llvm-project/llvm/lib/Target/ARM64/ARM64FrameLowering.cpp

818 lines
33 KiB
C++
Raw Normal View History

//===- ARM64FrameLowering.cpp - ARM64 Frame Lowering -----------*- C++ -*-====//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the ARM64 implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//
#include "ARM64FrameLowering.h"
#include "ARM64InstrInfo.h"
#include "ARM64MachineFunctionInfo.h"
#include "ARM64Subtarget.h"
#include "ARM64TargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "frame-info"
static cl::opt<bool> EnableRedZone("arm64-redzone",
cl::desc("enable use of redzone on ARM64"),
cl::init(false), cl::Hidden);
STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
static unsigned estimateStackSize(MachineFunction &MF) {
const MachineFrameInfo *FFI = MF.getFrameInfo();
int Offset = 0;
for (int i = FFI->getObjectIndexBegin(); i != 0; ++i) {
int FixedOff = -FFI->getObjectOffset(i);
if (FixedOff > Offset)
Offset = FixedOff;
}
for (unsigned i = 0, e = FFI->getObjectIndexEnd(); i != e; ++i) {
if (FFI->isDeadObjectIndex(i))
continue;
Offset += FFI->getObjectSize(i);
unsigned Align = FFI->getObjectAlignment(i);
// Adjust to alignment boundary
Offset = (Offset + Align - 1) / Align * Align;
}
// This does not include the 16 bytes used for fp and lr.
return (unsigned)Offset;
}
bool ARM64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
if (!EnableRedZone)
return false;
// Don't use the red zone if the function explicitly asks us not to.
// This is typically used for kernel code.
if (MF.getFunction()->getAttributes().hasAttribute(
AttributeSet::FunctionIndex, Attribute::NoRedZone))
return false;
const MachineFrameInfo *MFI = MF.getFrameInfo();
const ARM64FunctionInfo *AFI = MF.getInfo<ARM64FunctionInfo>();
unsigned NumBytes = AFI->getLocalStackSize();
// Note: currently hasFP() is always true for hasCalls(), but that's an
// implementation detail of the current code, not a strict requirement,
// so stay safe here and check both.
if (MFI->hasCalls() || hasFP(MF) || NumBytes > 128)
return false;
return true;
}
/// hasFP - Return true if the specified function should have a dedicated frame
/// pointer register.
bool ARM64FrameLowering::hasFP(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
#ifndef NDEBUG
const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
assert(!RegInfo->needsStackRealignment(MF) &&
"No stack realignment on ARM64!");
#endif
return (MFI->hasCalls() || MFI->hasVarSizedObjects() ||
MFI->isFrameAddressTaken());
}
/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
/// not required, we reserve argument space for call sites in the function
/// immediately on entry to the current function. This eliminates the need for
/// add/sub sp brackets around call sites. Returns true if the call frame is
/// included as part of the stack frame.
bool ARM64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
return !MF.getFrameInfo()->hasVarSizedObjects();
}
void ARM64FrameLowering::eliminateCallFramePseudoInstr(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
const ARM64InstrInfo *TII =
static_cast<const ARM64InstrInfo *>(MF.getTarget().getInstrInfo());
if (!TFI->hasReservedCallFrame(MF)) {
// If we have alloca, convert as follows:
// ADJCALLSTACKDOWN -> sub, sp, sp, amount
// ADJCALLSTACKUP -> add, sp, sp, amount
MachineInstr *Old = I;
DebugLoc DL = Old->getDebugLoc();
unsigned Amount = Old->getOperand(0).getImm();
if (Amount != 0) {
// We need to keep the stack aligned properly. To do this, we round the
// amount of space needed for the outgoing arguments up to the next
// alignment boundary.
unsigned Align = TFI->getStackAlignment();
Amount = (Amount + Align - 1) / Align * Align;
// Replace the pseudo instruction with a new instruction...
