llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp

627 lines
20 KiB
C++
Raw Normal View History

//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Implements the AMDGPU specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUSubtarget.h"
#include "AMDGPU.h"
#include "AMDGPUTargetMachine.h"
#include "AMDGPUCallLowering.h"
#include "AMDGPUInstructionSelector.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPURegisterBankInfo.h"
#include "SIMachineFunctionInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include <algorithm>
using namespace llvm;
[Modules] Make Support/Debug.h modular. This requires it to not change behavior based on other files defining DEBUG_TYPE, which means it cannot define DEBUG_TYPE at all. This is actually better IMO as it forces folks to define relevant DEBUG_TYPEs for their files. However, it requires all files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't already. I've updated all such files in LLVM and will do the same for other upstream projects. This still leaves one important change in how LLVM uses the DEBUG_TYPE macro going forward: we need to only define the macro *after* header files have been #include-ed. Previously, this wasn't possible because Debug.h required the macro to be pre-defined. This commit removes that. By defining DEBUG_TYPE after the includes two things are fixed: - Header files that need to provide a DEBUG_TYPE for some inline code can do so by defining the macro before their inline code and undef-ing it afterward so the macro does not escape. - We no longer have rampant ODR violations due to including headers with different DEBUG_TYPE definitions. This may be mostly an academic violation today, but with modules these types of violations are easy to check for and potentially very relevant. Where necessary to suppor headers with DEBUG_TYPE, I have moved the definitions below the includes in this commit. I plan to move the rest of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big enough. The comments in Debug.h, which were hilariously out of date already, have been updated to reflect the recommended practice going forward. llvm-svn: 206822
2014-04-22 06:55:11 +08:00
#define DEBUG_TYPE "amdgpu-subtarget"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "AMDGPUGenSubtargetInfo.inc"
AMDGPUSubtarget::~AMDGPUSubtarget() = default;
AMDGPUSubtarget &
AMDGPUSubtarget::initializeSubtargetDependencies(const Triple &TT,
StringRef GPU, StringRef FS) {
// Determine default and user-specified characteristics
// On SI+, we want FP64 denormals to be on by default. FP32 denormals can be
// enabled, but some instructions do not respect them and they run at the
// double precision rate, so don't enable by default.
//
// We want to be able to turn these off, but making this a subtarget feature
// for SI has the unhelpful behavior that it unsets everything else if you
// disable it.
SmallString<256> FullFS("+promote-alloca,+dx10-clamp,+load-store-opt,");
if (isAmdHsaOS()) // Turn on FlatForGlobal for HSA.
FullFS += "+flat-address-space,+flat-for-global,+unaligned-buffer-access,+trap-handler,";
// FIXME: I don't think think Evergreen has any useful support for
// denormals, but should be checked. Should we issue a warning somewhere
// if someone tries to enable these?
if (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
FullFS += "+fp64-fp16-denormals,";
} else {
FullFS += "-fp32-denormals,";
}
FullFS += FS;
ParseSubtargetFeatures(GPU, FullFS);
// We don't support FP64 for EG/NI atm.
assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS));
// Unless +-flat-for-global is specified, turn on FlatForGlobal for all OS-es
// on VI and newer hardware to avoid assertion failures due to missing ADDR64
// variants of MUBUF instructions.
if (!hasAddr64() && !FS.contains("flat-for-global")) {
FlatForGlobal = true;
}
// Set defaults if needed.
if (MaxPrivateElementSize == 0)
MaxPrivateElementSize = 4;
if (LDSBankCount == 0)
LDSBankCount = 32;
if (TT.getArch() == Triple::amdgcn) {
if (LocalMemorySize == 0)
LocalMemorySize = 32768;
// Do something sensible for unspecified target.
