llvm-project/llvm/test/Transforms/InstCombine/result-of-usub-is-non-zero-...

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

424 lines
17 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt %s -instcombine -S | FileCheck %s
; Here we subtract two values, check that subtraction did not overflow AND
; that the result is non-zero. This can be simplified just to a comparison
; between the base and offset.
declare void @use8(i8)
declare void @use1(i1)
declare {i8, i1} @llvm.usub.with.overflow(i8, i8)
declare void @useagg({i8, i1})
; There is a number of base patterns..
define i1 @t0_noncanonical_ignoreme(i8 %base, i8 %offset) {
; CHECK-LABEL: @t0_noncanonical_ignoreme(
; CHECK-NEXT: [[ADJUSTED:%.*]] = sub i8 [[BASE:%.*]], [[OFFSET:%.*]]
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[NO_UNDERFLOW:%.*]] = icmp uge i8 [[BASE]], [[OFFSET]]
; CHECK-NEXT: call void @use1(i1 [[NO_UNDERFLOW]])
; CHECK-NEXT: [[NOT_NULL:%.*]] = icmp ne i8 [[ADJUSTED]], 0
; CHECK-NEXT: call void @use1(i1 [[NOT_NULL]])
; CHECK-NEXT: [[R:%.*]] = and i1 [[NOT_NULL]], [[NO_UNDERFLOW]]
; CHECK-NEXT: ret i1 [[R]]
;
%adjusted = sub i8 %base, %offset
call void @use8(i8 %adjusted)
%no_underflow = icmp ule i8 %adjusted, %base
call void @use1(i1 %no_underflow)
%not_null = icmp ne i8 %adjusted, 0
call void @use1(i1 %not_null)
%r = and i1 %not_null, %no_underflow
ret i1 %r
}
define i1 @t1(i8 %base, i8 %offset) {
; CHECK-LABEL: @t1(
; CHECK-NEXT: [[ADJUSTED:%.*]] = sub i8 [[BASE:%.*]], [[OFFSET:%.*]]
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[NO_UNDERFLOW:%.*]] = icmp uge i8 [[BASE]], [[OFFSET]]
; CHECK-NEXT: call void @use1(i1 [[NO_UNDERFLOW]])
; CHECK-NEXT: [[NOT_NULL:%.*]] = icmp ne i8 [[ADJUSTED]], 0
; CHECK-NEXT: call void @use1(i1 [[NOT_NULL]])
; CHECK-NEXT: [[R:%.*]] = and i1 [[NOT_NULL]], [[NO_UNDERFLOW]]
; CHECK-NEXT: ret i1 [[R]]
;
%adjusted = sub i8 %base, %offset
call void @use8(i8 %adjusted)
%no_underflow = icmp uge i8 %base, %offset
call void @use1(i1 %no_underflow)
%not_null = icmp ne i8 %adjusted, 0
call void @use1(i1 %not_null)
%r = and i1 %not_null, %no_underflow
ret i1 %r
}
define i1 @t1_strict(i8 %base, i8 %offset) {
; CHECK-LABEL: @t1_strict(
; CHECK-NEXT: [[ADJUSTED:%.*]] = sub i8 [[BASE:%.*]], [[OFFSET:%.*]]
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[NO_UNDERFLOW:%.*]] = icmp ugt i8 [[BASE]], [[OFFSET]]
; CHECK-NEXT: call void @use1(i1 [[NO_UNDERFLOW]])
; CHECK-NEXT: [[NOT_NULL:%.*]] = icmp ne i8 [[ADJUSTED]], 0
; CHECK-NEXT: call void @use1(i1 [[NOT_NULL]])