unsigned Opc = Old->getOpcode();
if (Opc == ARM64::ADJCALLSTACKDOWN) {
emitFrameOffset(MBB, I, DL, ARM64::SP, ARM64::SP, -Amount, TII);
} else {
assert(Opc == ARM64::ADJCALLSTACKUP && "expected ADJCALLSTACKUP");
emitFrameOffset(MBB, I, DL, ARM64::SP, ARM64::SP, Amount, TII);
}
}
}
MBB.erase(I);
}
void
ARM64FrameLowering::emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned FramePtr) const {
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineModuleInfo &MMI = MF.getMMI();
const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
const ARM64InstrInfo *TII = TM.getInstrInfo();
DebugLoc DL = MBB.findDebugLoc(MBBI);
// Add callee saved registers to move list.
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
if (CSI.empty())
return;
const DataLayout *TD = MF.getTarget().getDataLayout();
bool HasFP = hasFP(MF);
// Calculate amount of bytes used for return address storing.
int stackGrowth = -TD->getPointerSize(0);
// Calculate offsets.
int64_t saveAreaOffset = (HasFP ? 2 : 1) * stackGrowth;
unsigned TotalSkipped = 0;
for (const auto &Info : CSI) {
unsigned Reg = Info.getReg();
int64_t Offset = MFI->getObjectOffset(Info.getFrameIdx()) -
getOffsetOfLocalArea() + saveAreaOffset;
// Don't output a new CFI directive if we're re-saving the frame pointer or
// link register. This happens when the PrologEpilogInserter has inserted an
// extra "STP" of the frame pointer and link register -- the "emitPrologue"
// method automatically generates the directives when frame pointers are
// used. If we generate CFI directives for the extra "STP"s, the linker will
// lose track of the correct values for the frame pointer and link register.
if (HasFP && (FramePtr == Reg || Reg == ARM64::LR)) {
TotalSkipped += stackGrowth;
continue;
}
unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
nullptr, DwarfReg, Offset - TotalSkipped));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
}
}
void ARM64FrameLowering::emitPrologue(MachineFunction &MF) const {
MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
MachineBasicBlock::iterator MBBI = MBB.begin();
const MachineFrameInfo *MFI = MF.getFrameInfo();
const Function *Fn = MF.getFunction();
const ARM64RegisterInfo *RegInfo = TM.getRegisterInfo();
const ARM64InstrInfo *TII = TM.getInstrInfo();
MachineModuleInfo &MMI = MF.getMMI();
ARM64FunctionInfo *AFI = MF.getInfo<ARM64FunctionInfo>();
bool needsFrameMoves = MMI.hasDebugInfo() || Fn->needsUnwindTableEntry();
bool HasFP = hasFP(MF);
DebugLoc DL = MBB.findDebugLoc(MBBI);
int NumBytes = (int)MFI->getStackSize();
if (!AFI->hasStackFrame()) {
assert(!HasFP && "unexpected function without stack frame but with FP");
// All of the stack allocation is for locals.
AFI->setLocalStackSize(NumBytes);
// Label used to tie together the PROLOG_LABEL and the MachineMoves.
MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
// REDZONE: If the stack size is less than 128 bytes, we don't need
// to actually allocate.
if (NumBytes && !canUseRedZone(MF)) {
emitFrameOffset(MBB, MBBI, DL, ARM64::SP, ARM64::SP, -NumBytes, TII,
MachineInstr::FrameSetup);
// Encode the stack size of the leaf function.
unsigned CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
} else if (NumBytes) {
++NumRedZoneFunctions;
}
return;
}
// Only set up FP if we actually need to.
int FPOffset = 0;
if (HasFP) {
// First instruction must a) allocate the stack and b) have an immediate
// that is a multiple of -2.
assert((MBBI->getOpcode() == ARM64::STPXpre ||
MBBI->getOpcode() == ARM64::STPDpre) &&
MBBI->getOperand(2).getReg() == ARM64::SP &&
MBBI->getOperand(3).getImm() < 0 &&
(MBBI->getOperand(3).getImm() & 1) == 0);
// Frame pointer is fp = sp - 16. Since the STPXpre subtracts the space
// required for the callee saved register area we get the frame pointer
// by addding that offset - 16 = -getImm()*8 - 2*8 = -(getImm() + 2) * 8.