if (!HasMovrel && !HasVGPRIndexMode)
HasMovrel = true;
}
return *this;
}
AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
const TargetMachine &TM)
: AMDGPUGenSubtargetInfo(TT, GPU, FS),
TargetTriple(TT),
Gen(TT.getArch() == Triple::amdgcn ? SOUTHERN_ISLANDS : R600),
IsaVersion(ISAVersion0_0_0),
WavefrontSize(0),
LocalMemorySize(0),
LDSBankCount(0),
MaxPrivateElementSize(0),
FastFMAF32(false),
HalfRate64Ops(false),
FP32Denormals(false),
FP64FP16Denormals(false),
FPExceptions(false),
DX10Clamp(false),
FlatForGlobal(false),
AutoWaitcntBeforeBarrier(false),
CodeObjectV3(false),
UnalignedScratchAccess(false),
UnalignedBufferAccess(false),
HasApertureRegs(false),
EnableXNACK(false),
TrapHandler(false),
DebuggerInsertNops(false),
DebuggerReserveRegs(false),
DebuggerEmitPrologue(false),
EnableHugePrivateBuffer(false),
EnableVGPRSpilling(false),
EnablePromoteAlloca(false),
EnableLoadStoreOpt(false),
EnableUnsafeDSOffsetFolding(false),
EnableSIScheduler(false),
EnableDS128(false),
DumpCode(false),
FP64(false),
FMA(false),
MIMG_R128(false),
IsGCN(false),
GCN3Encoding(false),
CIInsts(false),
GFX9Insts(false),
SGPRInitBug(false),
HasSMemRealTime(false),
Has16BitInsts(false),
HasIntClamp(false),
HasVOP3PInsts(false),
HasMadMixInsts(false),
HasFmaMixInsts(false),
HasMovrel(false),
HasVGPRIndexMode(false),
HasScalarStores(false),
HasScalarAtomics(false),
2017-01-20 18:37:53 +08:00
HasInv2PiInlineImm(false),
HasSDWA(false),
HasSDWAOmod(false),
HasSDWAScalar(false),
HasSDWASdst(false),
HasSDWAMac(false),
HasSDWAOutModsVOPC(false),
HasDPP(false),
HasDLInsts(false),
D16PreservesUnusedBits(false),
FlatAddressSpace(false),
FlatInstOffsets(false),
FlatGlobalInsts(false),
FlatScratchInsts(false),
AddNoCarryInsts(false),
HasUnpackedD16VMem(false),
R600ALUInst(false),
CaymanISA(false),
CFALUBug(false),
HasVertexCache(false),
TexVTXClauseSize(0),
ScalarizeGlobal(false),
FeatureDisable(false),
InstrItins(getInstrItineraryForCPU(GPU)) {
AS = AMDGPU::getAMDGPUAS(TT);
initializeSubtargetDependencies(TT, GPU, FS);
}
unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves,
const Function &F) const {
if (NWaves == 1)
return getLocalMemorySize();
unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize);
unsigned MaxWaves = getMaxWavesPerEU();
return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves;
}
unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes,
const Function &F) const {
unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize);
unsigned MaxWaves = getMaxWavesPerEU();
unsigned Limit = getLocalMemorySize() * MaxWaves / WorkGroupsPerCu;
unsigned NumWaves = Limit / (Bytes ? Bytes : 1u);
NumWaves = std::min(NumWaves, MaxWaves);
NumWaves = std::max(NumWaves, 1u);
return NumWaves;
}
unsigned
AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const {
const auto *MFI = MF.getInfo<SIMachineFunctionInfo>();
return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction());
}
std::pair<unsigned, unsigned>
AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const {
switch (CC) {
case CallingConv::AMDGPU_CS:
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
return std::make_pair(getWavefrontSize() * 2, getWavefrontSize() * 4);
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_LS:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
return std::make_pair(1, getWavefrontSize());
default:
return std::make_pair(1, 16 * getWavefrontSize());
}
}
std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes(
const Function &F) const {
// FIXME: 1024 if function.
// Default minimum/maximum flat work group sizes.
std::pair<unsigned, unsigned> Default =
getDefaultFlatWorkGroupSize(F.getCallingConv());
// TODO: Do not process "amdgpu-max-work-group-size" attribute once mesa
// starts using "amdgpu-flat-work-group-size" attribute.
