2009-11-24 01:16:22 +08:00
|
|
|
//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This implements routines for translating functions from LLVM IR into
|
|
|
|
// Machine IR.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "function-lowering-info"
|
|
|
|
#include "FunctionLoweringInfo.h"
|
|
|
|
#include "llvm/CallingConv.h"
|
|
|
|
#include "llvm/DerivedTypes.h"
|
|
|
|
#include "llvm/Function.h"
|
|
|
|
#include "llvm/Instructions.h"
|
2009-11-24 02:12:11 +08:00
|
|
|
#include "llvm/IntrinsicInst.h"
|
2009-11-24 01:16:22 +08:00
|
|
|
#include "llvm/LLVMContext.h"
|
|
|
|
#include "llvm/Module.h"
|
|
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
|
|
#include "llvm/Analysis/DebugInfo.h"
|
|
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
|
|
#include "llvm/Target/TargetData.h"
|
|
|
|
#include "llvm/Target/TargetFrameInfo.h"
|
|
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
2010-04-17 07:37:20 +08:00
|
|
|
#include "llvm/Target/TargetIntrinsicInfo.h"
|
2009-11-24 01:16:22 +08:00
|
|
|
#include "llvm/Target/TargetLowering.h"
|
|
|
|
#include "llvm/Target/TargetOptions.h"
|
|
|
|
#include "llvm/Support/Compiler.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
#include "llvm/Support/MathExtras.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#include <algorithm>
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
|
|
|
|
/// of insertvalue or extractvalue indices that identify a member, return
|
|
|
|
/// the linearized index of the start of the member.
|
|
|
|
///
|
|
|
|
unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
|
|
|
|
const unsigned *Indices,
|
|
|
|
const unsigned *IndicesEnd,
|
|
|
|
unsigned CurIndex) {
|
|
|
|
// Base case: We're done.
|
|
|
|
if (Indices && Indices == IndicesEnd)
|
|
|
|
return CurIndex;
|
|
|
|
|
|
|
|
// Given a struct type, recursively traverse the elements.
|
|
|
|
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
|
|
for (StructType::element_iterator EB = STy->element_begin(),
|
|
|
|
EI = EB,
|
|
|
|
EE = STy->element_end();
|
|
|
|
EI != EE; ++EI) {
|
|
|
|
if (Indices && *Indices == unsigned(EI - EB))
|
|
|
|
return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
|
|
|
|
CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
|
|
|
|
}
|
|
|
|
return CurIndex;
|
|
|
|
}
|
|
|
|
// Given an array type, recursively traverse the elements.
|
|
|
|
else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
|
|
|
const Type *EltTy = ATy->getElementType();
|
|
|
|
for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
|
|
|
|
if (Indices && *Indices == i)
|
|
|
|
return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
|
|
|
|
CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
|
|
|
|
}
|
|
|
|
return CurIndex;
|
|
|
|
}
|
|
|
|
// We haven't found the type we're looking for, so keep searching.
|
|
|
|
return CurIndex + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
|
|
|
|
/// EVTs that represent all the individual underlying
|
|
|
|
/// non-aggregate types that comprise it.
|
|
|
|
///
|
|
|
|
/// If Offsets is non-null, it points to a vector to be filled in
|
|
|
|
/// with the in-memory offsets of each of the individual values.
|
|
|
|
///
|
|
|
|
void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
|
|
|
|
SmallVectorImpl<EVT> &ValueVTs,
|
|
|
|
SmallVectorImpl<uint64_t> *Offsets,
|
|
|
|
uint64_t StartingOffset) {
|
|
|
|
// Given a struct type, recursively traverse the elements.
|
|
|
|
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
|
|
const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
|
|
|
|
for (StructType::element_iterator EB = STy->element_begin(),
|
|
|
|
EI = EB,
|
|
|
|
EE = STy->element_end();
|
|
|
|
EI != EE; ++EI)
|
|
|
|
ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
|
|
|
|
StartingOffset + SL->getElementOffset(EI - EB));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// Given an array type, recursively traverse the elements.
|
|
|
|
if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
|
|
|
const Type *EltTy = ATy->getElementType();
|
|
|
|
uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
|
|
|
|
for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
|
|
|
|
ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
|
|
|
|
StartingOffset + i * EltSize);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// Interpret void as zero return values.