FPOffset = -(MBBI->getOperand(3).getImm() + 2) * 8;
assert(FPOffset >= 0 && "Bad Framepointer Offset");
}
// Move past the saves of the callee-saved registers.
while (MBBI->getOpcode() == ARM64::STPXi ||
MBBI->getOpcode() == ARM64::STPDi ||
MBBI->getOpcode() == ARM64::STPXpre ||
MBBI->getOpcode() == ARM64::STPDpre) {
++MBBI;
NumBytes -= 16;
}
assert(NumBytes >= 0 && "Negative stack allocation size!?");
if (HasFP) {
// Issue sub fp, sp, FPOffset or
// mov fp,sp when FPOffset is zero.
// Note: All stores of callee-saved registers are marked as "FrameSetup".
// This code marks the instruction(s) that set the FP also.
emitFrameOffset(MBB, MBBI, DL, ARM64::FP, ARM64::SP, FPOffset, TII,
MachineInstr::FrameSetup);
}
// All of the remaining stack allocations are for locals.
AFI->setLocalStackSize(NumBytes);
// Allocate space for the rest of the frame.
if (NumBytes) {
// If we're a leaf function, try using the red zone.
if (!canUseRedZone(MF))
emitFrameOffset(MBB, MBBI, DL, ARM64::SP, ARM64::SP, -NumBytes, TII,
MachineInstr::FrameSetup);
}
// If we need a base pointer, set it up here. It's whatever the value of the
// stack pointer is at this point. Any variable size objects will be allocated
// after this, so we can still use the base pointer to reference locals.
//
// FIXME: Clarify FrameSetup flags here.
// Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
// needed.
//
if (RegInfo->hasBasePointer(MF))
TII->copyPhysReg(MBB, MBBI, DL, ARM64::X19, ARM64::SP, false);
if (needsFrameMoves) {
const DataLayout *TD = MF.getTarget().getDataLayout();
const int StackGrowth = -TD->getPointerSize(0);
unsigned FramePtr = RegInfo->getFrameRegister(MF);
// An example of the prologue:
//
// .globl __foo
// .align 2
// __foo:
// Ltmp0:
// .cfi_startproc
// .cfi_personality 155, ___gxx_personality_v0
// Leh_func_begin:
// .cfi_lsda 16, Lexception33
//
// stp xa,bx, [sp, -#offset]!
// ...
// stp x28, x27, [sp, #offset-32]
// stp fp, lr, [sp, #offset-16]
// add fp, sp, #offset - 16
// sub sp, sp, #1360
//
// The Stack:
// +-------------------------------------------+
// 10000 | ........ | ........ | ........ | ........ |
// 10004 | ........ | ........ | ........ | ........ |
// +-------------------------------------------+
// 10008 | ........ | ........ | ........ | ........ |
// 1000c | ........ | ........ | ........ | ........ |
// +===========================================+
// 10010 | X28 Register |
// 10014 | X28 Register |
// +-------------------------------------------+
// 10018 | X27 Register |
// 1001c | X27 Register |
// +===========================================+
// 10020 | Frame Pointer |
// 10024 | Frame Pointer |
// +-------------------------------------------+
// 10028 | Link Register |
// 1002c | Link Register |
// +===========================================+
// 10030 | ........ | ........ | ........ | ........ |
// 10034 | ........ | ........ | ........ | ........ |
// +-------------------------------------------+
// 10038 | ........ | ........ | ........ | ........ |
// 1003c | ........ | ........ | ........ | ........ |
// +-------------------------------------------+
//
// [sp] = 10030 :: >>initial value<<
// sp = 10020 :: stp fp, lr, [sp, #-16]!
