llvm-project/clang/lib/Sema/SemaTemplateInstantiate.cpp

1137 lines
41 KiB
C++
Raw Normal View History

//===------- SemaTemplateInstantiate.cpp - C++ Template Instantiation ------===/
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===/
//
// This file implements C++ template instantiation.
//
//===----------------------------------------------------------------------===/
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Lex/Preprocessor.h" // for the identifier table
#include "clang/Basic/LangOptions.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
//===----------------------------------------------------------------------===/
// Template Instantiation Support
//===----------------------------------------------------------------------===/
Sema::InstantiatingTemplate::
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ClassTemplateSpecializationDecl *Entity,
SourceRange InstantiationRange)
: SemaRef(SemaRef) {
Invalid = CheckInstantiationDepth(PointOfInstantiation,
InstantiationRange);
if (!Invalid) {
ActiveTemplateInstantiation Inst;
Inst.Kind = ActiveTemplateInstantiation::TemplateInstantiation;
Inst.PointOfInstantiation = PointOfInstantiation;
Inst.Entity = reinterpret_cast<uintptr_t>(Entity);
Inst.TemplateArgs = 0;
Inst.NumTemplateArgs = 0;
Inst.InstantiationRange = InstantiationRange;
SemaRef.ActiveTemplateInstantiations.push_back(Inst);
Invalid = false;
}
}
Sema::InstantiatingTemplate::InstantiatingTemplate(Sema &SemaRef,
SourceLocation PointOfInstantiation,
TemplateDecl *Template,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceRange InstantiationRange)
: SemaRef(SemaRef) {
Invalid = CheckInstantiationDepth(PointOfInstantiation,
InstantiationRange);
if (!Invalid) {
ActiveTemplateInstantiation Inst;
Inst.Kind
= ActiveTemplateInstantiation::DefaultTemplateArgumentInstantiation;
Inst.PointOfInstantiation = PointOfInstantiation;
Inst.Entity = reinterpret_cast<uintptr_t>(Template);
Inst.TemplateArgs = TemplateArgs;
Inst.NumTemplateArgs = NumTemplateArgs;
Inst.InstantiationRange = InstantiationRange;
SemaRef.ActiveTemplateInstantiations.push_back(Inst);
Invalid = false;
}
}
Sema::InstantiatingTemplate::~InstantiatingTemplate() {
if (!Invalid)
SemaRef.ActiveTemplateInstantiations.pop_back();
}
bool Sema::InstantiatingTemplate::CheckInstantiationDepth(
SourceLocation PointOfInstantiation,
SourceRange InstantiationRange) {
if (SemaRef.ActiveTemplateInstantiations.size()
<= SemaRef.getLangOptions().InstantiationDepth)
return false;
SemaRef.Diag(PointOfInstantiation,
diag::err_template_recursion_depth_exceeded)
<< SemaRef.getLangOptions().InstantiationDepth
<< InstantiationRange;
SemaRef.Diag(PointOfInstantiation, diag::note_template_recursion_depth)
<< SemaRef.getLangOptions().InstantiationDepth;
return true;
}
/// \brief Post-diagnostic hook for printing the instantiation stack.
void Sema::PrintInstantiationStackHook(unsigned, void *Cookie) {
Sema &SemaRef = *static_cast<Sema*>(Cookie);
SemaRef.PrintInstantiationStack();
SemaRef.LastTemplateInstantiationErrorContext
= SemaRef.ActiveTemplateInstantiations.back();
}
/// \brief Prints the current instantiation stack through a series of
/// notes.
void Sema::PrintInstantiationStack() {
for (llvm::SmallVector<ActiveTemplateInstantiation, 16>::reverse_iterator
Active = ActiveTemplateInstantiations.rbegin(),
ActiveEnd = ActiveTemplateInstantiations.rend();
Active != ActiveEnd;
++Active) {
switch (Active->Kind) {
case ActiveTemplateInstantiation::TemplateInstantiation: {
ClassTemplateSpecializationDecl *Spec
= cast<ClassTemplateSpecializationDecl>((Decl*)Active->Entity);
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
diag::note_template_class_instantiation_here)
<< Context.getTypeDeclType(Spec)
<< Active->InstantiationRange;
break;
}
case ActiveTemplateInstantiation::DefaultTemplateArgumentInstantiation: {
TemplateDecl *Template = cast<TemplateDecl>((Decl *)Active->Entity);
std::string TemplateArgsStr
= ClassTemplateSpecializationType::PrintTemplateArgumentList(
Active->TemplateArgs,
Active->NumTemplateArgs);
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
diag::note_default_arg_instantiation_here)
<< (Template->getNameAsString() + TemplateArgsStr)
<< Active->InstantiationRange;
break;
}
}
}
}
//===----------------------------------------------------------------------===/
// Template Instantiation for Types
//===----------------------------------------------------------------------===/
namespace {
class VISIBILITY_HIDDEN TemplateTypeInstantiator {
Sema &SemaRef;
const TemplateArgument *TemplateArgs;
unsigned NumTemplateArgs;
SourceLocation Loc;
DeclarationName Entity;
public:
TemplateTypeInstantiator(Sema &SemaRef,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceLocation Loc,
DeclarationName Entity)
: SemaRef(SemaRef), TemplateArgs(TemplateArgs),
NumTemplateArgs(NumTemplateArgs), Loc(Loc), Entity(Entity) { }
QualType operator()(QualType T) const { return Instantiate(T); }
QualType Instantiate(QualType T) const;
// Declare instantiate functions for each type.