|
2010-01-05 21:12:22 +08:00
|
|
|
if (Ty->isVoidTy())
|
2009-11-24 01:16:22 +08:00
|
|
|
return;
|
|
|
|
// Base case: we can get an EVT for this LLVM IR type.
|
|
|
|
ValueVTs.push_back(TLI.getValueType(Ty));
|
|
|
|
if (Offsets)
|
|
|
|
Offsets->push_back(StartingOffset);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
|
|
|
|
/// PHI nodes or outside of the basic block that defines it, or used by a
|
|
|
|
/// switch or atomic instruction, which may expand to multiple basic blocks.
|
2010-04-15 12:33:49 +08:00
|
|
|
static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
|
2010-04-20 22:50:13 +08:00
|
|
|
if (I->use_empty()) return false;
|
2009-11-24 01:16:22 +08:00
|
|
|
if (isa<PHINode>(I)) return true;
|
2010-04-15 12:33:49 +08:00
|
|
|
const BasicBlock *BB = I->getParent();
|
|
|
|
for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end();
|
|
|
|
UI != E; ++UI)
|
2009-11-24 01:16:22 +08:00
|
|
|
if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
|
|
|
|
/// entry block, return true. This includes arguments used by switches, since
|
|
|
|
/// the switch may expand into multiple basic blocks.
|
2010-04-15 12:33:49 +08:00
|
|
|
static bool isOnlyUsedInEntryBlock(const Argument *A, bool EnableFastISel) {
|
2009-11-24 01:16:22 +08:00
|
|
|
// With FastISel active, we may be splitting blocks, so force creation
|
|
|
|
// of virtual registers for all non-dead arguments.
|
|
|
|
// Don't force virtual registers for byval arguments though, because
|
|
|
|
// fast-isel can't handle those in all cases.
|
|
|
|
if (EnableFastISel && !A->hasByValAttr())
|
|
|
|
return A->use_empty();
|
|
|
|
|
2010-04-15 12:33:49 +08:00
|
|
|
const BasicBlock *Entry = A->getParent()->begin();
|
|
|
|
for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
|
|
|
|
UI != E; ++UI)
|
2009-11-24 01:16:22 +08:00
|
|
|
if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
|
|
|
|
return false; // Use not in entry block.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2010-04-17 23:26:15 +08:00
|
|
|
FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering &tli)
|
2009-11-24 01:16:22 +08:00
|
|
|
: TLI(tli) {
|
|
|
|
}
|
|
|
|
|
2010-04-15 12:33:49 +08:00
|
|
|
void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
|
2009-11-24 01:16:22 +08:00
|
|
|
bool EnableFastISel) {
|
|
|
|
Fn = &fn;
|
|
|
|
MF = &mf;
|
|
|
|
RegInfo = &MF->getRegInfo();
|
|
|
|
|
|
|
|
// Create a vreg for each argument register that is not dead and is used
|
|
|
|
// outside of the entry block for the function.
|
2010-04-15 12:33:49 +08:00
|
|
|
for (Function::const_arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
|
2009-11-24 01:16:22 +08:00
|
|
|
AI != E; ++AI)
|
|
|
|
if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
|
|
|
|
InitializeRegForValue(AI);
|
|
|
|
|
|
|
|
// Initialize the mapping of values to registers. This is only set up for
|
|
|
|
// instruction values that are used outside of the block that defines
|
|
|
|
// them.
|
2010-04-15 12:33:49 +08:00
|
|
|
Function::const_iterator BB = Fn->begin(), EB = Fn->end();
|
|
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(I))
|
|
|
|
if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
|
2009-11-24 01:16:22 +08:00
|
|
|
const Type *Ty = AI->getAllocatedType();
|
|
|
|
uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
|
|
|
|
unsigned Align =
|
|
|
|
std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
|
|
|
|
AI->getAlignment());
|
|
|
|
|
|
|
|
TySize *= CUI->getZExtValue(); // Get total allocated size.