// fp = sp == 10020 :: mov fp, sp
// [sp] == 10020 :: stp x28, x27, [sp, #-16]!
// sp == 10010 :: >>final value<<
//
// The frame pointer (w29) points to address 10020. If we use an offset of
// '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
// for w27, and -32 for w28:
//
// Ltmp1:
// .cfi_def_cfa w29, 16
// Ltmp2:
// .cfi_offset w30, -8
// Ltmp3:
// .cfi_offset w29, -16
// Ltmp4:
// .cfi_offset w27, -24
// Ltmp5:
// .cfi_offset w28, -32
if (HasFP) {
// Define the current CFA rule to use the provided FP.
unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
unsigned CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createDefCfa(nullptr, Reg, 2 * StackGrowth));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
// Record the location of the stored LR
unsigned LR = RegInfo->getDwarfRegNum(ARM64::LR, true);
CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createOffset(nullptr, LR, StackGrowth));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
// Record the location of the stored FP
CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createOffset(nullptr, Reg, 2 * StackGrowth));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
} else {
// Encode the stack size of the leaf function.
unsigned CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createDefCfaOffset(nullptr, -MFI->getStackSize()));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
}
// Now emit the moves for whatever callee saved regs we have.
emitCalleeSavedFrameMoves(MBB, MBBI, FramePtr);
}
}
static bool isCalleeSavedRegister(unsigned Reg, const MCPhysReg *CSRegs) {
for (unsigned i = 0; CSRegs[i]; ++i)
if (Reg == CSRegs[i])
return true;
return false;
}
static bool isCSRestore(MachineInstr *MI, const MCPhysReg *CSRegs) {
if (MI->getOpcode() == ARM64::LDPXpost ||
MI->getOpcode() == ARM64::LDPDpost || MI->getOpcode() == ARM64::LDPXi ||
MI->getOpcode() == ARM64::LDPDi) {
if (!isCalleeSavedRegister(MI->getOperand(0).getReg(), CSRegs) ||
!isCalleeSavedRegister(MI->getOperand(1).getReg(), CSRegs) ||
MI->getOperand(2).getReg() != ARM64::SP)
return false;
return true;
}
return false;
}
void ARM64FrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
assert(MBBI->isReturn() && "Can only insert epilog into returning blocks");
MachineFrameInfo *MFI = MF.getFrameInfo();
const ARM64InstrInfo *TII =
static_cast<const ARM64InstrInfo *>(MF.getTarget().getInstrInfo());
const ARM64RegisterInfo *RegInfo =
static_cast<const ARM64RegisterInfo *>(MF.getTarget().getRegisterInfo());
DebugLoc DL = MBBI->getDebugLoc();
int NumBytes = MFI->getStackSize();
unsigned NumRestores = 0;
// Move past the restores of the callee-saved registers.
MachineBasicBlock::iterator LastPopI = MBBI;
const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
if (LastPopI != MBB.begin()) {
do {
++NumRestores;
--LastPopI;
} while (LastPopI != MBB.begin() && isCSRestore(LastPopI, CSRegs));
if (!isCSRestore(LastPopI, CSRegs)) {
++LastPopI;
--NumRestores;
}
}
NumBytes -= NumRestores * 16;
assert(NumBytes >= 0 && "Negative stack allocation size!?");
if (!hasFP(MF)) {
// If this was a redzone leaf function, we don't need to restore the
// stack pointer.
if (!canUseRedZone(MF))
emitFrameOffset(MBB, LastPopI, DL, ARM64::SP, ARM64::SP, NumBytes, TII);
return;
}
// Restore the original stack pointer.