#define TYPE(Class, Base) \
QualType Instantiate##Class##Type(const Class##Type *T, \
unsigned Quals) const;
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.def"
};
}
QualType
TemplateTypeInstantiator::InstantiateExtQualType(const ExtQualType *T,
unsigned Quals) const {
// FIXME: Implement this
assert(false && "Cannot instantiate ExtQualType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::InstantiateBuiltinType(const BuiltinType *T,
unsigned Quals) const {
assert(false && "Builtin types are not dependent and cannot be instantiated");
return QualType(T, Quals);
}
QualType
TemplateTypeInstantiator::
InstantiateFixedWidthIntType(const FixedWidthIntType *T, unsigned Quals) const {
// FIXME: Implement this
assert(false && "Cannot instantiate FixedWidthIntType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::InstantiateComplexType(const ComplexType *T,
unsigned Quals) const {
// FIXME: Implement this
assert(false && "Cannot instantiate ComplexType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::InstantiatePointerType(const PointerType *T,
unsigned Quals) const {
QualType PointeeType = Instantiate(T->getPointeeType());
if (PointeeType.isNull())
return QualType();
return SemaRef.BuildPointerType(PointeeType, Quals, Loc, Entity);
}
QualType
TemplateTypeInstantiator::InstantiateBlockPointerType(const BlockPointerType *T,
unsigned Quals) const {
// FIXME: Implement this
assert(false && "Cannot instantiate BlockPointerType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::InstantiateLValueReferenceType(
const LValueReferenceType *T, unsigned Quals) const {
QualType ReferentType = Instantiate(T->getPointeeType());
if (ReferentType.isNull())
return QualType();
return SemaRef.BuildReferenceType(ReferentType, true, Quals, Loc, Entity);
}
QualType
TemplateTypeInstantiator::InstantiateRValueReferenceType(
const RValueReferenceType *T, unsigned Quals) const {
QualType ReferentType = Instantiate(T->getPointeeType());
if (ReferentType.isNull())
return QualType();
return SemaRef.BuildReferenceType(ReferentType, false, Quals, Loc, Entity);
}
QualType
TemplateTypeInstantiator::
InstantiateMemberPointerType(const MemberPointerType *T,
unsigned Quals) const {
// FIXME: Implement this
assert(false && "Cannot instantiate MemberPointerType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::
InstantiateConstantArrayType(const ConstantArrayType *T,
unsigned Quals) const {
QualType ElementType = Instantiate(T->getElementType());
if (ElementType.isNull())
return ElementType;
// Build a temporary integer literal to specify the size for
// BuildArrayType. Since we have already checked the size as part of
// creating the dependent array type in the first place, we know
// there aren't any errors.
// FIXME: Is IntTy big enough? Maybe not, but LongLongTy causes
// problems that I have yet to investigate.