|
|
|
|
if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
|
|
|
|
StaticAllocaMap[AI] =
|
|
|
|
MF->getFrameInfo()->CreateStackObject(TySize, Align, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (; BB != EB; ++BB)
|
2010-04-15 12:33:49 +08:00
|
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
2010-04-20 22:50:13 +08:00
|
|
|
if (isUsedOutsideOfDefiningBlock(I))
|
2009-11-24 01:16:22 +08:00
|
|
|
if (!isa<AllocaInst>(I) ||
|
|
|
|
!StaticAllocaMap.count(cast<AllocaInst>(I)))
|
|
|
|
InitializeRegForValue(I);
|
|
|
|
|
|
|
|
// Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
|
|
|
|
// also creates the initial PHI MachineInstrs, though none of the input
|
|
|
|
// operands are populated.
|
2010-04-15 00:30:40 +08:00
|
|
|
for (BB = Fn->begin(); BB != EB; ++BB) {
|
2009-11-24 01:16:22 +08:00
|
|
|
MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
|
|
|
|
MBBMap[BB] = MBB;
|
|
|
|
MF->push_back(MBB);
|
|
|
|
|
|
|
|
// Transfer the address-taken flag. This is necessary because there could
|
|
|
|
// be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
|
|
|
|
// the first one should be marked.
|
|
|
|
if (BB->hasAddressTaken())
|
|
|
|
MBB->setHasAddressTaken();
|
|
|
|
|
|
|
|
// Create Machine PHI nodes for LLVM PHI nodes, lowering them as
|
|
|
|
// appropriate.
|
2010-04-20 22:46:25 +08:00
|
|
|
for (BasicBlock::const_iterator I = BB->begin();
|
|
|
|
const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
|
|
|
|
if (PN->use_empty()) continue;
|
2009-11-24 01:16:22 +08:00
|
|
|
|
2010-04-20 22:48:02 +08:00
|
|
|
DebugLoc DL = PN->getDebugLoc();
|
2009-11-24 01:16:22 +08:00
|
|
|
unsigned PHIReg = ValueMap[PN];
|
|
|
|
assert(PHIReg && "PHI node does not have an assigned virtual register!");
|
|
|
|
|
|
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
|
|
ComputeValueVTs(TLI, PN->getType(), ValueVTs);
|
|
|
|
for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
|
|
|
|
EVT VT = ValueVTs[vti];
|
|
|
|
unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
|
|
|
|
const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
|
|
|
|
for (unsigned i = 0; i != NumRegisters; ++i)
|
2010-02-10 03:54:29 +08:00
|
|
|
BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
|
2009-11-24 01:16:22 +08:00
|
|
|
PHIReg += NumRegisters;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2010-04-15 00:32:56 +08:00
|
|
|
|
|
|
|
// Mark landing pad blocks.
|
|
|
|
for (BB = Fn->begin(); BB != EB; ++BB)
|
2010-04-15 12:33:49 +08:00
|
|
|
if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
|
2010-04-15 00:32:56 +08:00
|
|
|
MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
|
2009-11-24 01:16:22 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// clear - Clear out all the function-specific state. This returns this
|
|
|
|
/// FunctionLoweringInfo to an empty state, ready to be used for a
|
|
|
|
/// different function.
|
|
|
|
void FunctionLoweringInfo::clear() {
|
2010-04-15 01:11:23 +08:00
|
|
|
assert(CatchInfoFound.size() == CatchInfoLost.size() &&
|
|
|
|
"Not all catch info was assigned to a landing pad!");
|
|
|
|
|
2009-11-24 01:16:22 +08:00
|
|
|
MBBMap.clear();
|
|
|
|
ValueMap.clear();
|
|
|
|
StaticAllocaMap.clear();
|
|
|
|
#ifndef NDEBUG
|
|
|
|
CatchInfoLost.clear();
|
|
|
|
CatchInfoFound.clear();
|
|
|
|
#endif
|
|
|
|
LiveOutRegInfo.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned FunctionLoweringInfo::MakeReg(EVT VT) {
|
|
|
|
return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
|
|
|
|
}
|
|
|
|
|
|
|
|
/// CreateRegForValue - Allocate the appropriate number of virtual registers of
|
|
|
|
/// the correctly promoted or expanded types. Assign these registers
|
|
|
|
/// consecutive vreg numbers and return the first assigned number.
