llvm-project/mlir/lib/Transforms/CSE.cpp

267 lines
9.4 KiB
C++
Raw Normal View History

//===- CSE.cpp - Common Sub-expression Elimination ------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This transformation pass performs a simple common sub-expression elimination
// algorithm on operations within a function.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Dominance.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/Functional.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/RecyclingAllocator.h"
#include <deque>
using namespace mlir;
namespace {
// TODO(riverriddle) Handle commutative operations.
struct SimpleOperationInfo : public llvm::DenseMapInfo<Operation *> {
static unsigned getHashValue(const Operation *opC) {
auto *op = const_cast<Operation *>(opC);
// Hash the operations based upon their:
// - Operation Name
// - Attributes
// - Result Types
// - Operands
return hash_combine(
op->getName(), op->getAttrs(),
hash_combine_range(op->result_type_begin(), op->result_type_end()),
hash_combine_range(op->operand_begin(), op->operand_end()));
}
static bool isEqual(const Operation *lhsC, const Operation *rhsC) {
auto *lhs = const_cast<Operation *>(lhsC);
auto *rhs = const_cast<Operation *>(rhsC);
if (lhs == rhs)
return true;
if (lhs == getTombstoneKey() || lhs == getEmptyKey() ||
rhs == getTombstoneKey() || rhs == getEmptyKey())
return false;
// Compare the operation name.
if (lhs->getName() != rhs->getName())
return false;
// Check operand and result type counts.
if (lhs->getNumOperands() != rhs->getNumOperands() ||
lhs->getNumResults() != rhs->getNumResults())
return false;
// Compare attributes.
if (lhs->getAttrs() != rhs->getAttrs())
return false;
// Compare operands.
if (!std::equal(lhs->operand_begin(), lhs->operand_end(),
rhs->operand_begin()))
return false;
// Compare result types.
return std::equal(lhs->result_type_begin(), lhs->result_type_end(),
rhs->result_type_begin());
}
};
} // end anonymous namespace
namespace {
/// Simple common sub-expression elimination.
struct CSE : public FunctionPass<CSE> {
CSE() = default;
CSE(const CSE &) {}
/// Shared implementation of operation elimination and scoped map definitions.
using AllocatorTy = llvm::RecyclingAllocator<
llvm::BumpPtrAllocator,
llvm::ScopedHashTableVal<Operation *, Operation *>>;
using ScopedMapTy = llvm::ScopedHashTable<Operation *, Operation *,
SimpleOperationInfo, AllocatorTy>;
/// Represents a single entry in the depth first traversal of a CFG.
struct CFGStackNode {
CFGStackNode(ScopedMapTy &knownValues, DominanceInfoNode *node)
: scope(knownValues), node(node), childIterator(node->begin()),
processed(false) {}
/// Scope for the known values.
ScopedMapTy::ScopeTy scope;
DominanceInfoNode *node;
DominanceInfoNode::iterator childIterator;
/// If this node has been fully processed yet or not.
bool processed;
};
/// Attempt to eliminate a redundant operation. Returns success if the
/// operation was marked for removal, failure otherwise.
LogicalResult simplifyOperation(ScopedMapTy &knownValues, Operation *op);
void simplifyBlock(ScopedMapTy &knownValues, DominanceInfo &domInfo,
Block *bb);
void simplifyRegion(ScopedMapTy &knownValues, DominanceInfo &domInfo,
Region &region);
void runOnFunction() override;
private:
/// Operations marked as dead and to be erased.
std::vector<Operation *> opsToErase;
};
} // end anonymous namespace
/// Attempt to eliminate a redundant operation.