IntegerLiteral ArraySize(T->getSize(), SemaRef.Context.IntTy, Loc);
return SemaRef.BuildArrayType(ElementType, T->getSizeModifier(),
&ArraySize, T->getIndexTypeQualifier(),
Loc, Entity);
}
QualType
TemplateTypeInstantiator::
InstantiateIncompleteArrayType(const IncompleteArrayType *T,
unsigned Quals) const {
QualType ElementType = Instantiate(T->getElementType());
if (ElementType.isNull())
return ElementType;
return SemaRef.BuildArrayType(ElementType, T->getSizeModifier(),
0, T->getIndexTypeQualifier(),
Loc, Entity);
}
QualType
TemplateTypeInstantiator::
InstantiateVariableArrayType(const VariableArrayType *T,
unsigned Quals) const {
// FIXME: Implement this
assert(false && "Cannot instantiate VariableArrayType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::
InstantiateDependentSizedArrayType(const DependentSizedArrayType *T,
unsigned Quals) const {
Expr *ArraySize = T->getSizeExpr();
assert(ArraySize->isValueDependent() &&
"dependent sized array types must have value dependent size expr");
// Instantiate the element type if needed
QualType ElementType = T->getElementType();
if (ElementType->isDependentType()) {
ElementType = Instantiate(ElementType);
if (ElementType.isNull())
return QualType();
}
// Instantiate the size expression
Sema::OwningExprResult InstantiatedArraySize =
SemaRef.InstantiateExpr(ArraySize, TemplateArgs, NumTemplateArgs);
if (InstantiatedArraySize.isInvalid())
return QualType();
return SemaRef.BuildArrayType(ElementType, T->getSizeModifier(),
(Expr *)InstantiatedArraySize.release(),
T->getIndexTypeQualifier(), Loc, Entity);
}
QualType
TemplateTypeInstantiator::InstantiateVectorType(const VectorType *T,
unsigned Quals) const {
// FIXME: Implement this
assert(false && "Cannot instantiate VectorType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::InstantiateExtVectorType(const ExtVectorType *T,
unsigned Quals) const {
// FIXME: Implement this
assert(false && "Cannot instantiate ExtVectorType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::
InstantiateFunctionProtoType(const FunctionProtoType *T,
unsigned Quals) const {
QualType ResultType = Instantiate(T->getResultType());
if (ResultType.isNull())
return ResultType;
llvm::SmallVector<QualType, 16> ParamTypes;
for (FunctionProtoType::arg_type_iterator Param = T->arg_type_begin(),
ParamEnd = T->arg_type_end();
Param != ParamEnd; ++Param) {
QualType P = Instantiate(*Param);
if (P.isNull())
return P;
ParamTypes.push_back(P);
}
return SemaRef.BuildFunctionType(ResultType, &ParamTypes[0],
ParamTypes.size(),
T->isVariadic(), T->getTypeQuals(),
Loc, Entity);
}
QualType
TemplateTypeInstantiator::
InstantiateFunctionNoProtoType(const FunctionNoProtoType *T,
unsigned Quals) const {
assert(false && "Functions without prototypes cannot be dependent.");
return QualType();
}
QualType
TemplateTypeInstantiator::InstantiateTypedefType(const TypedefType *T,
unsigned Quals) const {
// FIXME: Implement this
assert(false && "Cannot instantiate TypedefType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::InstantiateTypeOfExprType(const TypeOfExprType *T,
unsigned Quals) const {
// FIXME: Implement this
assert(false && "Cannot instantiate TypeOfExprType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::InstantiateTypeOfType(const TypeOfType *T,
unsigned Quals) const {
// FIXME: Implement this
assert(false && "Cannot instantiate TypeOfType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::InstantiateRecordType(const RecordType *T,
unsigned Quals) const {
// FIXME: Implement this
assert(false && "Cannot instantiate RecordType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::InstantiateEnumType(const EnumType *T,
unsigned Quals) const {
// FIXME: Implement this
assert(false && "Cannot instantiate EnumType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::
InstantiateTemplateTypeParmType(const TemplateTypeParmType *T,
unsigned Quals) const {
if (T->getDepth() == 0) {
// Replace the template type parameter with its corresponding
// template argument.
assert(T->getIndex() < NumTemplateArgs && "Wrong # of template args");
assert(TemplateArgs[T->getIndex()].getKind() == TemplateArgument::Type &&
"Template argument kind mismatch");
QualType Result = TemplateArgs[T->getIndex()].getAsType();
if (Result.isNull() || !Quals)
return Result;
// C++ [dcl.ref]p1:
// [...] Cv-qualified references are ill-formed except when
// the cv-qualifiers are introduced through the use of a
// typedef (7.1.3) or of a template type argument (14.3), in
// which case the cv-qualifiers are ignored.
if (Quals && Result->isReferenceType())
Quals = 0;
return QualType(Result.getTypePtr(), Quals | Result.getCVRQualifiers());
}
// The template type parameter comes from an inner template (e.g.,
// the template parameter list of a member template inside the
// template we are instantiating). Create a new template type
// parameter with the template "level" reduced by one.
