llvm-project/llvm/lib/Target/Mips/MicroMipsSizeReduction.cpp

702 lines
24 KiB
C++
Raw Normal View History

//=== MicroMipsSizeReduction.cpp - MicroMips size reduction pass --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///\file
/// This pass is used to reduce the size of instructions where applicable.
///
/// TODO: Implement microMIPS64 support.
//===----------------------------------------------------------------------===//
#include "Mips.h"
#include "MipsInstrInfo.h"
#include "MipsSubtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "micromips-reduce-size"
#define MICROMIPS_SIZE_REDUCE_NAME "MicroMips instruction size reduce pass"
STATISTIC(NumReduced, "Number of instructions reduced (32-bit to 16-bit ones, "
"or two instructions into one");
namespace {
/// Order of operands to transfer
// TODO: Will be extended when additional optimizations are added
enum OperandTransfer {
OT_NA, ///< Not applicable
OT_OperandsAll, ///< Transfer all operands
OT_Operands02, ///< Transfer operands 0 and 2
OT_Operand2, ///< Transfer just operand 2
OT_OperandsXOR, ///< Transfer operands for XOR16
OT_OperandsLwp, ///< Transfer operands for LWP
OT_OperandsSwp, ///< Transfer operands for SWP
};
/// Reduction type
// TODO: Will be extended when additional optimizations are added
enum ReduceType {
RT_TwoInstr, ///< Reduce two instructions into one instruction
RT_OneInstr ///< Reduce one instruction into a smaller instruction
};
// Information about immediate field restrictions
struct ImmField {
ImmField() : ImmFieldOperand(-1), Shift(0), LBound(0), HBound(0) {}
ImmField(uint8_t Shift, int16_t LBound, int16_t HBound,
int8_t ImmFieldOperand)
: ImmFieldOperand(ImmFieldOperand), Shift(Shift), LBound(LBound),
HBound(HBound) {}
int8_t ImmFieldOperand; // Immediate operand, -1 if it does not exist
uint8_t Shift; // Shift value
int16_t LBound; // Low bound of the immediate operand
int16_t HBound; // High bound of the immediate operand
};
/// Information about operands
// TODO: Will be extended when additional optimizations are added
struct OpInfo {
OpInfo(enum OperandTransfer TransferOperands)
: TransferOperands(TransferOperands) {}
OpInfo() : TransferOperands(OT_NA) {}
enum OperandTransfer
TransferOperands; ///< Operands to transfer to the new instruction
};
// Information about opcodes
struct OpCodes {
OpCodes(unsigned WideOpc, unsigned NarrowOpc)
: WideOpc(WideOpc), NarrowOpc(NarrowOpc) {}
unsigned WideOpc; ///< Wide opcode
unsigned NarrowOpc; ///< Narrow opcode
};
typedef struct ReduceEntryFunArgs ReduceEntryFunArgs;
/// ReduceTable - A static table with information on mapping from wide
/// opcodes to narrow
struct ReduceEntry {
enum ReduceType eRType; ///< Reduction type
bool (*ReduceFunction)(
ReduceEntryFunArgs *Arguments); ///< Pointer to reduce function
struct OpCodes Ops; ///< All relevant OpCodes
struct OpInfo OpInf; ///< Characteristics of operands
struct ImmField Imm; ///< Characteristics of immediate field
ReduceEntry(enum ReduceType RType, struct OpCodes Op,
bool (*F)(ReduceEntryFunArgs *Arguments), struct OpInfo OpInf,
struct ImmField Imm)
: eRType(RType), ReduceFunction(F), Ops(Op), OpInf(OpInf), Imm(Imm) {}
unsigned NarrowOpc() const { return Ops.NarrowOpc; }
unsigned WideOpc() const { return Ops.WideOpc; }
int16_t LBound() const { return Imm.LBound; }
int16_t HBound() const { return Imm.HBound; }
uint8_t Shift() const { return Imm.Shift; }
int8_t ImmField() const { return Imm.ImmFieldOperand; }
enum OperandTransfer TransferOperands() const {
return OpInf.TransferOperands;
}
enum ReduceType RType() const { return eRType; }
// operator used by std::equal_range
bool operator<(const unsigned int r) const { return (WideOpc() < r); }
// operator used by std::equal_range
friend bool operator<(const unsigned int r, const struct ReduceEntry &re) {
return (r < re.WideOpc());
}
};
// Function arguments for ReduceFunction
struct ReduceEntryFunArgs {
MachineInstr *MI; // Instruction
const ReduceEntry &Entry; // Entry field
MachineBasicBlock::instr_iterator
&NextMII; // Iterator to next instruction in block
ReduceEntryFunArgs(MachineInstr *argMI, const ReduceEntry &argEntry,
MachineBasicBlock::instr_iterator &argNextMII)
: MI(argMI), Entry(argEntry), NextMII(argNextMII) {}
};
typedef llvm::SmallVector<ReduceEntry, 32> ReduceEntryVector;
class MicroMipsSizeReduce : public MachineFunctionPass {
public:
static char ID;
MicroMipsSizeReduce();
static const MipsInstrInfo *MipsII;
const MipsSubtarget *Subtarget;
bool runOnMachineFunction(MachineFunction &MF) override;
llvm::StringRef getPassName() const override {
return "microMIPS instruction size reduction pass";
}
private:
/// Reduces width of instructions in the specified basic block.