|
|
|
|
///
|
|
|
|
/// In the case that the given value has struct or array type, this function
|
|
|
|
/// will assign registers for each member or element.
|
|
|
|
///
|
|
|
|
unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
|
|
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
|
|
ComputeValueVTs(TLI, V->getType(), ValueVTs);
|
|
|
|
|
|
|
|
unsigned FirstReg = 0;
|
|
|
|
for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
|
|
|
|
EVT ValueVT = ValueVTs[Value];
|
|
|
|
EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT);
|
|
|
|
|
|
|
|
unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT);
|
|
|
|
for (unsigned i = 0; i != NumRegs; ++i) {
|
|
|
|
unsigned R = MakeReg(RegisterVT);
|
|
|
|
if (!FirstReg) FirstReg = R;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return FirstReg;
|
|
|
|
}
|
2009-11-24 01:42:46 +08:00
|
|
|
|
|
|
|
/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
|
|
|
|
GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
|
|
|
|
V = V->stripPointerCasts();
|
|
|
|
GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
|
2010-03-27 09:24:30 +08:00
|
|
|
|
|
|
|
if (GV && GV->getName() == ".llvm.eh.catch.all.value") {
|
|
|
|
assert(GV->hasInitializer() &&
|
|
|
|
"The EH catch-all value must have an initializer");
|
|
|
|
Value *Init = GV->getInitializer();
|
|
|
|
GV = dyn_cast<GlobalVariable>(Init);
|
|
|
|
if (!GV) V = cast<ConstantPointerNull>(Init);
|
|
|
|
}
|
|
|
|
|
|
|
|
assert((GV || isa<ConstantPointerNull>(V)) &&
|
|
|
|
"TypeInfo must be a global variable or NULL");
|
2009-11-24 01:42:46 +08:00
|
|
|
return GV;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// AddCatchInfo - Extract the personality and type infos from an eh.selector
|
|
|
|
/// call, and add them to the specified machine basic block.
|
2010-04-15 03:53:31 +08:00
|
|
|
void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI,
|
2009-11-24 01:42:46 +08:00
|
|
|
MachineBasicBlock *MBB) {
|
|
|
|
// Inform the MachineModuleInfo of the personality for this landing pad.
|
2010-04-17 07:37:20 +08:00
|
|
|
const ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
|
2009-11-24 01:42:46 +08:00
|
|
|
assert(CE->getOpcode() == Instruction::BitCast &&
|
|
|
|
isa<Function>(CE->getOperand(0)) &&
|
|
|
|
"Personality should be a function");
|
|
|
|
MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
|
|
|
|
|
|
|
|
// Gather all the type infos for this landing pad and pass them along to
|
|
|
|
// MachineModuleInfo.
|
2010-04-15 09:51:59 +08:00
|
|
|
std::vector<const GlobalVariable *> TyInfo;
|
2010-04-17 07:37:20 +08:00
|
|
|
unsigned N = I.getNumOperands();
|
2009-11-24 01:42:46 +08:00
|
|
|
|
2010-04-17 07:37:20 +08:00
|
|
|
for (unsigned i = N - 1; i > 2; --i) {
|
2010-04-15 03:53:31 +08:00
|
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
|
2009-11-24 01:42:46 +08:00
|
|
|
unsigned FilterLength = CI->getZExtValue();
|
|
|
|
unsigned FirstCatch = i + FilterLength + !FilterLength;
|
|
|
|
assert (FirstCatch <= N && "Invalid filter length");
|
|
|
|
|
|
|
|
if (FirstCatch < N) {
|
|
|
|
TyInfo.reserve(N - FirstCatch);
|
|
|
|
for (unsigned j = FirstCatch; j < N; ++j)
|
|
|
|
TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
|
|
|
|
MMI->addCatchTypeInfo(MBB, TyInfo);
|
|
|
|
TyInfo.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!FilterLength) {
|
|
|
|
// Cleanup.
|
|
|
|
MMI->addCleanup(MBB);
|
|
|
|
} else {
|
|
|
|
// Filter.