return SemaRef.Context.getTemplateTypeParmType(T->getDepth() - 1,
T->getIndex(),
T->getName())
.getQualifiedType(Quals);
}
QualType
TemplateTypeInstantiator::
InstantiateClassTemplateSpecializationType(
const ClassTemplateSpecializationType *T,
unsigned Quals) const {
llvm::SmallVector<TemplateArgument, 16> InstantiatedTemplateArgs;
InstantiatedTemplateArgs.reserve(T->getNumArgs());
for (ClassTemplateSpecializationType::iterator Arg = T->begin(),
ArgEnd = T->end();
Arg != ArgEnd; ++Arg) {
switch (Arg->getKind()) {
case TemplateArgument::Type: {
QualType T = SemaRef.InstantiateType(Arg->getAsType(),
TemplateArgs, NumTemplateArgs,
Arg->getLocation(),
DeclarationName());
if (T.isNull())
return QualType();
InstantiatedTemplateArgs.push_back(
TemplateArgument(Arg->getLocation(), T));
break;
}
case TemplateArgument::Declaration:
case TemplateArgument::Integral:
InstantiatedTemplateArgs.push_back(*Arg);
break;
case TemplateArgument::Expression:
Sema::OwningExprResult E
= SemaRef.InstantiateExpr(Arg->getAsExpr(), TemplateArgs,
NumTemplateArgs);
if (E.isInvalid())
return QualType();
InstantiatedTemplateArgs.push_back((Expr *)E.release());
break;
}
}
// FIXME: We're missing the locations of the template name, '<', and
// '>'.
return SemaRef.CheckClassTemplateId(cast<ClassTemplateDecl>(T->getTemplate()),
Loc,
SourceLocation(),
&InstantiatedTemplateArgs[0],
InstantiatedTemplateArgs.size(),
SourceLocation());
}
QualType
TemplateTypeInstantiator::
InstantiateObjCInterfaceType(const ObjCInterfaceType *T,
unsigned Quals) const {
assert(false && "Objective-C types cannot be dependent");
return QualType();
}
QualType
TemplateTypeInstantiator::
InstantiateObjCQualifiedInterfaceType(const ObjCQualifiedInterfaceType *T,
unsigned Quals) const {
assert(false && "Objective-C types cannot be dependent");
return QualType();
}
QualType
TemplateTypeInstantiator::
InstantiateObjCQualifiedIdType(const ObjCQualifiedIdType *T,
unsigned Quals) const {
assert(false && "Objective-C types cannot be dependent");
return QualType();
}
QualType
TemplateTypeInstantiator::
InstantiateObjCQualifiedClassType(const ObjCQualifiedClassType *T,
unsigned Quals) const {
assert(false && "Objective-C types cannot be dependent");
return QualType();
}
/// \brief The actual implementation of Sema::InstantiateType().
QualType TemplateTypeInstantiator::Instantiate(QualType T) const {
// If T is not a dependent type, there is nothing to do.
if (!T->isDependentType())
return T;
switch (T->getTypeClass()) {
#define TYPE(Class, Base) \
case Type::Class: \
return Instantiate##Class##Type(cast<Class##Type>(T.getTypePtr()), \
T.getCVRQualifiers());
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.def"
}
assert(false && "Not all types have been decoded for instantiation");
return QualType();
}
/// \brief Instantiate the type T with a given set of template arguments.
///
/// This routine substitutes the given template arguments into the
/// type T and produces the instantiated type.
///
/// \param T the type into which the template arguments will be
/// substituted. If this type is not dependent, it will be returned
/// immediately.
///
/// \param TemplateArgs the template arguments that will be
/// substituted for the top-level template parameters within T.
///
/// \param NumTemplateArgs the number of template arguments provided
/// by TemplateArgs.
///
/// \param Loc the location in the source code where this substitution
/// is being performed. It will typically be the location of the
/// declarator (if we're instantiating the type of some declaration)
/// or the location of the type in the source code (if, e.g., we're
/// instantiating the type of a cast expression).
///
/// \param Entity the name of the entity associated with a declaration
/// being instantiated (if any). May be empty to indicate that there
/// is no such entity (if, e.g., this is a type that occurs as part of
/// a cast expression) or that the entity has no name (e.g., an
/// unnamed function parameter).
///
/// \returns If the instantiation succeeds, the instantiated
/// type. Otherwise, produces diagnostics and returns a NULL type.