bool ReduceMBB(MachineBasicBlock &MBB);
/// Attempts to reduce MI, returns true on success.
bool ReduceMI(const MachineBasicBlock::instr_iterator &MII,
MachineBasicBlock::instr_iterator &NextMII);
// Attempts to reduce LW/SW instruction into LWSP/SWSP,
// returns true on success.
static bool ReduceXWtoXWSP(ReduceEntryFunArgs *Arguments);
// Attempts to reduce two LW/SW instructions into LWP/SWP instruction,
// returns true on success.
static bool ReduceXWtoXWP(ReduceEntryFunArgs *Arguments);
// Attempts to reduce LBU/LHU instruction into LBU16/LHU16,
// returns true on success.
static bool ReduceLXUtoLXU16(ReduceEntryFunArgs *Arguments);
// Attempts to reduce SB/SH instruction into SB16/SH16,
// returns true on success.
static bool ReduceSXtoSX16(ReduceEntryFunArgs *Arguments);
// Attempts to reduce arithmetic instructions, returns true on success.
static bool ReduceArithmeticInstructions(ReduceEntryFunArgs *Arguments);
// Attempts to reduce ADDIU into ADDIUSP instruction,
// returns true on success.
static bool ReduceADDIUToADDIUSP(ReduceEntryFunArgs *Arguments);
// Attempts to reduce ADDIU into ADDIUR1SP instruction,
// returns true on success.
static bool ReduceADDIUToADDIUR1SP(ReduceEntryFunArgs *Arguments);
// Attempts to reduce XOR into XOR16 instruction,
// returns true on success.
static bool ReduceXORtoXOR16(ReduceEntryFunArgs *Arguments);
// Changes opcode of an instruction, replaces an instruction with a
// new one, or replaces two instructions with a new instruction
// depending on their order i.e. if these are consecutive forward
// or consecutive backward
static bool ReplaceInstruction(MachineInstr *MI, const ReduceEntry &Entry,
MachineInstr *MI2 = nullptr,
bool ConsecutiveForward = true);
// Table with transformation rules for each instruction.
static ReduceEntryVector ReduceTable;
};
char MicroMipsSizeReduce::ID = 0;
const MipsInstrInfo *MicroMipsSizeReduce::MipsII;
// This table must be sorted by WideOpc as a main criterion and
// ReduceType as a sub-criterion (when wide opcodes are the same).