// FIXME: Rather than doing the math here, we should instead just use
// non-post-indexed loads for the restores if we aren't actually going to
// be able to save any instructions.
if (NumBytes || MFI->hasVarSizedObjects())
emitFrameOffset(MBB, LastPopI, DL, ARM64::SP, ARM64::FP,
-(NumRestores - 1) * 16, TII, MachineInstr::NoFlags);
}
/// getFrameIndexOffset - Returns the displacement from the frame register to
/// the stack frame of the specified index.
int ARM64FrameLowering::getFrameIndexOffset(const MachineFunction &MF,
int FI) const {
unsigned FrameReg;
return getFrameIndexReference(MF, FI, FrameReg);
}
/// getFrameIndexReference - Provide a base+offset reference to an FI slot for
/// debug info. It's the same as what we use for resolving the code-gen
/// references for now. FIXME: This can go wrong when references are
/// SP-relative and simple call frames aren't used.
int ARM64FrameLowering::getFrameIndexReference(const MachineFunction &MF,
int FI,
unsigned &FrameReg) const {
return resolveFrameIndexReference(MF, FI, FrameReg);
}
int ARM64FrameLowering::resolveFrameIndexReference(const MachineFunction &MF,
int FI, unsigned &FrameReg,
bool PreferFP) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const ARM64RegisterInfo *RegInfo =
static_cast<const ARM64RegisterInfo *>(MF.getTarget().getRegisterInfo());
const ARM64FunctionInfo *AFI = MF.getInfo<ARM64FunctionInfo>();
int FPOffset = MFI->getObjectOffset(FI) + 16;
int Offset = MFI->getObjectOffset(FI) + MFI->getStackSize();
bool isFixed = MFI->isFixedObjectIndex(FI);
// Use frame pointer to reference fixed objects. Use it for locals if
// there are VLAs (and thus the SP isn't reliable as a base).
// Make sure useFPForScavengingIndex() does the right thing for the emergency
// spill slot.
bool UseFP = false;
if (AFI->hasStackFrame()) {
// Note: Keeping the following as multiple 'if' statements rather than
// merging to a single expression for readability.
//
// Argument access should always use the FP.
if (isFixed) {
UseFP = hasFP(MF);
} else if (hasFP(MF) && !RegInfo->hasBasePointer(MF)) {
// Use SP or FP, whichever gives us the best chance of the offset
// being in range for direct access. If the FPOffset is positive,
// that'll always be best, as the SP will be even further away.
// If the FPOffset is negative, we have to keep in mind that the
// available offset range for negative offsets is smaller than for
// positive ones. If we have variable sized objects, we're stuck with
// using the FP regardless, though, as the SP offset is unknown
// and we don't have a base pointer available. If an offset is
// available via the FP and the SP, use whichever is closest.
if (PreferFP || MFI->hasVarSizedObjects() || FPOffset >= 0 ||
(FPOffset >= -256 && Offset > -FPOffset))
UseFP = true;
}
}
if (UseFP) {
FrameReg = RegInfo->getFrameRegister(MF);
return FPOffset;
}
// Use the base pointer if we have one.
if (RegInfo->hasBasePointer(MF))
FrameReg = RegInfo->getBaseRegister();
else {
FrameReg = ARM64::SP;
// If we're using the red zone for this function, the SP won't actually
// be adjusted, so the offsets will be negative. They're also all
// within range of the signed 9-bit immediate instructions.
if (canUseRedZone(MF))
Offset -= AFI->getLocalStackSize();
}
return Offset;
}
static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
if (Reg != ARM64::LR)
return getKillRegState(true);
// LR maybe referred to later by an @llvm.returnaddress intrinsic.
bool LRLiveIn = MF.getRegInfo().isLiveIn(ARM64::LR);
bool LRKill = !(LRLiveIn && MF.getFrameInfo()->isReturnAddressTaken());
return getKillRegState(LRKill);
}
bool ARM64FrameLowering::spillCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const {
MachineFunction &MF = *MBB.getParent();
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
unsigned Count = CSI.size();
DebugLoc DL;
assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
if (MI != MBB.end())
DL = MI->getDebugLoc();
for (unsigned i = 0; i < Count; i += 2) {
unsigned idx = Count - i - 2;
unsigned Reg1 = CSI[idx].getReg();
unsigned Reg2 = CSI[idx + 1].getReg();
// GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
// list to come in sorted by frame index so that we can issue the store
// pair instructions directly. Assert if we see anything otherwise.