QualType Sema::InstantiateType(QualType T,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceLocation Loc, DeclarationName Entity) {
assert(!ActiveTemplateInstantiations.empty() &&
"Cannot perform an instantiation without some context on the "
"instantiation stack");
// If T is not a dependent type, there is nothing to do.
if (!T->isDependentType())
return T;
TemplateTypeInstantiator Instantiator(*this, TemplateArgs, NumTemplateArgs,
Loc, Entity);
return Instantiator(T);
}
//===----------------------------------------------------------------------===/
// Template Instantiation for Expressions
//===----------------------------------------------------------------------===/
namespace {
class VISIBILITY_HIDDEN TemplateExprInstantiator
: public StmtVisitor<TemplateExprInstantiator, Sema::OwningExprResult> {
Sema &SemaRef;
const TemplateArgument *TemplateArgs;
unsigned NumTemplateArgs;
public:
typedef Sema::OwningExprResult OwningExprResult;
TemplateExprInstantiator(Sema &SemaRef,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs)
: SemaRef(SemaRef), TemplateArgs(TemplateArgs),
NumTemplateArgs(NumTemplateArgs) { }
// FIXME: Once we get closer to completion, replace these
// manually-written declarations with automatically-generated ones
// from clang/AST/StmtNodes.def.
OwningExprResult VisitIntegerLiteral(IntegerLiteral *E);
OwningExprResult VisitDeclRefExpr(DeclRefExpr *E);
OwningExprResult VisitParenExpr(ParenExpr *E);
OwningExprResult VisitUnaryOperator(UnaryOperator *E);
OwningExprResult VisitBinaryOperator(BinaryOperator *E);
OwningExprResult VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E);
OwningExprResult VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E);
OwningExprResult VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *E);
// Base case. I'm supposed to ignore this.
Sema::OwningExprResult VisitStmt(Stmt *S) {
S->dump();
assert(false && "Cannot instantiate this kind of expression");
return SemaRef.ExprError();
}
};
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitIntegerLiteral(IntegerLiteral *E) {
return SemaRef.Clone(E);
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitDeclRefExpr(DeclRefExpr *E) {
Decl *D = E->getDecl();
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) {
assert(NTTP->getDepth() == 0 && "No nested templates yet");
const TemplateArgument &Arg = TemplateArgs[NTTP->getPosition()];
return SemaRef.Owned(new (SemaRef.Context) IntegerLiteral(
*Arg.getAsIntegral(),
Arg.getIntegralType(),
E->getSourceRange().getBegin()));
} else
assert(false && "Can't handle arbitrary declaration references");
return SemaRef.ExprError();
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitParenExpr(ParenExpr *E) {
Sema::OwningExprResult SubExpr
= SemaRef.InstantiateExpr(E->getSubExpr(), TemplateArgs, NumTemplateArgs);
if (SubExpr.isInvalid())
return SemaRef.ExprError();
return SemaRef.Owned(new (SemaRef.Context) ParenExpr(
E->getLParen(), E->getRParen(),
(Expr *)SubExpr.release()));
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitUnaryOperator(UnaryOperator *E) {
Sema::OwningExprResult Arg = Visit(E->getSubExpr());
if (Arg.isInvalid())
return SemaRef.ExprError();
return SemaRef.CreateBuiltinUnaryOp(E->getOperatorLoc(),
E->getOpcode(),
move(Arg));
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitBinaryOperator(BinaryOperator *E) {
Sema::OwningExprResult LHS = Visit(E->getLHS());
if (LHS.isInvalid())
return SemaRef.ExprError();
Sema::OwningExprResult RHS = Visit(E->getRHS());
if (RHS.isInvalid())
return SemaRef.ExprError();
Sema::OwningExprResult Result
= SemaRef.CreateBuiltinBinOp(E->getOperatorLoc(),
E->getOpcode(),
(Expr *)LHS.get(),
(Expr *)RHS.get());
if (Result.isInvalid())
return SemaRef.ExprError();
LHS.release();
RHS.release();
return move(Result);
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
Sema::OwningExprResult First = Visit(E->getArg(0));
if (First.isInvalid())
return SemaRef.ExprError();
Expr *Args[2] = { (Expr *)First.get(), 0 };
Sema::OwningExprResult Second(SemaRef);
if (E->getNumArgs() == 2) {
Second = Visit(E->getArg(1));
if (Second.isInvalid())
return SemaRef.ExprError();
Args[1] = (Expr *)Second.get();
}
if (!E->isTypeDependent()) {
// Since our original expression was not type-dependent, we do not
// perform lookup again at instantiation time (C++ [temp.dep]p1).
// Instead, we just build the new overloaded operator call
// expression.
First.release();
Second.release();
return SemaRef.Owned(new (SemaRef.Context) CXXOperatorCallExpr(
SemaRef.Context,
E->getOperator(),
E->getCallee(),
Args, E->getNumArgs(),
E->getType(),
E->getOperatorLoc()));
}
bool isPostIncDec = E->getNumArgs() == 2 &&
(E->getOperator() == OO_PlusPlus || E->getOperator() == OO_MinusMinus);
if (E->getNumArgs() == 1 || isPostIncDec) {
if (!Args[0]->getType()->isOverloadableType()) {
// The argument is not of overloadable type, so try to create a
// built-in unary operation.
