+]](64) = COPY %x0
; CHECK: %x0 = COPY [[ARG1]]
; CHECK: RET_ReallyLR implicit %x0
define i64* @trivial_bitcast(i8* %a) {
%val = bitcast i8* %a to i64*
ret i64* %val
}
; CHECK-LABEL: name: trivial_bitcast_with_copy
; CHECK: [[A:%[0-9]+]](64) = COPY %x0
; CHECK: G_BR unsized %[[CAST:bb\.[0-9]+]]
; CHECK: [[CAST]]:
; CHECK: {{%[0-9]+}}(64) = COPY [[A]]
; CHECK: G_BR unsized %[[END:bb\.[0-9]+]]
; CHECK: [[END]]:
define i64* @trivial_bitcast_with_copy(i8* %a) {
br label %cast
end:
ret i64* %val
cast:
%val = bitcast i8* %a to i64*
br label %end
}
; CHECK-LABEL: name: bitcast
; CHECK: [[ARG1:%[0-9]+]](64) = COPY %x0
; CHECK: [[RES1:%[0-9]+]](64) = G_BITCAST { <2 x s32>, s64 } [[ARG1]]
; CHECK: [[RES2:%[0-9]+]](64) = G_BITCAST { s64, <2 x s32> } [[RES1]]
; CHECK: %x0 = COPY [[RES2]]
; CHECK: RET_ReallyLR implicit %x0
define i64 @bitcast(i64 %a) {
%res1 = bitcast i64 %a to <2 x i32>
%res2 = bitcast <2 x i32> %res1 to i64
ret i64 %res2
}
; CHECK-LABEL: name: trunc
; CHECK: [[ARG1:%[0-9]+]](64) = COPY %x0
; CHECK: [[VEC:%[0-9]+]](128) = G_LOAD { <4 x s32>, p0 }
; CHECK: [[RES1:%[0-9]+]](8) = G_TRUNC { s8, s64 } [[ARG1]]
; CHECK: [[RES2:%[0-9]+]](64) = G_TRUNC { <4 x s16>, <4 x s32> } [[VEC]]
define void @trunc(i64 %a) {
%vecptr = alloca <4 x i32>
%vec = load <4 x i32>, <4 x i32>* %vecptr
%res1 = trunc i64 %a to i8
%res2 = trunc <4 x i32> %vec to <4 x i16>
ret void
}
; CHECK-LABEL: name: load
; CHECK: [[ADDR:%[0-9]+]](64) = COPY %x0
; CHECK: [[ADDR42:%[0-9]+]](64) = COPY %x1
; CHECK: [[VAL1:%[0-9]+]](64) = G_LOAD { s64, p0 } [[ADDR]] :: (load 8 from %ir.addr, align 16)
; CHECK: [[VAL2:%[0-9]+]](64) = G_LOAD { s64, p42 } [[ADDR42]] :: (load 8 from %ir.addr42)
; CHECK: [[SUM:%.*]](64) = G_ADD s64 [[VAL1]], [[VAL2]]
; CHECK: %x0 = COPY [[SUM]]
; CHECK: RET_ReallyLR implicit %x0
define i64 @load(i64* %addr, i64 addrspace(42)* %addr42) {
%val1 = load i64, i64* %addr, align 16
%val2 = load i64, i64 addrspace(42)* %addr42
%sum = add i64 %val1, %val2
ret i64 %sum
}
; CHECK-LABEL: name: store
; CHECK: [[ADDR:%[0-9]+]](64) = COPY %x0
; CHECK: [[ADDR42:%[0-9]+]](64) = COPY %x1
; CHECK: [[VAL1:%[0-9]+]](64) = COPY %x2
; CHECK: [[VAL2:%[0-9]+]](64) = COPY %x3
; CHECK: G_STORE { s64, p0 } [[VAL1]], [[ADDR]] :: (store 8 into %ir.addr, align 16)
; CHECK: G_STORE { s64, p42 } [[VAL2]], [[ADDR42]] :: (store 8 into %ir.addr42)
; CHECK: RET_ReallyLR
define void @store(i64* %addr, i64 addrspace(42)* %addr42, i64 %val1, i64 %val2) {
store i64 %val1, i64* %addr, align 16
store i64 %val2, i64 addrspace(42)* %addr42
%sum = add i64 %val1, %val2
ret void
}
; CHECK-LABEL: name: intrinsics
; CHECK: [[CUR:%[0-9]+]](32) = COPY %w0
; CHECK: [[BITS:%[0-9]+]](32) = COPY %w1
; CHECK: [[PTR:%[0-9]+]](64) = G_INTRINSIC { p0, s32 } intrinsic(@llvm.returnaddress), 0
; CHECK: [[PTR_VEC:%[0-9]+]](64) = G_FRAME_INDEX p0 %stack.0.ptr.vec
; CHECK: [[VEC:%[0-9]+]](64) = G_LOAD { <8 x s8>, p0 } [[PTR_VEC]]