ReduceEntryVector MicroMipsSizeReduce::ReduceTable = {
// ReduceType, OpCodes, ReduceFunction,
// OpInfo(TransferOperands),
// ImmField(Shift, LBound, HBound, ImmFieldPosition)
{RT_OneInstr, OpCodes(Mips::ADDiu, Mips::ADDIUR1SP_MM),
ReduceADDIUToADDIUR1SP, OpInfo(OT_Operands02), ImmField(2, 0, 64, 2)},
{RT_OneInstr, OpCodes(Mips::ADDiu, Mips::ADDIUSP_MM), ReduceADDIUToADDIUSP,
OpInfo(OT_Operand2), ImmField(0, 0, 0, 2)},
{RT_OneInstr, OpCodes(Mips::ADDiu_MM, Mips::ADDIUR1SP_MM),
ReduceADDIUToADDIUR1SP, OpInfo(OT_Operands02), ImmField(2, 0, 64, 2)},
{RT_OneInstr, OpCodes(Mips::ADDiu_MM, Mips::ADDIUSP_MM),
ReduceADDIUToADDIUSP, OpInfo(OT_Operand2), ImmField(0, 0, 0, 2)},
{RT_OneInstr, OpCodes(Mips::ADDu, Mips::ADDU16_MM),
ReduceArithmeticInstructions, OpInfo(OT_OperandsAll),
ImmField(0, 0, 0, -1)},
{RT_OneInstr, OpCodes(Mips::ADDu_MM, Mips::ADDU16_MM),
ReduceArithmeticInstructions, OpInfo(OT_OperandsAll),
ImmField(0, 0, 0, -1)},
{RT_OneInstr, OpCodes(Mips::LBu, Mips::LBU16_MM), ReduceLXUtoLXU16,
OpInfo(OT_OperandsAll), ImmField(0, -1, 15, 2)},
{RT_OneInstr, OpCodes(Mips::LBu_MM, Mips::LBU16_MM), ReduceLXUtoLXU16,
OpInfo(OT_OperandsAll), ImmField(0, -1, 15, 2)},
{RT_OneInstr, OpCodes(Mips::LEA_ADDiu, Mips::ADDIUR1SP_MM),
ReduceADDIUToADDIUR1SP, OpInfo(OT_Operands02), ImmField(2, 0, 64, 2)},
{RT_OneInstr, OpCodes(Mips::LEA_ADDiu_MM, Mips::ADDIUR1SP_MM),
ReduceADDIUToADDIUR1SP, OpInfo(OT_Operands02), ImmField(2, 0, 64, 2)},
{RT_OneInstr, OpCodes(Mips::LHu, Mips::LHU16_MM), ReduceLXUtoLXU16,
OpInfo(OT_OperandsAll), ImmField(1, 0, 16, 2)},
{RT_OneInstr, OpCodes(Mips::LHu_MM, Mips::LHU16_MM), ReduceLXUtoLXU16,
OpInfo(OT_OperandsAll), ImmField(1, 0, 16, 2)},
{RT_TwoInstr, OpCodes(Mips::LW, Mips::LWP_MM), ReduceXWtoXWP,
OpInfo(OT_OperandsLwp), ImmField(0, -2048, 2048, 2)},
{RT_OneInstr, OpCodes(Mips::LW, Mips::LWSP_MM), ReduceXWtoXWSP,
OpInfo(OT_OperandsAll), ImmField(2, 0, 32, 2)},
{RT_TwoInstr, OpCodes(Mips::LW16_MM, Mips::LWP_MM), ReduceXWtoXWP,
OpInfo(OT_OperandsLwp), ImmField(0, -2048, 2048, 2)},
{RT_TwoInstr, OpCodes(Mips::LW_MM, Mips::LWP_MM), ReduceXWtoXWP,
OpInfo(OT_OperandsLwp), ImmField(0, -2048, 2048, 2)},
{RT_OneInstr, OpCodes(Mips::LW_MM, Mips::LWSP_MM), ReduceXWtoXWSP,
OpInfo(OT_OperandsAll), ImmField(2, 0, 32, 2)},
{RT_OneInstr, OpCodes(Mips::SB, Mips::SB16_MM), ReduceSXtoSX16,
OpInfo(OT_OperandsAll), ImmField(0, 0, 16, 2)},
{RT_OneInstr, OpCodes(Mips::SB_MM, Mips::SB16_MM), ReduceSXtoSX16,
OpInfo(OT_OperandsAll), ImmField(0, 0, 16, 2)},
{RT_OneInstr, OpCodes(Mips::SH, Mips::SH16_MM), ReduceSXtoSX16,
OpInfo(OT_OperandsAll), ImmField(1, 0, 16, 2)},
{RT_OneInstr, OpCodes(Mips::SH_MM, Mips::SH16_MM), ReduceSXtoSX16,
OpInfo(OT_OperandsAll), ImmField(1, 0, 16, 2)},
{RT_OneInstr, OpCodes(Mips::SUBu, Mips::SUBU16_MM),
