forked from OSchip/llvm-project
37 lines
1.1 KiB
Plaintext
37 lines
1.1 KiB
Plaintext
|
// polynomial for approximating log(1+x)
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
|
||
|
deg = 12; // poly degree
|
||
|
// |log(1+x)| > 0x1p-4 outside the interval
|
||
|
a = -0x1p-4;
|
||
|
b = 0x1.09p-4;
|
||
|
|
||
|
// find log(1+x)/x polynomial with minimal relative error
|
||
|
// (minimal relative error polynomial for log(1+x) is the same * x)
|
||
|
deg = deg-1; // because of /x
|
||
|
|
||
|
// f = log(1+x)/x; using taylor series
|
||
|
f = 0;
|
||
|
for i from 0 to 60 do { f = f + (-x)^i/(i+1); };
|
||
|
|
||
|
// return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)|
|
||
|
approx = proc(poly,d) {
|
||
|
return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10);
|
||
|
};
|
||
|
|
||
|
// first coeff is fixed, iteratively find optimal double prec coeffs
|
||
|
poly = 1;
|
||
|
for i from 1 to deg do {
|
||
|
p = roundcoefficients(approx(poly,i), [|D ...|]);
|
||
|
poly = poly + x^i*coeff(p,0);
|
||
|
};
|
||
|
|
||
|
display = hexadecimal;
|
||
|
print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30));
|
||
|
print("in [",a,b,"]");
|
||
|
print("coeffs:");
|
||
|
for i from 0 to deg do coeff(poly,i);
|