; CHECK-NEXT: [[R:%.*]] = and i1 [[NOT_NULL]], [[NO_UNDERFLOW]]
; CHECK-NEXT: ret i1 [[R]]
;
%adjusted = sub i8 %base, %offset
call void @use8(i8 %adjusted)
%no_underflow = icmp ugt i8 %base, %offset ; same is valid for strict predicate
call void @use1(i1 %no_underflow)
%not_null = icmp ne i8 %adjusted, 0
call void @use1(i1 %not_null)
%r = and i1 %not_null, %no_underflow
ret i1 %r
}
define i1 @t2(i8 %base, i8 %offset) {
; CHECK-LABEL: @t2(
; CHECK-NEXT: [[AGG:%.*]] = call { i8, i1 } @llvm.usub.with.overflow.i8(i8 [[BASE:%.*]], i8 [[OFFSET:%.*]])
; CHECK-NEXT: call void @useagg({ i8, i1 } [[AGG]])
; CHECK-NEXT: [[ADJUSTED:%.*]] = extractvalue { i8, i1 } [[AGG]], 0
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[UNDERFLOW:%.*]] = extractvalue { i8, i1 } [[AGG]], 1
; CHECK-NEXT: call void @use1(i1 [[UNDERFLOW]])
; CHECK-NEXT: [[NO_UNDERFLOW:%.*]] = xor i1 [[UNDERFLOW]], true
; CHECK-NEXT: call void @use1(i1 [[NO_UNDERFLOW]])
; CHECK-NEXT: [[NOT_NULL:%.*]] = icmp ne i8 [[ADJUSTED]], 0
; CHECK-NEXT: [[R:%.*]] = and i1 [[NOT_NULL]], [[NO_UNDERFLOW]]
; CHECK-NEXT: ret i1 [[R]]
;
%agg = call {i8, i1} @llvm.usub.with.overflow(i8 %base, i8 %offset)
call void @useagg({i8, i1} %agg)
%adjusted = extractvalue {i8, i1} %agg, 0
call void @use8(i8 %adjusted)
%underflow = extractvalue {i8, i1} %agg, 1
call void @use1(i1 %underflow)
%no_underflow = xor i1 %underflow, -1
call void @use1(i1 %no_underflow)
%not_null = icmp ne i8 %adjusted, 0
%r = and i1 %not_null, %no_underflow
ret i1 %r
}
; Commutativity
define i1 @t3_commutability0(i8 %base, i8 %offset) {
; CHECK-LABEL: @t3_commutability0(
; CHECK-NEXT: [[ADJUSTED:%.*]] = sub i8 [[BASE:%.*]], [[OFFSET:%.*]]
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[NO_UNDERFLOW:%.*]] = icmp uge i8 [[BASE]], [[OFFSET]]
; CHECK-NEXT: call void @use1(i1 [[NO_UNDERFLOW]])
; CHECK-NEXT: [[NOT_NULL:%.*]] = icmp ne i8 [[ADJUSTED]], 0
; CHECK-NEXT: call void @use1(i1 [[NOT_NULL]])
; CHECK-NEXT: [[R:%.*]] = and i1 [[NOT_NULL]], [[NO_UNDERFLOW]]
; CHECK-NEXT: ret i1 [[R]]
;
%adjusted = sub i8 %base, %offset
call void @use8(i8 %adjusted)
%no_underflow = icmp ule i8 %offset, %base ; swapped
call void @use1(i1 %no_underflow)
%not_null = icmp ne i8 %adjusted, 0
call void @use1(i1 %not_null)
%r = and i1 %not_null, %no_underflow
ret i1 %r
}
define i1 @t4_commutability1(i8 %base, i8 %offset) {
; CHECK-LABEL: @t4_commutability1(
; CHECK-NEXT: [[ADJUSTED:%.*]] = sub i8 [[BASE:%.*]], [[OFFSET:%.*]]
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[NO_UNDERFLOW:%.*]] = icmp uge i8 [[BASE]], [[OFFSET]]