; CHECK: G_INTRINSIC_W_SIDE_EFFECTS { unsized, <8 x s8>, <8 x s8>, p0 } intrinsic(@llvm.aarch64.neon.st2), [[VEC]], [[VEC]], [[PTR]]
; CHECK: RET_ReallyLR
declare i8* @llvm.returnaddress(i32)
declare void @llvm.aarch64.neon.st2.v8i8.p0i8(<8 x i8>, <8 x i8>, i8*)
declare { <8 x i8>, <8 x i8> } @llvm.aarch64.neon.ld2.v8i8.p0v8i8(<8 x i8>*)
define void @intrinsics(i32 %cur, i32 %bits) {
%ptr = call i8* @llvm.returnaddress(i32 0)
%ptr.vec = alloca <8 x i8>
%vec = load <8 x i8>, <8 x i8>* %ptr.vec
call void @llvm.aarch64.neon.st2.v8i8.p0i8(<8 x i8> %vec, <8 x i8> %vec, i8* %ptr)
ret void
}
; CHECK-LABEL: name: test_phi
; CHECK: G_BRCOND s1 {{%.*}}, %[[TRUE:bb\.[0-9]+]]
; CHECK: G_BR unsized %[[FALSE:bb\.[0-9]+]]
; CHECK: [[TRUE]]:
; CHECK: [[RES1:%[0-9]+]](32) = G_LOAD { s32, p0 }
; CHECK: [[FALSE]]:
; CHECK: [[RES2:%[0-9]+]](32) = G_LOAD { s32, p0 }
; CHECK: [[RES:%[0-9]+]](32) = PHI [[RES1]], %[[TRUE]], [[RES2]], %[[FALSE]]
; CHECK: %w0 = COPY [[RES]]
define i32 @test_phi(i32* %addr1, i32* %addr2, i1 %tst) {
br i1 %tst, label %true, label %false
true:
%res1 = load i32, i32* %addr1
br label %end
false:
%res2 = load i32, i32* %addr2
br label %end
end:
%res = phi i32 [%res1, %true], [%res2, %false]
ret i32 %res
}
; CHECK-LABEL: name: unreachable
; CHECK: G_ADD
; CHECK-NEXT: {{^$}}
; CHECK-NEXT: ...
define void @unreachable(i32 %a) {
%sum = add i32 %a, %a
unreachable
}
; It's important that constants are after argument passing, but before the
; rest of the entry block.
; CHECK-LABEL: name: constant_int
; CHECK: [[IN:%[0-9]+]](32) = COPY %w0
; CHECK: [[ONE:%[0-9]+]](32) = G_CONSTANT s32 1
; CHECK: G_BR unsized
; CHECK: [[SUM1:%[0-9]+]](32) = G_ADD s32 [[IN]], [[ONE]]
; CHECK: [[SUM2:%[0-9]+]](32) = G_ADD s32 [[IN]], [[ONE]]
; CHECK: [[RES:%[0-9]+]](32) = G_ADD s32 [[SUM1]], [[SUM2]]
; CHECK: %w0 = COPY [[RES]]
define i32 @constant_int(i32 %in) {
br label %next
next:
%sum1 = add i32 %in, 1
%sum2 = add i32 %in, 1
%res = add i32 %sum1, %sum2
ret i32 %res
}
; CHECK-LABEL: name: constant_int_start
; CHECK: [[TWO:%[0-9]+]](32) = G_CONSTANT s32 2
; CHECK: [[ANSWER:%[0-9]+]](32) = G_CONSTANT s32 42
; CHECK: [[RES:%[0-9]+]](32) = G_ADD s32 [[TWO]], [[ANSWER]]
define i32 @constant_int_start() {
%res = add i32 2, 42
ret i32 %res
}
; CHECK-LABEL: name: test_undef
; CHECK: [[UNDEF:%[0-9]+]](32) = IMPLICIT_DEF
; CHECK: %w0 = COPY [[UNDEF]]
define i32 @test_undef() {
ret i32 undef
}
; CHECK-LABEL: name: test_constant_inttoptr
; CHECK: [[ONE:%[0-9]+]](64) = G_CONSTANT s64 1
; CHECK: [[PTR:%[0-9]+]](64) = G_INTTOPTR { p0, s64 } [[ONE]]
; CHECK: %x0 = COPY [[PTR]]
define i8* @test_constant_inttoptr() {
ret i8* inttoptr(i64 1 to i8*)
}
; This failed purely because the Constant -> VReg map was kept across
; functions, so reuse the "i64 1" from above.
; CHECK-LABEL: name: test_reused_constant
; CHECK: [[ONE:%[0-9]+]](64) = G_CONSTANT s64 1
; CHECK: %x0 = COPY [[ONE]]
define i64 @test_reused_constant() {
ret i64 1
}