LogicalResult CSE::simplifyOperation(ScopedMapTy &knownValues, Operation *op) {
// Don't simplify operations with nested blocks. We don't currently model
// equality comparisons correctly among other things. It is also unclear
// whether we would want to CSE such operations.
if (op->getNumRegions() != 0)
return failure();
// TODO(riverriddle) We currently only eliminate non side-effecting
// operations.
if (!op->hasNoSideEffect())
return failure();
// If the operation is already trivially dead just add it to the erase list.
if (op->use_empty()) {
opsToErase.push_back(op);
return success();
}
// Look for an existing definition for the operation.
if (auto *existing = knownValues.lookup(op)) {
// If we find one then replace all uses of the current operation with the
// existing one and mark it for deletion.
op->replaceAllUsesWith(existing);
opsToErase.push_back(op);
// If the existing operation has an unknown location and the current
// operation doesn't, then set the existing op's location to that of the
// current op.
if (existing->getLoc().isa<UnknownLoc>() &&
!op->getLoc().isa<UnknownLoc>()) {
existing->setLoc(op->getLoc());
}
return success();
}
// Otherwise, we add this operation to the known values map.
knownValues.insert(op, op);
return failure();
}
void CSE::simplifyBlock(ScopedMapTy &knownValues, DominanceInfo &domInfo,
Block *bb) {
for (auto &inst : *bb) {
// If the operation is simplified, we don't process any held regions.
if (succeeded(simplifyOperation(knownValues, &inst)))
continue;
// If this operation is isolated above, we can't process nested regions with
// the given 'knownValues' map. This would cause the insertion of implicit
// captures in explicit capture only regions.
if (!inst.isRegistered() || inst.isKnownIsolatedFromAbove()) {
ScopedMapTy nestedKnownValues;
for (auto &region : inst.getRegions())
simplifyRegion(nestedKnownValues, domInfo, region);
continue;
}
// Otherwise, process nested regions normally.
for (auto &region : inst.getRegions())
simplifyRegion(knownValues, domInfo, region);
}
}
void CSE::simplifyRegion(ScopedMapTy &knownValues, DominanceInfo &domInfo,
Region &region) {
// If the region is empty there is nothing to do.
if (region.empty())
return;
// If the region only contains one block, then simplify it directly.
if (std::next(region.begin()) == region.end()) {
ScopedMapTy::ScopeTy scope(knownValues);
simplifyBlock(knownValues, domInfo, &region.front());
return;
}
// Note, deque is being used here because there was significant performance
// gains over vector when the container becomes very large due to the
// specific access patterns. If/when these performance issues are no
// longer a problem we can change this to vector. For more information see
// the llvm mailing list discussion on this:
// http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
std::deque<std::unique_ptr<CFGStackNode>> stack;
// Process the nodes of the dom tree for this region.
stack.emplace_back(llvm::make_unique<CFGStackNode>(
knownValues, domInfo.getRootNode(&region)));
while (!stack.empty()) {
auto &currentNode = stack.back();
// Check to see if we need to process this node.
if (!currentNode->processed) {
currentNode->processed = true;
simplifyBlock(knownValues, domInfo, currentNode->node->getBlock());
}
// Otherwise, check to see if we need to process a child node.
if (currentNode->childIterator != currentNode->node->end()) {
auto *childNode = *(currentNode->childIterator++);
stack.emplace_back(
llvm::make_unique<CFGStackNode>(knownValues, childNode));
} else {
// Finally, if the node and all of its children have been processed
// then we delete the node.
stack.pop_back();
}
}
}
void CSE::runOnFunction() {
/// A scoped hash table of defining operations within a function.
ScopedMapTy knownValues;
simplifyRegion(knownValues, getAnalysis<DominanceInfo>(),
getFunction().getBody());
// If no operations were erased, then we mark all analyses as preserved.
if (opsToErase.empty())
return markAllAnalysesPreserved();
/// Erase any operations that were marked as dead during simplification.
for (auto *op : opsToErase)
op->erase();
opsToErase.clear();
// We currently don't remove region operations, so mark dominance as
// preserved.
markAnalysesPreserved<DominanceInfo, PostDominanceInfo>();
}
std::unique_ptr<FunctionPassBase> mlir::createCSEPass() {
return llvm::make_unique<CSE>();
}
static PassRegistration<CSE>
pass("cse", "Eliminate common sub-expressions in functions");