UnaryOperator::Opcode Opc
= UnaryOperator::getOverloadedOpcode(E->getOperator(), isPostIncDec);
return SemaRef.CreateBuiltinUnaryOp(E->getOperatorLoc(), Opc,
move(First));
}
// Fall through to perform overload resolution
} else {
assert(E->getNumArgs() == 2 && "Expected binary operation");
Sema::OwningExprResult Result(SemaRef);
if (!Args[0]->getType()->isOverloadableType() &&
!Args[1]->getType()->isOverloadableType()) {
// Neither of the arguments is an overloadable type, so try to
// create a built-in binary operation.
BinaryOperator::Opcode Opc =
BinaryOperator::getOverloadedOpcode(E->getOperator());
Result = SemaRef.CreateBuiltinBinOp(E->getOperatorLoc(), Opc,
Args[0], Args[1]);
if (Result.isInvalid())
return SemaRef.ExprError();
First.release();
Second.release();
return move(Result);
}
// Fall through to perform overload resolution.
}
// Compute the set of functions that were found at template
// definition time.
Sema::FunctionSet Functions;
DeclRefExpr *DRE = cast<DeclRefExpr>(E->getCallee());
OverloadedFunctionDecl *Overloads
= cast<OverloadedFunctionDecl>(DRE->getDecl());
// FIXME: Do we have to check
// IsAcceptableNonMemberOperatorCandidate for each of these?
for (OverloadedFunctionDecl::function_iterator
F = Overloads->function_begin(),
FEnd = Overloads->function_end();
F != FEnd; ++F)
Functions.insert(*F);
// Add any functions found via argument-dependent lookup.
DeclarationName OpName
= SemaRef.Context.DeclarationNames.getCXXOperatorName(E->getOperator());
SemaRef.ArgumentDependentLookup(OpName, Args, E->getNumArgs(), Functions);
// Create the overloaded operator invocation.
if (E->getNumArgs() == 1 || isPostIncDec) {
UnaryOperator::Opcode Opc
= UnaryOperator::getOverloadedOpcode(E->getOperator(), isPostIncDec);
return SemaRef.CreateOverloadedUnaryOp(E->getOperatorLoc(), Opc,
Functions, move(First));
}
// FIXME: This would be far less ugly if CreateOverloadedBinOp took
// in ExprArg arguments!
BinaryOperator::Opcode Opc =
BinaryOperator::getOverloadedOpcode(E->getOperator());
OwningExprResult Result
= SemaRef.CreateOverloadedBinOp(E->getOperatorLoc(), Opc,
Functions, Args[0], Args[1]);
if (Result.isInvalid())
return SemaRef.ExprError();
First.release();
Second.release();
return move(Result);
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) {
bool isSizeOf = E->isSizeOf();
if (E->isArgumentType()) {
QualType T = E->getArgumentType();
if (T->isDependentType()) {
T = SemaRef.InstantiateType(T, TemplateArgs, NumTemplateArgs,
/*FIXME*/E->getOperatorLoc(),
&SemaRef.PP.getIdentifierTable().get("sizeof"));
if (T.isNull())
return SemaRef.ExprError();
}
return SemaRef.CreateSizeOfAlignOfExpr(T, E->getOperatorLoc(), isSizeOf,
E->getSourceRange());
}
Sema::OwningExprResult Arg = Visit(E->getArgumentExpr());
if (Arg.isInvalid())
return SemaRef.ExprError();
Sema::OwningExprResult Result
= SemaRef.CreateSizeOfAlignOfExpr((Expr *)Arg.get(), E->getOperatorLoc(),
isSizeOf, E->getSourceRange());
if (Result.isInvalid())
return SemaRef.ExprError();
Arg.release();
return move(Result);
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitCXXTemporaryObjectExpr(
CXXTemporaryObjectExpr *E) {
QualType T = E->getType();
if (T->isDependentType()) {
T = SemaRef.InstantiateType(T, TemplateArgs, NumTemplateArgs,
E->getTypeBeginLoc(), DeclarationName());
if (T.isNull())
return SemaRef.ExprError();
}
llvm::SmallVector<Expr *, 16> Args;
Args.reserve(E->getNumArgs());
bool Invalid = false;
for (CXXTemporaryObjectExpr::arg_iterator Arg = E->arg_begin(),
ArgEnd = E->arg_end();
Arg != ArgEnd; ++Arg) {
OwningExprResult InstantiatedArg = Visit(*Arg);
if (InstantiatedArg.isInvalid()) {
Invalid = true;
break;
}
Args.push_back((Expr *)InstantiatedArg.release());
}
if (!Invalid) {
SourceLocation CommaLoc;
// FIXME: HACK!