ReduceArithmeticInstructions, OpInfo(OT_OperandsAll),
ImmField(0, 0, 0, -1)},
{RT_OneInstr, OpCodes(Mips::SUBu_MM, Mips::SUBU16_MM),
ReduceArithmeticInstructions, OpInfo(OT_OperandsAll),
ImmField(0, 0, 0, -1)},
{RT_TwoInstr, OpCodes(Mips::SW, Mips::SWP_MM), ReduceXWtoXWP,
OpInfo(OT_OperandsSwp), ImmField(0, -2048, 2048, 2)},
{RT_OneInstr, OpCodes(Mips::SW, Mips::SWSP_MM), ReduceXWtoXWSP,
OpInfo(OT_OperandsAll), ImmField(2, 0, 32, 2)},
{RT_TwoInstr, OpCodes(Mips::SW16_MM, Mips::SWP_MM), ReduceXWtoXWP,
OpInfo(OT_OperandsSwp), ImmField(0, -2048, 2048, 2)},
{RT_TwoInstr, OpCodes(Mips::SW_MM, Mips::SWP_MM), ReduceXWtoXWP,
OpInfo(OT_OperandsSwp), ImmField(0, -2048, 2048, 2)},
{RT_OneInstr, OpCodes(Mips::SW_MM, Mips::SWSP_MM), ReduceXWtoXWSP,
OpInfo(OT_OperandsAll), ImmField(2, 0, 32, 2)},
{RT_OneInstr, OpCodes(Mips::XOR, Mips::XOR16_MM), ReduceXORtoXOR16,
OpInfo(OT_OperandsXOR), ImmField(0, 0, 0, -1)},
{RT_OneInstr, OpCodes(Mips::XOR_MM, Mips::XOR16_MM), ReduceXORtoXOR16,
OpInfo(OT_OperandsXOR), ImmField(0, 0, 0, -1)}};
} // end anonymous namespace
INITIALIZE_PASS(MicroMipsSizeReduce, DEBUG_TYPE, MICROMIPS_SIZE_REDUCE_NAME,
false, false)
// Returns true if the machine operand MO is register SP.
static bool IsSP(const MachineOperand &MO) {
if (MO.isReg() && ((MO.getReg() == Mips::SP)))
return true;
return false;
}
// Returns true if the machine operand MO is register $16, $17, or $2-$7.
static bool isMMThreeBitGPRegister(const MachineOperand &MO) {
if (MO.isReg() && Mips::GPRMM16RegClass.contains(MO.getReg()))
return true;
return false;
}
// Returns true if the machine operand MO is register $0, $17, or $2-$7.
static bool isMMSourceRegister(const MachineOperand &MO) {
if (MO.isReg() && Mips::GPRMM16ZeroRegClass.contains(MO.getReg()))
return true;
return false;
}
// Returns true if the operand Op is an immediate value
// and writes the immediate value into variable Imm.
static bool GetImm(MachineInstr *MI, unsigned Op, int64_t &Imm) {
if (!MI->getOperand(Op).isImm())
return false;
Imm = MI->getOperand(Op).getImm();
return true;
}
// Returns true if the value is a valid immediate for ADDIUSP.
static bool AddiuspImmValue(int64_t Value) {
int64_t Value2 = Value >> 2;
if (((Value & (int64_t)maskTrailingZeros<uint64_t>(2)) == Value) &&
((Value2 >= 2 && Value2 <= 257) || (Value2 >= -258 && Value2 <= -3)))
return true;
return false;
}
// Returns true if the variable Value has the number of least-significant zero
// bits equal to Shift and if the shifted value is between the bounds.
static bool InRange(int64_t Value, unsigned short Shift, int LBound,
int HBound) {
int64_t Value2 = Value >> Shift;
if (((Value & (int64_t)maskTrailingZeros<uint64_t>(Shift)) == Value) &&
(Value2 >= LBound) && (Value2 < HBound))
return true;
return false;
}
// Returns true if immediate operand is in range.