Default.second = AMDGPU::getIntegerAttribute(
F, "amdgpu-max-work-group-size", Default.second);
Default.first = std::min(Default.first, Default.second);
// Requested minimum/maximum flat work group sizes.
std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
F, "amdgpu-flat-work-group-size", Default);
// Make sure requested minimum is less than requested maximum.
if (Requested.first > Requested.second)
return Default;
// Make sure requested values do not violate subtarget's specifications.
if (Requested.first < getMinFlatWorkGroupSize())
return Default;
if (Requested.second > getMaxFlatWorkGroupSize())
return Default;
return Requested;
}
std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU(
const Function &F) const {
// Default minimum/maximum number of waves per execution unit.
std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
// Default/requested minimum/maximum flat work group sizes.
std::pair<unsigned, unsigned> FlatWorkGroupSizes = getFlatWorkGroupSizes(F);
// If minimum/maximum flat work group sizes were explicitly requested using
// "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum
// number of waves per execution unit to values implied by requested
// minimum/maximum flat work group sizes.
unsigned MinImpliedByFlatWorkGroupSize =
getMaxWavesPerEU(FlatWorkGroupSizes.second);
bool RequestedFlatWorkGroupSize = false;
// TODO: Do not process "amdgpu-max-work-group-size" attribute once mesa
// starts using "amdgpu-flat-work-group-size" attribute.
if (F.hasFnAttribute("amdgpu-max-work-group-size") ||
F.hasFnAttribute("amdgpu-flat-work-group-size")) {
Default.first = MinImpliedByFlatWorkGroupSize;
RequestedFlatWorkGroupSize = true;
}
// Requested minimum/maximum number of waves per execution unit.
std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
F, "amdgpu-waves-per-eu", Default, true);
// Make sure requested minimum is less than requested maximum.
if (Requested.second && Requested.first > Requested.second)
return Default;
// Make sure requested values do not violate subtarget's specifications.
if (Requested.first < getMinWavesPerEU() ||
Requested.first > getMaxWavesPerEU())
return Default;
if (Requested.second > getMaxWavesPerEU())
return Default;
// Make sure requested values are compatible with values implied by requested
// minimum/maximum flat work group sizes.
if (RequestedFlatWorkGroupSize &&
Requested.first < MinImpliedByFlatWorkGroupSize)
return Default;
return Requested;
}
bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const {
Function *Kernel = I->getParent()->getParent();
unsigned MinSize = 0;
unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second;
bool IdQuery = false;
// If reqd_work_group_size is present it narrows value down.
if (auto *CI = dyn_cast<CallInst>(I)) {
const Function *F = CI->getCalledFunction();
if (F) {
unsigned Dim = UINT_MAX;
switch (F->getIntrinsicID()) {
case Intrinsic::amdgcn_workitem_id_x:
case Intrinsic::r600_read_tidig_x:
IdQuery = true;
LLVM_FALLTHROUGH;
case Intrinsic::r600_read_local_size_x:
Dim = 0;
break;
case Intrinsic::amdgcn_workitem_id_y:
case Intrinsic::r600_read_tidig_y:
IdQuery = true;
LLVM_FALLTHROUGH;
case Intrinsic::r600_read_local_size_y:
Dim = 1;
break;
case Intrinsic::amdgcn_workitem_id_z:
case Intrinsic::r600_read_tidig_z:
IdQuery = true;
LLVM_FALLTHROUGH;
case Intrinsic::r600_read_local_size_z:
Dim = 2;
break;
default:
break;
}
if (Dim <= 3) {
if (auto Node = Kernel->getMetadata("reqd_work_group_size"))
if (Node->getNumOperands() == 3)
MinSize = MaxSize = mdconst::extract<ConstantInt>(
Node->getOperand(Dim))->getZExtValue();
}
}
}
if (!MaxSize)
return false;
// Range metadata is [Lo, Hi). For ID query we need to pass max size
// as Hi. For size query we need to pass Hi + 1.
