llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_addrhashmap.h

212 lines
5.8 KiB
C
Raw Normal View History

//===-- sanitizer_addrhashmap.h ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Concurrent uptr->T hashmap.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ADDRHASHMAP_H
#define SANITIZER_ADDRHASHMAP_H
#include "sanitizer_common.h"
#include "sanitizer_mutex.h"
#include "sanitizer_atomic.h"
namespace __sanitizer {
// Concurrent uptr->T hashmap.
// T must be a POD type, kSize is preferrably a prime but can be any number.
// The hashmap is fixed size, it crashes on overflow.
// Usage example:
//
// typedef AddrHashMap<uptr, 11> Map;
// Map m;
// {
// Map::Handle h(&m, addr);
// use h.operator->() to access the data
// if h.created() then the element was just created, and the current thread
// has exclusive access to it
// otherwise the current thread has only read access to the data
// }
// {
// Map::Handle h(&m, addr, true);
// this will remove the data from the map in Handle dtor
// the current thread has exclusive access to the data
// if !h.exists() then the element never existed
// }
template<typename T, uptr kSize>
class AddrHashMap {
private:
struct Cell {
StaticSpinMutex mtx;
atomic_uintptr_t addr;
T val;
};
public:
AddrHashMap();
class Handle {
public:
Handle(AddrHashMap<T, kSize> *map, uptr addr, bool remove = false);
~Handle();
T *operator -> ();
bool created() const;
bool exists() const;
private:
AddrHashMap<T, kSize> *map_;
Cell *cell_;
uptr addr_;
bool created_;
bool remove_;
};
private:
friend class Handle;
Cell *table_;
static const uptr kLocked = 1;
static const uptr kRemoved = 2;
Cell *acquire(uptr addr, bool remove, bool *created);
void release(uptr addr, bool remove, bool created, Cell *c);
uptr hash(uptr addr);
};
template<typename T, uptr kSize>
AddrHashMap<T, kSize>::Handle::Handle(AddrHashMap<T, kSize> *map, uptr addr,
bool remove) {
map_ = map;
addr_ = addr;
remove_ = remove;
cell_ = map_->acquire(addr_, remove_, &created_);
}
template<typename T, uptr kSize>
AddrHashMap<T, kSize>::Handle::~Handle() {
map_->release(addr_, remove_, created_, cell_);
}
template<typename T, uptr kSize>
T *AddrHashMap<T, kSize>::Handle::operator -> () {
return &cell_->val;
}
template<typename T, uptr kSize>
bool AddrHashMap<T, kSize>::Handle::created() const {
return created_;
}
template<typename T, uptr kSize>
bool AddrHashMap<T, kSize>::Handle::exists() const {
return cell_ != 0;
}
template<typename T, uptr kSize>
AddrHashMap<T, kSize>::AddrHashMap() {
table_ = (Cell*)MmapOrDie(kSize * sizeof(Cell), "AddrHashMap");
}
template<typename T, uptr kSize>
typename AddrHashMap<T, kSize>::Cell *AddrHashMap<T, kSize>::acquire(uptr addr,
bool remove, bool *created) {
// When we access the element associated with addr,
// we lock its home cell (the cell associated with hash(addr).
// If the element was just created or is going to be removed,
// we lock the cell in write mode. Otherwise we lock in read mode.
// The locking protects the object lifetime (it's not removed while
// somebody else accesses it). And also it helps to resolve concurrent
// inserts.
// Note that the home cell is not necessary the cell where the element is
// stored.
*created = false;
uptr h0 = hash(addr);
Cell *c0 = &table_[h0];
// First try to find an existing element w/o read mutex.
{
uptr h = h0;
for (;;) {
Cell *c = &table_[h];
uptr addr1 = atomic_load(&c->addr, memory_order_acquire);
if (addr1 == 0) // empty cell denotes end of the cell chain for the elem
break;
// Locked cell means that another thread can be concurrently inserting
// the same element, fallback to mutex.
if (addr1 == kLocked)
break;
if (addr1 == addr) // ok, found it
return c;
h++;
if (h == kSize)
h = 0;
CHECK_NE(h, h0); // made the full cycle
}
}
if (remove)
return 0;
// Now try to create it under the mutex.
c0->mtx.Lock();
uptr h = h0;
for (;;) {
Cell *c = &table_[h];
uptr addr1 = atomic_load(&c->addr, memory_order_acquire);
if (addr1 == addr) { // another thread has inserted it ahead of us
c0->mtx.Unlock();
return c;
}
// Skip kLocked, since we hold the home cell mutex, it can't be our elem.
if ((addr1 == 0 || addr1 == kRemoved) &&
atomic_compare_exchange_strong(&c->addr, &addr1, kLocked,
memory_order_acq_rel)) {
// we've created the element
*created = true;
return c;
}
h++;
if (h == kSize)
h = 0;
CHECK_NE(h, h0); // made the full cycle
}
}
template<typename T, uptr kSize>
void AddrHashMap<T, kSize>::release(uptr addr, bool remove, bool created,
Cell *c) {
if (c == 0)
return;
// if we are going to remove, we must hold write lock
uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
if (created) {
// denote completion of insertion
atomic_store(&c->addr, addr, memory_order_release);
// unlock the home cell
uptr h0 = hash(addr);
Cell *c0 = &table_[h0];
c0->mtx.Unlock();
} else {
CHECK_EQ(addr, addr1);
if (remove) {
// denote that the cell is empty now
atomic_store(&c->addr, kRemoved, memory_order_release);
}
}
}
template<typename T, uptr kSize>
uptr AddrHashMap<T, kSize>::hash(uptr addr) {
addr += addr << 10;
addr ^= addr >> 6;
return addr % kSize;
}
} // namespace __sanitizer
#endif // SANITIZER_ADDRHASHMAP_H