static bool ImmInRange(MachineInstr *MI, const ReduceEntry &Entry) {
int64_t offset;
if (!GetImm(MI, Entry.ImmField(), offset))
return false;
if (!InRange(offset, Entry.Shift(), Entry.LBound(), Entry.HBound()))
return false;
return true;
}
// Returns true if MI can be reduced to lwp/swp instruction
static bool CheckXWPInstr(MachineInstr *MI, bool ReduceToLwp,
const ReduceEntry &Entry) {
if (ReduceToLwp &&
!(MI->getOpcode() == Mips::LW || MI->getOpcode() == Mips::LW_MM ||
MI->getOpcode() == Mips::LW16_MM))
return false;
if (!ReduceToLwp &&
!(MI->getOpcode() == Mips::SW || MI->getOpcode() == Mips::SW_MM ||
MI->getOpcode() == Mips::SW16_MM))
return false;
unsigned reg = MI->getOperand(0).getReg();
if (reg == Mips::RA)
return false;
if (!ImmInRange(MI, Entry))
return false;
if (ReduceToLwp && (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()))
return false;
return true;
}
// Returns true if the registers Reg1 and Reg2 are consecutive
static bool ConsecutiveRegisters(unsigned Reg1, unsigned Reg2) {
static SmallVector<unsigned, 31> Registers = {
Mips::AT, Mips::V0, Mips::V1, Mips::A0, Mips::A1, Mips::A2, Mips::A3,
Mips::T0, Mips::T1, Mips::T2, Mips::T3, Mips::T4, Mips::T5, Mips::T6,
Mips::T7, Mips::S0, Mips::S1, Mips::S2, Mips::S3, Mips::S4, Mips::S5,
Mips::S6, Mips::S7, Mips::T8, Mips::T9, Mips::K0, Mips::K1, Mips::GP,
Mips::SP, Mips::FP, Mips::RA};
for (uint8_t i = 0; i < Registers.size() - 1; i++) {
if (Registers[i] == Reg1) {
if (Registers[i + 1] == Reg2)
return true;
else
return false;
}
}
return false;
}
// Returns true if registers and offsets are consecutive
static bool ConsecutiveInstr(MachineInstr *MI1, MachineInstr *MI2) {
int64_t Offset1, Offset2;
if (!GetImm(MI1, 2, Offset1))
return false;
if (!GetImm(MI2, 2, Offset2))
return false;
unsigned Reg1 = MI1->getOperand(0).getReg();
unsigned Reg2 = MI2->getOperand(0).getReg();
return ((Offset1 == (Offset2 - 4)) && (ConsecutiveRegisters(Reg1, Reg2)));
}
MicroMipsSizeReduce::MicroMipsSizeReduce() : MachineFunctionPass(ID) {}
bool MicroMipsSizeReduce::ReduceMI(const MachineBasicBlock::instr_iterator &MII,
MachineBasicBlock::instr_iterator &NextMII) {
MachineInstr *MI = &*MII;
unsigned Opcode = MI->getOpcode();
// Search the table.