//
// The order of the registers in the list is controlled by
// getCalleeSavedRegs(), so they will always be in-order, as well.
assert(CSI[idx].getFrameIdx() + 1 == CSI[idx + 1].getFrameIdx() &&
"Out of order callee saved regs!");
unsigned StrOpc;
assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
assert((i & 1) == 0 && "Odd index for callee-saved reg spill!");
// Issue sequence of non-sp increment and pi sp spills for cs regs. The
// first spill is a pre-increment that allocates the stack.
// For example:
// stp x22, x21, [sp, #-48]! // addImm(-6)
// stp x20, x19, [sp, #16] // addImm(+2)
// stp fp, lr, [sp, #32] // addImm(+4)
// Rationale: This sequence saves uop updates compared to a sequence of
// pre-increment spills like stp xi,xj,[sp,#-16]!
// Note: Similar rational and sequence for restores in epilog.
if (ARM64::GPR64RegClass.contains(Reg1)) {
assert(ARM64::GPR64RegClass.contains(Reg2) &&
"Expected GPR64 callee-saved register pair!");
// For first spill use pre-increment store.
if (i == 0)
StrOpc = ARM64::STPXpre;
else
StrOpc = ARM64::STPXi;
} else if (ARM64::FPR64RegClass.contains(Reg1)) {
assert(ARM64::FPR64RegClass.contains(Reg2) &&
"Expected FPR64 callee-saved register pair!");
// For first spill use pre-increment store.
if (i == 0)
StrOpc = ARM64::STPDpre;
else
StrOpc = ARM64::STPDi;
} else
llvm_unreachable("Unexpected callee saved register!");
DEBUG(dbgs() << "CSR spill: (" << TRI->getName(Reg1) << ", "
<< TRI->getName(Reg2) << ") -> fi#(" << CSI[idx].getFrameIdx()
<< ", " << CSI[idx + 1].getFrameIdx() << ")\n");
// Compute offset: i = 0 => offset = -Count;
// i = 2 => offset = -(Count - 2) + Count = 2 = i; etc.
const int Offset = (i == 0) ? -Count : i;
assert((Offset >= -64 && Offset <= 63) &&
"Offset out of bounds for STP immediate");
BuildMI(MBB, MI, DL, TII.get(StrOpc))
.addReg(Reg2, getPrologueDeath(MF, Reg2))
.addReg(Reg1, getPrologueDeath(MF, Reg1))
.addReg(ARM64::SP)
.addImm(Offset) // [sp, #offset * 8], where factor * 8 is implicit
.setMIFlag(MachineInstr::FrameSetup);
}
return true;
}
bool ARM64FrameLowering::restoreCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const {
MachineFunction &MF = *MBB.getParent();
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
unsigned Count = CSI.size();
DebugLoc DL;
assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
if (MI != MBB.end())
DL = MI->getDebugLoc();
for (unsigned i = 0; i < Count; i += 2) {
unsigned Reg1 = CSI[i].getReg();
unsigned Reg2 = CSI[i + 1].getReg();
// GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
// list to come in sorted by frame index so that we can issue the store
// pair instructions directly. Assert if we see anything otherwise.