if (IdQuery)
MinSize = 0;
else
++MaxSize;
MDBuilder MDB(I->getContext());
MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize),
APInt(32, MaxSize));
I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
return true;
}
R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS,
const TargetMachine &TM) :
AMDGPUSubtarget(TT, GPU, FS, TM),
InstrInfo(*this),
FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0),
TLInfo(TM, *this) {}
SISubtarget::SISubtarget(const Triple &TT, StringRef GPU, StringRef FS,
const GCNTargetMachine &TM)
: AMDGPUSubtarget(TT, GPU, FS, TM), InstrInfo(*this),
FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0),
TLInfo(TM, *this) {
CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering()));
Legalizer.reset(new AMDGPULegalizerInfo(*this, TM));
RegBankInfo.reset(new AMDGPURegisterBankInfo(*getRegisterInfo()));
InstSelector.reset(new AMDGPUInstructionSelector(
*this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM));
}
void SISubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
unsigned NumRegionInstrs) const {
// Track register pressure so the scheduler can try to decrease
// pressure once register usage is above the threshold defined by
// SIRegisterInfo::getRegPressureSetLimit()
Policy.ShouldTrackPressure = true;
// Enabling both top down and bottom up scheduling seems to give us less
// register spills than just using one of these approaches on its own.
Policy.OnlyTopDown = false;
Policy.OnlyBottomUp = false;
// Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler.
if (!enableSIScheduler())
Policy.ShouldTrackLaneMasks = true;
}
bool SISubtarget::isVGPRSpillingEnabled(const Function& F) const {
return EnableVGPRSpilling || !AMDGPU::isShader(F.getCallingConv());
}
unsigned SISubtarget::getKernArgSegmentSize(const Function &F,
unsigned ExplicitArgBytes) const {
uint64_t TotalSize = ExplicitArgBytes;
unsigned ImplicitBytes = getImplicitArgNumBytes(F);
if (ImplicitBytes != 0) {
unsigned Alignment = getAlignmentForImplicitArgPtr();
TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
}
// Being able to dereference past the end is useful for emitting scalar loads.
return alignTo(TotalSize, 4);
}
unsigned SISubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const {
if (getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
if (SGPRs <= 80)
return 10;
if (SGPRs <= 88)
return 9;
if (SGPRs <= 100)
return 8;
return 7;
}
if (SGPRs <= 48)
return 10;
if (SGPRs <= 56)
return 9;
if (SGPRs <= 64)
return 8;
if (SGPRs <= 72)
return 7;
if (SGPRs <= 80)
return 6;
return 5;
}
unsigned SISubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const {
if (VGPRs <= 24)
return 10;
if (VGPRs <= 28)
return 9;
if (VGPRs <= 32)
return 8;
if (VGPRs <= 36)
return 7;
if (VGPRs <= 40)
return 6;
if (VGPRs <= 48)
return 5;
if (VGPRs <= 64)
return 4;
if (VGPRs <= 84)
return 3;
if (VGPRs <= 128)
return 2;
return 1;
}
unsigned SISubtarget::getReservedNumSGPRs(const MachineFunction &MF) const {
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
if (MFI.hasFlatScratchInit()) {
if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
return 6; // FLAT_SCRATCH, XNACK, VCC (in that order).
if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS)
return 4; // FLAT_SCRATCH, VCC (in that order).
}
if (isXNACKEnabled())
return 4; // XNACK, VCC (in that order).
return 2; // VCC.
}
unsigned SISubtarget::getMaxNumSGPRs(const MachineFunction &MF) const {
const Function &F = MF.getFunction();
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
// Compute maximum number of SGPRs function can use using default/requested
// minimum number of waves per execution unit.
std::pair<unsigned, unsigned> WavesPerEU = MFI.getWavesPerEU();
unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false);
unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true);
// Check if maximum number of SGPRs was explicitly requested using
// "amdgpu-num-sgpr" attribute.
if (F.hasFnAttribute("amdgpu-num-sgpr")) {
unsigned Requested = AMDGPU::getIntegerAttribute(
F, "amdgpu-num-sgpr", MaxNumSGPRs);
// Make sure requested value does not violate subtarget's specifications.
if (Requested && (Requested <= getReservedNumSGPRs(MF)))
Requested = 0;
// If more SGPRs are required to support the input user/system SGPRs,
// increase to accommodate them.