|
|
|
|
TyInfo.reserve(FilterLength - 1);
|
|
|
|
for (unsigned j = i + 1; j < FirstCatch; ++j)
|
|
|
|
TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
|
|
|
|
MMI->addFilterTypeInfo(MBB, TyInfo);
|
|
|
|
TyInfo.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
N = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-04-17 07:37:20 +08:00
|
|
|
if (N > 3) {
|
|
|
|
TyInfo.reserve(N - 3);
|
|
|
|
for (unsigned j = 3; j < N; ++j)
|
2009-11-24 01:42:46 +08:00
|
|
|
TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
|
|
|
|
MMI->addCatchTypeInfo(MBB, TyInfo);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-04-15 03:53:31 +08:00
|
|
|
void llvm::CopyCatchInfo(const BasicBlock *SrcBB, const BasicBlock *DestBB,
|
2009-11-24 02:12:11 +08:00
|
|
|
MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
|
2010-04-15 03:53:31 +08:00
|
|
|
for (BasicBlock::const_iterator I = SrcBB->begin(), E = --SrcBB->end();
|
|
|
|
I != E; ++I)
|
|
|
|
if (const EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
|
2009-11-24 02:12:11 +08:00
|
|
|
// Apply the catch info to DestBB.
|
|
|
|
AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
|
|
|
|
#ifndef NDEBUG
|
|
|
|
if (!FLI.MBBMap[SrcBB]->isLandingPad())
|
|
|
|
FLI.CatchInfoFound.insert(EHSel);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
2010-04-15 02:31:02 +08:00
|
|
|
|
|
|
|
/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
|
|
|
|
/// processed uses a memory 'm' constraint.
|
|
|
|
bool
|
|
|
|
llvm::hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
|
|
|
|
const TargetLowering &TLI) {
|
|
|
|
for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
|
|
|
|
InlineAsm::ConstraintInfo &CI = CInfos[i];
|
|
|
|
for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
|
|
|
|
TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
|
|
|
|
if (CType == TargetLowering::C_Memory)
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Indirect operand accesses access memory.
|
|
|
|
if (CI.isIndirect)
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// getFCmpCondCode - Return the ISD condition code corresponding to
|
|
|
|
/// the given LLVM IR floating-point condition code. This includes
|
|
|
|
/// consideration of global floating-point math flags.
|
|
|
|
///
|
|
|
|
ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
|
|
|
|
ISD::CondCode FPC, FOC;
|
|
|
|
switch (Pred) {
|
|
|
|
case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
|
|
|
|
case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
|
|
|
|
case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
|
|
|
|
case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
|
|
|
|
case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
|
|
|
|
case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
|
|
|
|
case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
|
|
|
|
case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break;
|
|
|
|
case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break;
|
|
|
|
case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
|
|
|
|
case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
|
|
|
|
case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
|
|
|
|
case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
|
|
|
|
case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
|
|
|
|
case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
|
|
|
|
case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
|
|
|
|
default:
|
|
|
|
llvm_unreachable("Invalid FCmp predicate opcode!");
|
|
|
|
FOC = FPC = ISD::SETFALSE;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (FiniteOnlyFPMath())
|
|
|
|
return FOC;
|
|
|
|
else
|
|
|
|
return FPC;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// getICmpCondCode - Return the ISD condition code corresponding to
|
|
|
|
/// the given LLVM IR integer condition code.
|
|
|
|
///
|
|
|
|
ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
|
|
|
|
switch (Pred) {
|
|
|
|
case ICmpInst::ICMP_EQ: return ISD::SETEQ;
|
|
|
|
case ICmpInst::ICMP_NE: return ISD::SETNE;
|
|
|
|
case ICmpInst::ICMP_SLE: return ISD::SETLE;
|
|
|
|
case ICmpInst::ICMP_ULE: return ISD::SETULE;
|
|
|
|
case ICmpInst::ICMP_SGE: return ISD::SETGE;
|
|
|
|
case ICmpInst::ICMP_UGE: return ISD::SETUGE;
|
|
|
|
case ICmpInst::ICMP_SLT: return ISD::SETLT;
|
|
|
|
case ICmpInst::ICMP_ULT: return ISD::SETULT;
|
|
|
|
case ICmpInst::ICMP_SGT: return ISD::SETGT;
|
|
|
|
case ICmpInst::ICMP_UGT: return ISD::SETUGT;
|
|
|
|
default:
|
|
|
|
llvm_unreachable("Invalid ICmp predicate opcode!");
|
|
|
|
return ISD::SETNE;
|
|
|
|
}
|
|
|
|
}
|
2010-04-20 02:41:46 +08:00
|
|
|
|
|
|
|
/// Test if the given instruction is in a position to be optimized
|
|
|
|
/// with a tail-call. This roughly means that it's in a block with
|
|
|
|
/// a return and there's nothing that needs to be scheduled
|
|
|
|
/// between it and the return.