assert(CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx() &&
"Out of order callee saved regs!");
// Issue sequence of non-sp increment and sp-pi restores for cs regs. Only
// the last load is sp-pi post-increment and de-allocates the stack:
// For example:
// ldp fp, lr, [sp, #32] // addImm(+4)
// ldp x20, x19, [sp, #16] // addImm(+2)
// ldp x22, x21, [sp], #48 // addImm(+6)
// Note: see comment in spillCalleeSavedRegisters()
unsigned LdrOpc;
assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
assert((i & 1) == 0 && "Odd index for callee-saved reg spill!");
if (ARM64::GPR64RegClass.contains(Reg1)) {
assert(ARM64::GPR64RegClass.contains(Reg2) &&
"Expected GPR64 callee-saved register pair!");
if (i == Count - 2)
LdrOpc = ARM64::LDPXpost;
else
LdrOpc = ARM64::LDPXi;
} else if (ARM64::FPR64RegClass.contains(Reg1)) {
assert(ARM64::FPR64RegClass.contains(Reg2) &&
"Expected FPR64 callee-saved register pair!");
if (i == Count - 2)
LdrOpc = ARM64::LDPDpost;
else
LdrOpc = ARM64::LDPDi;
} else
llvm_unreachable("Unexpected callee saved register!");
DEBUG(dbgs() << "CSR restore: (" << TRI->getName(Reg1) << ", "
<< TRI->getName(Reg2) << ") -> fi#(" << CSI[i].getFrameIdx()
<< ", " << CSI[i + 1].getFrameIdx() << ")\n");
// Compute offset: i = 0 => offset = Count - 2; i = 2 => offset = Count - 4;
// etc.
const int Offset = (i == Count - 2) ? Count : Count - i - 2;
assert((Offset >= -64 && Offset <= 63) &&
"Offset out of bounds for LDP immediate");
BuildMI(MBB, MI, DL, TII.get(LdrOpc))
.addReg(Reg2, getDefRegState(true))
.addReg(Reg1, getDefRegState(true))
.addReg(ARM64::SP)
.addImm(Offset); // [sp], #offset * 8 or [sp, #offset * 8]
// where the factor * 8 is implicit
}
return true;
}
void ARM64FrameLowering::processFunctionBeforeCalleeSavedScan(
MachineFunction &MF, RegScavenger *RS) const {
const ARM64RegisterInfo *RegInfo =
static_cast<const ARM64RegisterInfo *>(MF.getTarget().getRegisterInfo());
ARM64FunctionInfo *AFI = MF.getInfo<ARM64FunctionInfo>();
MachineRegisterInfo *MRI = &MF.getRegInfo();
SmallVector<unsigned, 4> UnspilledCSGPRs;
SmallVector<unsigned, 4> UnspilledCSFPRs;
// The frame record needs to be created by saving the appropriate registers
if (hasFP(MF)) {
MRI->setPhysRegUsed(ARM64::FP);
MRI->setPhysRegUsed(ARM64::LR);
}
// Spill the BasePtr if it's used. Do this first thing so that the
// getCalleeSavedRegs() below will get the right answer.
if (RegInfo->hasBasePointer(MF))
MRI->setPhysRegUsed(RegInfo->getBaseRegister());
// If any callee-saved registers are used, the frame cannot be eliminated.
unsigned NumGPRSpilled = 0;
unsigned NumFPRSpilled = 0;
bool ExtraCSSpill = false;
bool CanEliminateFrame = true;
DEBUG(dbgs() << "*** processFunctionBeforeCalleeSavedScan\nUsed CSRs:");
const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
// Check pairs of consecutive callee-saved registers.
for (unsigned i = 0; CSRegs[i]; i += 2) {
assert(CSRegs[i + 1] && "Odd number of callee-saved registers!");
const unsigned OddReg = CSRegs[i];
const unsigned EvenReg = CSRegs[i + 1];
assert((ARM64::GPR64RegClass.contains(OddReg) &&
ARM64::GPR64RegClass.contains(EvenReg)) ^
(ARM64::FPR64RegClass.contains(OddReg) &&
ARM64::FPR64RegClass.contains(EvenReg)) &&
"Register class mismatch!");
const bool OddRegUsed = MRI->isPhysRegUsed(OddReg);
const bool EvenRegUsed = MRI->isPhysRegUsed(EvenReg);
// Early exit if none of the registers in the register pair is actually
// used.