ReduceEntryVector::const_iterator Start = std::begin(ReduceTable);
ReduceEntryVector::const_iterator End = std::end(ReduceTable);
std::pair<ReduceEntryVector::const_iterator,
ReduceEntryVector::const_iterator>
Range = std::equal_range(Start, End, Opcode);
if (Range.first == Range.second)
return false;
for (ReduceEntryVector::const_iterator Entry = Range.first;
Entry != Range.second; ++Entry) {
ReduceEntryFunArgs Arguments(&(*MII), *Entry, NextMII);
if (((*Entry).ReduceFunction)(&Arguments))
return true;
}
return false;
}
bool MicroMipsSizeReduce::ReduceXWtoXWSP(ReduceEntryFunArgs *Arguments) {
MachineInstr *MI = Arguments->MI;
const ReduceEntry &Entry = Arguments->Entry;
if (!ImmInRange(MI, Entry))
return false;
if (!IsSP(MI->getOperand(1)))
return false;
return ReplaceInstruction(MI, Entry);
}
bool MicroMipsSizeReduce::ReduceXWtoXWP(ReduceEntryFunArgs *Arguments) {
const ReduceEntry &Entry = Arguments->Entry;
MachineBasicBlock::instr_iterator &NextMII = Arguments->NextMII;
const MachineBasicBlock::instr_iterator &E =
Arguments->MI->getParent()->instr_end();
if (NextMII == E)
return false;
MachineInstr *MI1 = Arguments->MI;
MachineInstr *MI2 = &*NextMII;
// ReduceToLwp = true/false - reduce to LWP/SWP instruction
bool ReduceToLwp = (MI1->getOpcode() == Mips::LW) ||
(MI1->getOpcode() == Mips::LW_MM) ||
(MI1->getOpcode() == Mips::LW16_MM);
if (!CheckXWPInstr(MI1, ReduceToLwp, Entry))
return false;
if (!CheckXWPInstr(MI2, ReduceToLwp, Entry))
return false;
unsigned Reg1 = MI1->getOperand(1).getReg();
unsigned Reg2 = MI2->getOperand(1).getReg();
if (Reg1 != Reg2)
return false;
bool ConsecutiveForward = ConsecutiveInstr(MI1, MI2);
bool ConsecutiveBackward = ConsecutiveInstr(MI2, MI1);
if (!(ConsecutiveForward || ConsecutiveBackward))
return false;
NextMII = std::next(NextMII);
return ReplaceInstruction(MI1, Entry, MI2, ConsecutiveForward);
}
bool MicroMipsSizeReduce::ReduceArithmeticInstructions(
ReduceEntryFunArgs *Arguments) {
MachineInstr *MI = Arguments->MI;
const ReduceEntry &Entry = Arguments->Entry;
if (!isMMThreeBitGPRegister(MI->getOperand(0)) ||
!isMMThreeBitGPRegister(MI->getOperand(1)) ||
!isMMThreeBitGPRegister(MI->getOperand(2)))
return false;
return ReplaceInstruction(MI, Entry);
}
bool MicroMipsSizeReduce::ReduceADDIUToADDIUR1SP(
ReduceEntryFunArgs *Arguments) {
MachineInstr *MI = Arguments->MI;
const ReduceEntry &Entry = Arguments->Entry;
if (!ImmInRange(MI, Entry))
return false;
if (!isMMThreeBitGPRegister(MI->getOperand(0)) || !IsSP(MI->getOperand(1)))
return false;
return ReplaceInstruction(MI, Entry);
}
bool MicroMipsSizeReduce::ReduceADDIUToADDIUSP(ReduceEntryFunArgs *Arguments) {
MachineInstr *MI = Arguments->MI;
const ReduceEntry &Entry = Arguments->Entry;
int64_t ImmValue;
if (!GetImm(MI, Entry.ImmField(), ImmValue))
return false;
if (!AddiuspImmValue(ImmValue))
return false;
if (!IsSP(MI->getOperand(0)) || !IsSP(MI->getOperand(1)))
return false;
return ReplaceInstruction(MI, Entry);
}
bool MicroMipsSizeReduce::ReduceLXUtoLXU16(ReduceEntryFunArgs *Arguments) {
MachineInstr *MI = Arguments->MI;
const ReduceEntry &Entry = Arguments->Entry;
if (!ImmInRange(MI, Entry))
return false;
if (!isMMThreeBitGPRegister(MI->getOperand(0)) ||
!isMMThreeBitGPRegister(MI->getOperand(1)))
return false;
return ReplaceInstruction(MI, Entry);
}
bool MicroMipsSizeReduce::ReduceSXtoSX16(ReduceEntryFunArgs *Arguments) {
MachineInstr *MI = Arguments->MI;
const ReduceEntry &Entry = Arguments->Entry;
if (!ImmInRange(MI, Entry))
return false;