; CHECK-NEXT: call void @use1(i1 [[NO_UNDERFLOW]])
; CHECK-NEXT: [[NOT_NULL:%.*]] = icmp ne i8 [[ADJUSTED]], 0
; CHECK-NEXT: call void @use1(i1 [[NOT_NULL]])
; CHECK-NEXT: [[R:%.*]] = and i1 [[NO_UNDERFLOW]], [[NOT_NULL]]
; CHECK-NEXT: ret i1 [[R]]
;
%adjusted = sub i8 %base, %offset
call void @use8(i8 %adjusted)
%no_underflow = icmp uge i8 %base, %offset
call void @use1(i1 %no_underflow)
%not_null = icmp ne i8 %adjusted, 0
call void @use1(i1 %not_null)
%r = and i1 %no_underflow, %not_null ; swapped
ret i1 %r
}
define i1 @t5_commutability2(i8 %base, i8 %offset) {
; CHECK-LABEL: @t5_commutability2(
; CHECK-NEXT: [[ADJUSTED:%.*]] = sub i8 [[BASE:%.*]], [[OFFSET:%.*]]
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[NO_UNDERFLOW:%.*]] = icmp uge i8 [[BASE]], [[OFFSET]]
; CHECK-NEXT: call void @use1(i1 [[NO_UNDERFLOW]])
; CHECK-NEXT: [[NOT_NULL:%.*]] = icmp ne i8 [[ADJUSTED]], 0
; CHECK-NEXT: call void @use1(i1 [[NOT_NULL]])
; CHECK-NEXT: [[R:%.*]] = and i1 [[NO_UNDERFLOW]], [[NOT_NULL]]
; CHECK-NEXT: ret i1 [[R]]
;
%adjusted = sub i8 %base, %offset
call void @use8(i8 %adjusted)
%no_underflow = icmp ule i8 %offset, %base ; swapped
call void @use1(i1 %no_underflow)
%not_null = icmp ne i8 %adjusted, 0
call void @use1(i1 %not_null)
%r = and i1 %no_underflow, %not_null ; swapped
ret i1 %r
}
define i1 @t6_commutability(i8 %base, i8 %offset) {
; CHECK-LABEL: @t6_commutability(
; CHECK-NEXT: [[AGG:%.*]] = call { i8, i1 } @llvm.usub.with.overflow.i8(i8 [[BASE:%.*]], i8 [[OFFSET:%.*]])
; CHECK-NEXT: call void @useagg({ i8, i1 } [[AGG]])
; CHECK-NEXT: [[ADJUSTED:%.*]] = extractvalue { i8, i1 } [[AGG]], 0
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[UNDERFLOW:%.*]] = extractvalue { i8, i1 } [[AGG]], 1
; CHECK-NEXT: call void @use1(i1 [[UNDERFLOW]])
; CHECK-NEXT: [[NO_UNDERFLOW:%.*]] = xor i1 [[UNDERFLOW]], true
; CHECK-NEXT: call void @use1(i1 [[NO_UNDERFLOW]])
; CHECK-NEXT: [[NOT_NULL:%.*]] = icmp ne i8 [[ADJUSTED]], 0
; CHECK-NEXT: [[R:%.*]] = and i1 [[NOT_NULL]], [[NO_UNDERFLOW]]
; CHECK-NEXT: ret i1 [[R]]
;
%agg = call {i8, i1} @llvm.usub.with.overflow(i8 %base, i8 %offset)
call void @useagg({i8, i1} %agg)
%adjusted = extractvalue {i8, i1} %agg, 0
call void @use8(i8 %adjusted)
%underflow = extractvalue {i8, i1} %agg, 1
call void @use1(i1 %underflow)
%no_underflow = xor i1 %underflow, -1
call void @use1(i1 %no_underflow)
%not_null = icmp ne i8 %adjusted, 0
%r = and i1 %no_underflow, %not_null ; swapped
ret i1 %r
}
; What if we were checking the opposite question, that we either got null,
; or overflow happened?