if (Args.size() > 1)
CommaLoc
= SemaRef.PP.getLocForEndOfToken(Args[0]->getSourceRange().getEnd());
Sema::OwningExprResult Result(
SemaRef.ActOnCXXTypeConstructExpr(SourceRange(E->getTypeBeginLoc()
/*, FIXME*/),
T.getAsOpaquePtr(),
/*FIXME*/E->getTypeBeginLoc(),
Sema::MultiExprArg(SemaRef,
(void**)&Args[0],
Args.size()),
/*HACK*/&CommaLoc,
E->getSourceRange().getEnd()));
// At this point, Args no longer owns the arguments, no matter what.
return move(Result);
}
// Clean up the instantiated arguments.
// FIXME: Would rather do this with RAII.
for (unsigned Idx = 0; Idx < Args.size(); ++Idx)
SemaRef.DeleteExpr(Args[Idx]);
return SemaRef.ExprError();
}
Sema::OwningExprResult
Sema::InstantiateExpr(Expr *E, const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs) {
TemplateExprInstantiator Instantiator(*this, TemplateArgs, NumTemplateArgs);
return Instantiator.Visit(E);
}
/// \brief Instantiate the base class specifiers of the given class
/// template specialization.
///
/// Produces a diagnostic and returns true on error, returns false and
/// attaches the instantiated base classes to the class template
/// specialization if successful.
bool
Sema::InstantiateBaseSpecifiers(
ClassTemplateSpecializationDecl *ClassTemplateSpec,
ClassTemplateDecl *ClassTemplate) {
bool Invalid = false;
llvm::SmallVector<CXXBaseSpecifier*, 8> InstantiatedBases;
for (ClassTemplateSpecializationDecl::base_class_iterator
Base = ClassTemplate->getTemplatedDecl()->bases_begin(),
BaseEnd = ClassTemplate->getTemplatedDecl()->bases_end();
Base != BaseEnd; ++Base) {
if (!Base->getType()->isDependentType()) {
// FIXME: Allocate via ASTContext
InstantiatedBases.push_back(new CXXBaseSpecifier(*Base));
continue;
}
QualType BaseType = InstantiateType(Base->getType(),
ClassTemplateSpec->getTemplateArgs(),
ClassTemplateSpec->getNumTemplateArgs(),
Base->getSourceRange().getBegin(),
DeclarationName());
if (BaseType.isNull()) {
Invalid = true;
continue;
}
if (CXXBaseSpecifier *InstantiatedBase
= CheckBaseSpecifier(ClassTemplateSpec,
Base->getSourceRange(),
Base->isVirtual(),
Base->getAccessSpecifierAsWritten(),
BaseType,
/*FIXME: Not totally accurate */
Base->getSourceRange().getBegin()))
InstantiatedBases.push_back(InstantiatedBase);
else
Invalid = true;
}
if (!Invalid &&
AttachBaseSpecifiers(ClassTemplateSpec, &InstantiatedBases[0],
InstantiatedBases.size()))
Invalid = true;
return Invalid;
}
bool
Sema::InstantiateClassTemplateSpecialization(
ClassTemplateSpecializationDecl *ClassTemplateSpec,
bool ExplicitInstantiation) {
// Perform the actual instantiation on the canonical declaration.
ClassTemplateSpec = cast<ClassTemplateSpecializationDecl>(
Context.getCanonicalDecl(ClassTemplateSpec));
// We can only instantiate something that hasn't already been
// instantiated or specialized. Fail without any diagnostics: our
// caller will provide an error message.
if (ClassTemplateSpec->getSpecializationKind() != TSK_Undeclared)
return true;
// FIXME: Push this class template instantiation onto the
// instantiation stack, checking for recursion that exceeds a
// certain depth.
// FIXME: Perform class template partial specialization to select
// the best template.
ClassTemplateDecl *Template = ClassTemplateSpec->getSpecializedTemplate();
if (!Template->getTemplatedDecl()->getDefinition(Context)) {
Diag(ClassTemplateSpec->getLocation(),
diag::err_template_implicit_instantiate_undefined)
<< Context.getTypeDeclType(ClassTemplateSpec);
Diag(Template->getTemplatedDecl()->getLocation(),
diag::note_template_decl_here);
return true;
}
// Note that this is an instantiation.