if (!isMMSourceRegister(MI->getOperand(0)) ||
!isMMThreeBitGPRegister(MI->getOperand(1)))
return false;
return ReplaceInstruction(MI, Entry);
}
bool MicroMipsSizeReduce::ReduceXORtoXOR16(ReduceEntryFunArgs *Arguments) {
MachineInstr *MI = Arguments->MI;
const ReduceEntry &Entry = Arguments->Entry;
if (!isMMThreeBitGPRegister(MI->getOperand(0)) ||
!isMMThreeBitGPRegister(MI->getOperand(1)) ||
!isMMThreeBitGPRegister(MI->getOperand(2)))
return false;
if (!(MI->getOperand(0).getReg() == MI->getOperand(2).getReg()) &&
!(MI->getOperand(0).getReg() == MI->getOperand(1).getReg()))
return false;
return ReplaceInstruction(MI, Entry);
}
bool MicroMipsSizeReduce::ReduceMBB(MachineBasicBlock &MBB) {
bool Modified = false;
MachineBasicBlock::instr_iterator MII = MBB.instr_begin(),
E = MBB.instr_end();
MachineBasicBlock::instr_iterator NextMII;
// Iterate through the instructions in the basic block
for (; MII != E; MII = NextMII) {
NextMII = std::next(MII);
MachineInstr *MI = &*MII;
// Don't reduce bundled instructions or pseudo operations
if (MI->isBundle() || MI->isTransient())
continue;
// Try to reduce 32-bit instruction into 16-bit instruction
Modified |= ReduceMI(MII, NextMII);
}
return Modified;
}
bool MicroMipsSizeReduce::ReplaceInstruction(MachineInstr *MI,
const ReduceEntry &Entry,
MachineInstr *MI2,
bool ConsecutiveForward) {
enum OperandTransfer OpTransfer = Entry.TransferOperands();
LLVM_DEBUG(dbgs() << "Converting 32-bit: " << *MI);
++NumReduced;
if (OpTransfer == OT_OperandsAll) {
MI->setDesc(MipsII->get(Entry.NarrowOpc()));
LLVM_DEBUG(dbgs() << " to 16-bit: " << *MI);
return true;
} else {
MachineBasicBlock &MBB = *MI->getParent();
const MCInstrDesc &NewMCID = MipsII->get(Entry.NarrowOpc());
DebugLoc dl = MI->getDebugLoc();
MachineInstrBuilder MIB = BuildMI(MBB, MI, dl, NewMCID);
switch (OpTransfer) {
case OT_Operand2:
MIB.add(MI->getOperand(2));
break;
case OT_Operands02: {
MIB.add(MI->getOperand(0));
MIB.add(MI->getOperand(2));
break;
}
case OT_OperandsXOR: {
if (MI->getOperand(0).getReg() == MI->getOperand(2).getReg()) {
MIB.add(MI->getOperand(0));
MIB.add(MI->getOperand(1));
MIB.add(MI->getOperand(2));
} else {
MIB.add(MI->getOperand(0));
MIB.add(MI->getOperand(2));
MIB.add(MI->getOperand(1));
}
break;
}
case OT_OperandsLwp:
case OT_OperandsSwp: {
if (ConsecutiveForward) {
MIB.add(MI->getOperand(0));
MIB.add(MI2->getOperand(0));
MIB.add(MI->getOperand(1));
MIB.add(MI->getOperand(2));
} else { // consecutive backward
MIB.add(MI2->getOperand(0));
MIB.add(MI->getOperand(0));
MIB.add(MI2->getOperand(1));
MIB.add(MI2->getOperand(2));
}
LLVM_DEBUG(dbgs() << "and converting 32-bit: " << *MI2
<< " to: " << *MIB);
MBB.erase_instr(MI);
MBB.erase_instr(MI2);
return true;
}
default:
llvm_unreachable("Unknown operand transfer!");
}
// Transfer MI flags.
MIB.setMIFlags(MI->getFlags());
LLVM_DEBUG(dbgs() << " to 16-bit: " << *MIB);
MBB.erase_instr(MI);
return true;
}
return false;
}
bool MicroMipsSizeReduce::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
// TODO: Add support for the subtarget microMIPS32R6.
if (!Subtarget->inMicroMipsMode() || !Subtarget->hasMips32r2() ||
Subtarget->hasMips32r6())
return false;
MipsII = static_cast<const MipsInstrInfo *>(Subtarget->getInstrInfo());
bool Modified = false;
MachineFunction::iterator I = MF.begin(), E = MF.end();
for (; I != E; ++I)
Modified |= ReduceMBB(*I);
return Modified;
}
/// Returns an instance of the MicroMips size reduction pass.
FunctionPass *llvm::createMicroMipsSizeReducePass() {
return new MicroMipsSizeReduce();
}