llvm-project/llvm/test/Analysis/DDG/basic-loopnest.ll

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

381 lines
14 KiB
LLVM
Raw Normal View History

Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; RUN: opt < %s -disable-output "-passes=print<ddg>" 2>&1 | FileCheck %s
; CHECK-LABEL: 'DDG' for loop 'test1.for.cond1.preheader':
; CHECK: Node Address:[[N1:0x[0-9a-f]*]]:pi-block
; CHECK-NEXT:--- start of nodes in pi-block ---
; CHECK: Node Address:[[N2:0x[0-9a-f]*]]:single-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %j.02 = phi i64 [ %inc, %for.body4 ], [ 1, %for.body4.preheader ]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N3:0x[0-9a-f]*]]
; CHECK: Node Address:[[N3]]:single-instruction
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %inc = add i64 %j.02, 1
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N2]]
; CHECK-NEXT:--- end of nodes in pi-block ---
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N4:0x[0-9a-f]*]]
; CHECK-NEXT: [def-use] to [[N5:0x[0-9a-f]*]]
; CHECK-NEXT: [def-use] to [[N6:0x[0-9a-f]*]]
; CHECK-NEXT: [def-use] to [[N7:0x[0-9a-f]*]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N5]]:single-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %sub7 = add i64 %j.02, -1
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N8:0x[0-9a-f]*]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N9:0x[0-9a-f]*]]:pi-block
; CHECK-NEXT:--- start of nodes in pi-block ---
; CHECK: Node Address:[[N10:0x[0-9a-f]*]]:single-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %i.04 = phi i64 [ %inc13, %for.inc12 ], [ 0, %test1.for.cond1.preheader.preheader ]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N11:0x[0-9a-f]*]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N11]]:single-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %inc13 = add i64 %i.04, 1
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N10]]
; CHECK-NEXT:--- end of nodes in pi-block ---
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N12:0x[0-9a-f]*]]
; CHECK-NEXT: [def-use] to [[N13:0x[0-9a-f]*]]
; CHECK-NEXT: [def-use] to [[N14:0x[0-9a-f]*]]
; CHECK-NEXT: [def-use] to [[N15:0x[0-9a-f]*]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N15]]:multi-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %exitcond = icmp ne i64 %inc13, %n
; CHECK-NEXT: br i1 %exitcond, label %test1.for.cond1.preheader, label %for.end14.loopexit
; CHECK-NEXT: Edges:none!
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N14]]:multi-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %4 = mul nsw i64 %i.04, %n
; CHECK-NEXT: %arrayidx10 = getelementptr inbounds float, float* %a, i64 %4
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N6]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N6]]:single-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %arrayidx11 = getelementptr inbounds float, float* %arrayidx10, i64 %j.02
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N18:0x[0-9a-f]*]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N13]]:multi-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %2 = mul nsw i64 %i.04, %n
; CHECK-NEXT: %arrayidx6 = getelementptr inbounds float, float* %a, i64 %2
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N8]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N8]]:single-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %arrayidx8 = getelementptr inbounds float, float* %arrayidx6, i64 %sub7
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N18]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N12]]:multi-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %0 = mul nsw i64 %i.04, %n
; CHECK-NEXT: %arrayidx = getelementptr inbounds float, float* %b, i64 %0
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N4]]
; CHECK: Node Address:[[N4]]:multi-instruction
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %arrayidx5 = getelementptr inbounds float, float* %arrayidx, i64 %j.02
; CHECK-NEXT: %1 = load float, float* %arrayidx5, align 4
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N18]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N18]]:pi-block
; CHECK-NEXT:--- start of nodes in pi-block ---
; CHECK: Node Address:[[N22:0x[0-9a-f]*]]:single-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %3 = load float, float* %arrayidx8, align 4
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N23:0x[0-9a-f]*]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N23]]:single-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %add = fadd float %1, %3
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N24:0x[0-9a-f]*]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N24]]:single-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: store float %add, float* %arrayidx11, align 4
; CHECK-NEXT: Edges:
; CHECK-NEXT: [memory] to [[N22]]
; CHECK-NEXT:--- end of nodes in pi-block ---
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:none!
; CHECK: Node Address:[[N25:0x[0-9a-f]*]]:single-instruction
; CHECK-NEXT: Instructions:
; CHECK-NEXT: br label %for.inc12
; CHECK-NEXT: Edges:none!
; CHECK: Node Address:[[N26:0x[0-9a-f]*]]:single-instruction
; CHECK-NEXT: Instructions:
; CHECK-NEXT: br label %for.body4
; CHECK-NEXT: Edges:none!
; CHECK: Node Address:[[N27:0x[0-9a-f]*]]:single-instruction
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %sub = add i64 %n, -1
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N7]]
; CHECK-NEXT: [def-use] to [[N28:0x[0-9a-f]*]]
; CHECK: Node Address:[[N28]]:multi-instruction
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %cmp21 = icmp ult i64 1, %sub
; CHECK-NEXT: br i1 %cmp21, label %for.body4.preheader, label %for.inc12
; CHECK-NEXT: Edges:none!