if (!OddRegUsed && !EvenRegUsed) {
if (ARM64::GPR64RegClass.contains(OddReg)) {
UnspilledCSGPRs.push_back(OddReg);
UnspilledCSGPRs.push_back(EvenReg);
} else {
UnspilledCSFPRs.push_back(OddReg);
UnspilledCSFPRs.push_back(EvenReg);
}
continue;
}
unsigned Reg = ARM64::NoRegister;
// If only one of the registers of the register pair is used, make sure to
// mark the other one as used as well.
if (OddRegUsed ^ EvenRegUsed) {
// Find out which register is the additional spill.
Reg = OddRegUsed ? EvenReg : OddReg;
MRI->setPhysRegUsed(Reg);
}
DEBUG(dbgs() << ' ' << PrintReg(OddReg, RegInfo));
DEBUG(dbgs() << ' ' << PrintReg(EvenReg, RegInfo));
assert(((OddReg == ARM64::LR && EvenReg == ARM64::FP) ||
(RegInfo->getEncodingValue(OddReg) + 1 ==
RegInfo->getEncodingValue(EvenReg))) &&
"Register pair of non-adjacent registers!");
if (ARM64::GPR64RegClass.contains(OddReg)) {
NumGPRSpilled += 2;
// If it's not a reserved register, we can use it in lieu of an
// emergency spill slot for the register scavenger.
// FIXME: It would be better to instead keep looking and choose another
// unspilled register that isn't reserved, if there is one.
if (Reg != ARM64::NoRegister && !RegInfo->isReservedReg(MF, Reg))
ExtraCSSpill = true;
} else
NumFPRSpilled += 2;
CanEliminateFrame = false;
}
// FIXME: Set BigStack if any stack slot references may be out of range.
// For now, just conservatively guestimate based on unscaled indexing
// range. We'll end up allocating an unnecessary spill slot a lot, but
// realistically that's not a big deal at this stage of the game.
// The CSR spill slots have not been allocated yet, so estimateStackSize
// won't include them.
MachineFrameInfo *MFI = MF.getFrameInfo();
unsigned CFSize = estimateStackSize(MF) + 8 * (NumGPRSpilled + NumFPRSpilled);
DEBUG(dbgs() << "Estimated stack frame size: " << CFSize << " bytes.\n");
bool BigStack = (CFSize >= 256);
if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
AFI->setHasStackFrame(true);
// Estimate if we might need to scavenge a register at some point in order
// to materialize a stack offset. If so, either spill one additional
// callee-saved register or reserve a special spill slot to facilitate
// register scavenging. If we already spilled an extra callee-saved register
// above to keep the number of spills even, we don't need to do anything else
// here.
if (BigStack && !ExtraCSSpill) {
// If we're adding a register to spill here, we have to add two of them
// to keep the number of regs to spill even.
assert(((UnspilledCSGPRs.size() & 1) == 0) && "Odd number of registers!");
unsigned Count = 0;
while (!UnspilledCSGPRs.empty() && Count < 2) {
unsigned Reg = UnspilledCSGPRs.back();
UnspilledCSGPRs.pop_back();
DEBUG(dbgs() << "Spilling " << PrintReg(Reg, RegInfo)
<< " to get a scratch register.\n");
MRI->setPhysRegUsed(Reg);
ExtraCSSpill = true;
++Count;
}
// If we didn't find an extra callee-saved register to spill, create
// an emergency spill slot.
if (!ExtraCSSpill) {
const TargetRegisterClass *RC = &ARM64::GPR64RegClass;
int FI = MFI->CreateStackObject(RC->getSize(), RC->getAlignment(), false);
RS->addScavengingFrameIndex(FI);
DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
<< " as the emergency spill slot.\n");
}
}
}