ClassTemplateSpec->setSpecializationKind(
ExplicitInstantiation? TSK_ExplicitInstantiation
: TSK_ImplicitInstantiation);
bool Invalid = false;
InstantiatingTemplate Inst(*this, ClassTemplateSpec->getLocation(),
ClassTemplateSpec);
if (Inst)
return true;
// Enter the scope of this instantiation. We don't use
// PushDeclContext because we don't have a scope.
DeclContext *PreviousContext = CurContext;
CurContext = ClassTemplateSpec;
// Start the definition of this instantiation.
ClassTemplateSpec->startDefinition();
// Instantiate the base class specifiers.
if (InstantiateBaseSpecifiers(ClassTemplateSpec, Template))
Invalid = true;
// FIXME: Create the injected-class-name for the
// instantiation. Should this be a typedef or something like it?
RecordDecl *Pattern = Template->getTemplatedDecl();
llvm::SmallVector<DeclTy *, 32> Fields;
for (RecordDecl::decl_iterator Member = Pattern->decls_begin(),
MemberEnd = Pattern->decls_end();
Member != MemberEnd; ++Member) {
if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(*Member)) {
// FIXME: Simplified instantiation of typedefs needs to be made
// "real".
QualType T = Typedef->getUnderlyingType();
if (T->isDependentType()) {
T = InstantiateType(T, ClassTemplateSpec->getTemplateArgs(),
ClassTemplateSpec->getNumTemplateArgs(),
Typedef->getLocation(),
Typedef->getDeclName());
if (T.isNull()) {
Invalid = true;
T = Context.IntTy;
}
}
// Create the new typedef
TypedefDecl *New
= TypedefDecl::Create(Context, ClassTemplateSpec,
Typedef->getLocation(),
Typedef->getIdentifier(),
T);
ClassTemplateSpec->addDecl(New);
}
else if (FieldDecl *Field = dyn_cast<FieldDecl>(*Member)) {
// FIXME: Simplified instantiation of fields needs to be made
// "real".
bool InvalidDecl = false;
QualType T = Field->getType();
if (T->isDependentType()) {
T = InstantiateType(T, ClassTemplateSpec->getTemplateArgs(),
ClassTemplateSpec->getNumTemplateArgs(),
Field->getLocation(),
Field->getDeclName());
if (!T.isNull() && T->isFunctionType()) {
// C++ [temp.arg.type]p3:
// If a declaration acquires a function type through a type
// dependent on a template-parameter and this causes a
// declaration that does not use the syntactic form of a
// function declarator to have function type, the program is
// ill-formed.
Diag(Field->getLocation(), diag::err_field_instantiates_to_function)
<< T;
T = QualType();
InvalidDecl = true;
}
}
Expr *BitWidth = Field->getBitWidth();
if (InvalidDecl)
BitWidth = 0;
else if (BitWidth) {
OwningExprResult InstantiatedBitWidth
= InstantiateExpr(BitWidth,
ClassTemplateSpec->getTemplateArgs(),
ClassTemplateSpec->getNumTemplateArgs());
if (InstantiatedBitWidth.isInvalid()) {
Invalid = InvalidDecl = true;
BitWidth = 0;
} else
BitWidth = (Expr *)InstantiatedBitWidth.release();
}
FieldDecl *New = CheckFieldDecl(Field->getDeclName(), T,
ClassTemplateSpec,
Field->getLocation(),
Field->isMutable(),
BitWidth,
Field->getAccess(),
0);
if (New) {
ClassTemplateSpec->addDecl(New);
Fields.push_back(New);
if (InvalidDecl)
New->setInvalidDecl();
if (New->isInvalidDecl())
Invalid = true;
}
} else if (StaticAssertDecl *SA = dyn_cast<StaticAssertDecl>(*Member)) {
Expr *AssertExpr = SA->getAssertExpr();
OwningExprResult InstantiatedAssertExpr
= InstantiateExpr(AssertExpr,
ClassTemplateSpec->getTemplateArgs(),
ClassTemplateSpec->getNumTemplateArgs());
if (!InstantiatedAssertExpr.isInvalid()) {
OwningExprResult Message = Clone(SA->getMessage());
Decl *New =
(Decl *)ActOnStaticAssertDeclaration(SA->getLocation(),
move(InstantiatedAssertExpr),
move(Message));
if (New->isInvalidDecl())
Invalid = true;
} else
Invalid = true;
}
}
// Finish checking fields.
ActOnFields(0, ClassTemplateSpec->getLocation(), ClassTemplateSpec,
&Fields[0], Fields.size(), SourceLocation(), SourceLocation(),
0);
// Add any implicitly-declared members that we might need.
AddImplicitlyDeclaredMembersToClass(ClassTemplateSpec);
// Exit the scope of this instantiation.
CurContext = PreviousContext;
return Invalid;
}