; CHECK: Node Address:[[N7]]:multi-instruction
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %cmp2 = icmp ult i64 %inc, %sub
; CHECK-NEXT: br i1 %cmp2, label %for.body4, label %for.inc12.loopexit
; CHECK-NEXT: Edges:none!
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
;; This test has a cycle.
;; void test1(unsigned long n, float a[][n], float b[][n]) {
;; for (unsigned long i = 0; i < n; i++)
;; for (unsigned long j = 1; j < n-1; j++)
;; a[i][j] = b[i][j] + a[i][j-1];
;; }
define void @test1(i64 %n, float* noalias %a, float* noalias %b) {
entry:
%exitcond3 = icmp ne i64 0, %n
br i1 %exitcond3, label %test1.for.cond1.preheader, label %for.end14
test1.for.cond1.preheader: ; preds = %entry, %for.inc12
%i.04 = phi i64 [ %inc13, %for.inc12 ], [ 0, %entry ]
%sub = add i64 %n, -1
%cmp21 = icmp ult i64 1, %sub
br i1 %cmp21, label %for.body4, label %for.inc12
for.body4: ; preds = %test1.for.cond1.preheader, %for.body4
%j.02 = phi i64 [ %inc, %for.body4 ], [ 1, %test1.for.cond1.preheader ]
%0 = mul nsw i64 %i.04, %n
%arrayidx = getelementptr inbounds float, float* %b, i64 %0
%arrayidx5 = getelementptr inbounds float, float* %arrayidx, i64 %j.02
%1 = load float, float* %arrayidx5, align 4
%2 = mul nsw i64 %i.04, %n
%arrayidx6 = getelementptr inbounds float, float* %a, i64 %2
%sub7 = add i64 %j.02, -1
%arrayidx8 = getelementptr inbounds float, float* %arrayidx6, i64 %sub7
%3 = load float, float* %arrayidx8, align 4
%add = fadd float %1, %3
%4 = mul nsw i64 %i.04, %n
%arrayidx10 = getelementptr inbounds float, float* %a, i64 %4
%arrayidx11 = getelementptr inbounds float, float* %arrayidx10, i64 %j.02
store float %add, float* %arrayidx11, align 4
%inc = add i64 %j.02, 1
%cmp2 = icmp ult i64 %inc, %sub
br i1 %cmp2, label %for.body4, label %for.inc12
for.inc12: ; preds = %for.body4, %test1.for.cond1.preheader
%inc13 = add i64 %i.04, 1
%exitcond = icmp ne i64 %inc13, %n
br i1 %exitcond, label %test1.for.cond1.preheader, label %for.end14
for.end14: ; preds = %for.inc12, %entry
ret void
}
; CHECK-LABEL: 'DDG' for loop 'test2.for.cond1.preheader':
; CHECK: Node Address:[[PI1:0x[0-9a-f]*]]:pi-block
; CHECK-NEXT:--- start of nodes in pi-block ---
; CHECK: Node Address:[[N1:0x[0-9a-f]*]]:single-instruction
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %j.02 = phi i64 [ %inc, %for.body4 ], [ 1, %for.body4.preheader ]
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N2:0x[0-9a-f]*]]
; CHECK: Node Address:[[N2]]:single-instruction
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %inc = add i64 %j.02, 1
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N1]]
; CHECK-NEXT:--- end of nodes in pi-block ---
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N3:0x[0-9a-f]*]]
; CHECK-NEXT: [def-use] to [[N4:0x[0-9a-f]*]]
; CHECK-NEXT: [def-use] to [[N5:0x[0-9a-f]*]]
; CHECK-NEXT: [def-use] to [[N6:0x[0-9a-f]*]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N4]]:single-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %add7 = add i64 %j.02, 1
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N7:0x[0-9a-f]*]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N8:0x[0-9a-f]*]]:pi-block
; CHECK-NEXT:--- start of nodes in pi-block ---
; CHECK: Node Address:[[N9:0x[0-9a-f]*]]:single-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %i.04 = phi i64 [ %inc13, %for.inc12 ], [ 0, %test2.for.cond1.preheader.preheader ]
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N10:0x[0-9a-f]*]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N10]]:single-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %inc13 = add i64 %i.04, 1
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N9]]
; CHECK-NEXT:--- end of nodes in pi-block ---
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N11:0x[0-9a-f]*]]
; CHECK-NEXT: [def-use] to [[N12:0x[0-9a-f]*]]
; CHECK-NEXT: [def-use] to [[N13:0x[0-9a-f]*]]
; CHECK-NEXT: [def-use] to [[N14:0x[0-9a-f]*]]
; CHECK: Node Address:[[N14]]:multi-instruction
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %exitcond = icmp ne i64 %inc13, %n
; CHECK-NEXT: br i1 %exitcond, label %test2.for.cond1.preheader, label %for.end14.loopexit
; CHECK-NEXT: Edges:none!