//
// FIXME: This really ends up using the requested number of SGPRs + number
// of reserved special registers in total. Theoretically you could re-use
// the last input registers for these special registers, but this would
// require a lot of complexity to deal with the weird aliasing.
unsigned InputNumSGPRs = MFI.getNumPreloadedSGPRs();
if (Requested && Requested < InputNumSGPRs)
Requested = InputNumSGPRs;
// Make sure requested value is compatible with values implied by
// default/requested minimum/maximum number of waves per execution unit.
if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false))
Requested = 0;
if (WavesPerEU.second &&
Requested && Requested < getMinNumSGPRs(WavesPerEU.second))
Requested = 0;
if (Requested)
MaxNumSGPRs = Requested;
}
if (hasSGPRInitBug())
MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
return std::min(MaxNumSGPRs - getReservedNumSGPRs(MF),
MaxAddressableNumSGPRs);
}
unsigned SISubtarget::getMaxNumVGPRs(const MachineFunction &MF) const {
const Function &F = MF.getFunction();
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
// Compute maximum number of VGPRs function can use using default/requested
// minimum number of waves per execution unit.
std::pair<unsigned, unsigned> WavesPerEU = MFI.getWavesPerEU();
unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first);
// Check if maximum number of VGPRs was explicitly requested using
// "amdgpu-num-vgpr" attribute.
if (F.hasFnAttribute("amdgpu-num-vgpr")) {
unsigned Requested = AMDGPU::getIntegerAttribute(
F, "amdgpu-num-vgpr", MaxNumVGPRs);
// Make sure requested value does not violate subtarget's specifications.
if (Requested && Requested <= getReservedNumVGPRs(MF))
Requested = 0;
// Make sure requested value is compatible with values implied by
// default/requested minimum/maximum number of waves per execution unit.
if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first))
Requested = 0;
if (WavesPerEU.second &&
Requested && Requested < getMinNumVGPRs(WavesPerEU.second))
Requested = 0;
if (Requested)
MaxNumVGPRs = Requested;
}
return MaxNumVGPRs - getReservedNumVGPRs(MF);
}
namespace {
struct MemOpClusterMutation : ScheduleDAGMutation {
const SIInstrInfo *TII;
MemOpClusterMutation(const SIInstrInfo *tii) : TII(tii) {}
void apply(ScheduleDAGInstrs *DAGInstrs) override {
ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
SUnit *SUa = nullptr;
// Search for two consequent memory operations and link them
// to prevent scheduler from moving them apart.
// In DAG pre-process SUnits are in the original order of
// the instructions before scheduling.
for (SUnit &SU : DAG->SUnits) {
MachineInstr &MI2 = *SU.getInstr();
if (!MI2.mayLoad() && !MI2.mayStore()) {
SUa = nullptr;
continue;
}
if (!SUa) {
SUa = &SU;
continue;
}
MachineInstr &MI1 = *SUa->getInstr();
if ((TII->isVMEM(MI1) && TII->isVMEM(MI2)) ||
(TII->isFLAT(MI1) && TII->isFLAT(MI2)) ||
(TII->isSMRD(MI1) && TII->isSMRD(MI2)) ||
(TII->isDS(MI1) && TII->isDS(MI2))) {
SU.addPredBarrier(SUa);
for (const SDep &SI : SU.Preds) {
if (SI.getSUnit() != SUa)
SUa->addPred(SDep(SI.getSUnit(), SDep::Artificial));
}
if (&SU != &DAG->ExitSU) {
for (const SDep &SI : SUa->Succs) {
if (SI.getSUnit() != &SU)
SI.getSUnit()->addPred(SDep(&SU, SDep::Artificial));
}
}
}
SUa = &SU;
}
}
};
} // namespace
void SISubtarget::getPostRAMutations(
std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
Mutations.push_back(llvm::make_unique<MemOpClusterMutation>(&InstrInfo));
}