|
|
|
|
///
|
|
|
|
/// This function only tests target-independent requirements.
|
|
|
|
bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr,
|
|
|
|
const TargetLowering &TLI) {
|
|
|
|
const Instruction *I = CS.getInstruction();
|
|
|
|
const BasicBlock *ExitBB = I->getParent();
|
|
|
|
const TerminatorInst *Term = ExitBB->getTerminator();
|
|
|
|
const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
|
|
|
|
const Function *F = ExitBB->getParent();
|
|
|
|
|
|
|
|
// The block must end in a return statement or unreachable.
|
|
|
|
//
|
|
|
|
// FIXME: Decline tailcall if it's not guaranteed and if the block ends in
|
|
|
|
// an unreachable, for now. The way tailcall optimization is currently
|
|
|
|
// implemented means it will add an epilogue followed by a jump. That is
|
|
|
|
// not profitable. Also, if the callee is a special function (e.g.
|
|
|
|
// longjmp on x86), it can end up causing miscompilation that has not
|
|
|
|
// been fully understood.
|
|
|
|
if (!Ret &&
|
|
|
|
(!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false;
|
|
|
|
|
|
|
|
// If I will have a chain, make sure no other instruction that will have a
|
|
|
|
// chain interposes between I and the return.
|
|
|
|
if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
|
|
|
|
!I->isSafeToSpeculativelyExecute())
|
|
|
|
for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
|
|
|
|
--BBI) {
|
|
|
|
if (&*BBI == I)
|
|
|
|
break;
|
|
|
|
// Debug info intrinsics do not get in the way of tail call optimization.
|
|
|
|
if (isa<DbgInfoIntrinsic>(BBI))
|
|
|
|
continue;
|
|
|
|
if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
|
|
|
|
!BBI->isSafeToSpeculativelyExecute())
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the block ends with a void return or unreachable, it doesn't matter
|
|
|
|
// what the call's return type is.
|
|
|
|
if (!Ret || Ret->getNumOperands() == 0) return true;
|
|
|
|
|
|
|
|
// If the return value is undef, it doesn't matter what the call's
|
|
|
|
// return type is.
|
|
|
|
if (isa<UndefValue>(Ret->getOperand(0))) return true;
|
|
|
|
|
|
|
|
// Conservatively require the attributes of the call to match those of
|
|
|
|
// the return. Ignore noalias because it doesn't affect the call sequence.
|
|
|
|
unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
|
|
|
|
if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// It's not safe to eliminate the sign / zero extension of the return value.
|
|
|
|
if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Otherwise, make sure the unmodified return value of I is the return value.
|
|
|
|
for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
|
|
|
|
U = dyn_cast<Instruction>(U->getOperand(0))) {
|
|
|
|
if (!U)
|
|
|
|
return false;
|
|
|
|
if (!U->hasOneUse())
|
|
|
|
return false;
|
|
|
|
if (U == I)
|
|
|
|
break;
|
|
|
|
// Check for a truly no-op truncate.
|
|
|
|
if (isa<TruncInst>(U) &&
|
|
|
|
TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
|
|
|
|
continue;
|
|
|
|
// Check for a truly no-op bitcast.
|
|
|
|
if (isa<BitCastInst>(U) &&
|
|
|
|
(U->getOperand(0)->getType() == U->getType() ||
|
|
|
|
(U->getOperand(0)->getType()->isPointerTy() &&
|
|
|
|
U->getType()->isPointerTy())))
|
|
|
|
continue;
|
|
|
|
// Otherwise it's not a true no-op.
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|