; CHECK: Node Address:[[N13]]:multi-instruction
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %4 = mul nsw i64 %i.04, %n
; CHECK-NEXT: %arrayidx10 = getelementptr inbounds float, float* %a, i64 %4
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N5]]
; CHECK: Node Address:[[N5]]:single-instruction
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %arrayidx11 = getelementptr inbounds float, float* %arrayidx10, i64 %j.02
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N17:0x[0-9a-f]*]]
; CHECK: Node Address:[[N12]]:multi-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %2 = mul nsw i64 %i.04, %n
; CHECK-NEXT: %arrayidx6 = getelementptr inbounds float, float* %a, i64 %2
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N7]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N7]]:multi-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %arrayidx8 = getelementptr inbounds float, float* %arrayidx6, i64 %add7
; CHECK-NEXT: %3 = load float, float* %arrayidx8, align 4
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N20:0x[0-9a-f]*]]
; CHECK-NEXT: [memory] to [[N17]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N11]]:multi-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %0 = mul nsw i64 %i.04, %n
; CHECK-NEXT: %arrayidx = getelementptr inbounds float, float* %b, i64 %0
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N3]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N3]]:multi-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %arrayidx5 = getelementptr inbounds float, float* %arrayidx, i64 %j.02
; CHECK-NEXT: %1 = load float, float* %arrayidx5, align 4
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N20]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N20]]:single-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %add = fadd float %1, %3
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N17]]
; CHECK: Node Address:[[N17]]:single-instruction
; CHECK-NEXT: Instructions:
; CHECK-NEXT: store float %add, float* %arrayidx11, align 4
; CHECK-NEXT: Edges:none!
; CHECK: Node Address:[[N23:0x[0-9a-f]*]]:single-instruction
; CHECK-NEXT: Instructions:
; CHECK-NEXT: br label %for.inc12
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Edges:none!
; CHECK: Node Address:[[N24:0x[0-9a-f]*]]:single-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: br label %for.body4
; CHECK-NEXT: Edges:none!
; CHECK: Node Address:[[N25:0x[0-9a-f]*]]:single-instruction
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %sub = add i64 %n, -1
; CHECK-NEXT: Edges:
; CHECK-NEXT: [def-use] to [[N6]]
; CHECK-NEXT: [def-use] to [[N26:0x[0-9a-f]*]]
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
; CHECK: Node Address:[[N26]]:multi-instruction
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %cmp21 = icmp ult i64 1, %sub
; CHECK-NEXT: br i1 %cmp21, label %for.body4.preheader, label %for.inc12
; CHECK-NEXT: Edges:none!
; CHECK: Node Address:[[N6]]:multi-instruction
; CHECK-NEXT: Instructions:
; CHECK-NEXT: %cmp2 = icmp ult i64 %inc, %sub
; CHECK-NEXT: br i1 %cmp2, label %for.body4, label %for.inc12.loopexit
; CHECK-NEXT: Edges:none!
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
;; This test has no cycles.
;; void test2(unsigned long n, float a[][n], float b[][n]) {
;; for (unsigned long i = 0; i < n; i++)
;; for (unsigned long j = 1; j < n-1; j++)
;; a[i][j] = b[i][j] + a[i][j+1];
;; }
define void @test2(i64 %n, float* noalias %a, float* noalias %b) {
entry:
%exitcond3 = icmp ne i64 0, %n
br i1 %exitcond3, label %test2.for.cond1.preheader, label %for.end14
test2.for.cond1.preheader: ; preds = %entry, %for.inc12
%i.04 = phi i64 [ %inc13, %for.inc12 ], [ 0, %entry ]
%sub = add i64 %n, -1
%cmp21 = icmp ult i64 1, %sub
br i1 %cmp21, label %for.body4, label %for.inc12
for.body4: ; preds = %test2.for.cond1.preheader, %for.body4
%j.02 = phi i64 [ %inc, %for.body4 ], [ 1, %test2.for.cond1.preheader ]
%0 = mul nsw i64 %i.04, %n
%arrayidx = getelementptr inbounds float, float* %b, i64 %0
%arrayidx5 = getelementptr inbounds float, float* %arrayidx, i64 %j.02
%1 = load float, float* %arrayidx5, align 4
%2 = mul nsw i64 %i.04, %n
%arrayidx6 = getelementptr inbounds float, float* %a, i64 %2
%add7 = add i64 %j.02, 1
%arrayidx8 = getelementptr inbounds float, float* %arrayidx6, i64 %add7
%3 = load float, float* %arrayidx8, align 4
%add = fadd float %1, %3
%4 = mul nsw i64 %i.04, %n
%arrayidx10 = getelementptr inbounds float, float* %a, i64 %4
%arrayidx11 = getelementptr inbounds float, float* %arrayidx10, i64 %j.02
store float %add, float* %arrayidx11, align 4
%inc = add i64 %j.02, 1
%cmp2 = icmp ult i64 %inc, %sub
br i1 %cmp2, label %for.body4, label %for.inc12
for.inc12: ; preds = %for.body4, %test2.for.cond1.preheader
%inc13 = add i64 %i.04, 1
%exitcond = icmp ne i64 %inc13, %n
br i1 %exitcond, label %test2.for.cond1.preheader, label %for.end14
for.end14: ; preds = %for.inc12, %entry
ret void
}