define i1 @t7(i8 %base, i8 %offset) {
; CHECK-LABEL: @t7(
; CHECK-NEXT: [[ADJUSTED:%.*]] = sub i8 [[BASE:%.*]], [[OFFSET:%.*]]
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[UNDERFLOW:%.*]] = icmp ult i8 [[BASE]], [[OFFSET]]
; CHECK-NEXT: call void @use1(i1 [[UNDERFLOW]])
; CHECK-NEXT: [[NULL:%.*]] = icmp eq i8 [[ADJUSTED]], 0
; CHECK-NEXT: call void @use1(i1 [[NULL]])
; CHECK-NEXT: [[R:%.*]] = or i1 [[NULL]], [[UNDERFLOW]]
; CHECK-NEXT: ret i1 [[R]]
;
%adjusted = sub i8 %base, %offset
call void @use8(i8 %adjusted)
%underflow = icmp ult i8 %base, %offset
call void @use1(i1 %underflow)
%null = icmp eq i8 %adjusted, 0
call void @use1(i1 %null)
%r = or i1 %null, %underflow
ret i1 %r
}
define i1 @t7_nonstrict(i8 %base, i8 %offset) {
; CHECK-LABEL: @t7_nonstrict(
; CHECK-NEXT: [[ADJUSTED:%.*]] = sub i8 [[BASE:%.*]], [[OFFSET:%.*]]
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[UNDERFLOW:%.*]] = icmp ule i8 [[BASE]], [[OFFSET]]
; CHECK-NEXT: call void @use1(i1 [[UNDERFLOW]])
; CHECK-NEXT: [[NULL:%.*]] = icmp eq i8 [[ADJUSTED]], 0
; CHECK-NEXT: call void @use1(i1 [[NULL]])
; CHECK-NEXT: [[R:%.*]] = or i1 [[NULL]], [[UNDERFLOW]]
; CHECK-NEXT: ret i1 [[R]]
;
%adjusted = sub i8 %base, %offset
call void @use8(i8 %adjusted)
%underflow = icmp ule i8 %base, %offset ; same is valid for non-strict predicate
call void @use1(i1 %underflow)
%null = icmp eq i8 %adjusted, 0
call void @use1(i1 %null)
%r = or i1 %null, %underflow
ret i1 %r
}
define i1 @t8(i8 %base, i8 %offset) {
; CHECK-LABEL: @t8(
; CHECK-NEXT: [[AGG:%.*]] = call { i8, i1 } @llvm.usub.with.overflow.i8(i8 [[BASE:%.*]], i8 [[OFFSET:%.*]])
; CHECK-NEXT: call void @useagg({ i8, i1 } [[AGG]])
; CHECK-NEXT: [[ADJUSTED:%.*]] = extractvalue { i8, i1 } [[AGG]], 0
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[UNDERFLOW:%.*]] = extractvalue { i8, i1 } [[AGG]], 1
; CHECK-NEXT: call void @use1(i1 [[UNDERFLOW]])
; CHECK-NEXT: [[NULL:%.*]] = icmp eq i8 [[ADJUSTED]], 0
; CHECK-NEXT: [[R:%.*]] = or i1 [[NULL]], [[UNDERFLOW]]
; CHECK-NEXT: ret i1 [[R]]
;
%agg = call {i8, i1} @llvm.usub.with.overflow(i8 %base, i8 %offset)
call void @useagg({i8, i1} %agg)
%adjusted = extractvalue {i8, i1} %agg, 0
call void @use8(i8 %adjusted)
%underflow = extractvalue {i8, i1} %agg, 1
call void @use1(i1 %underflow)
%null = icmp eq i8 %adjusted, 0
%r = or i1 %null, %underflow
ret i1 %r
}
; And these patterns also have commutative variants
define i1 @t9_commutative(i8 %base, i8 %offset) {
; CHECK-LABEL: @t9_commutative(
; CHECK-NEXT: [[ADJUSTED:%.*]] = sub i8 [[BASE:%.*]], [[OFFSET:%.*]]
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[UNDERFLOW:%.*]] = icmp ult i8 [[BASE]], [[OFFSET]]
; CHECK-NEXT: call void @use1(i1 [[UNDERFLOW]])
; CHECK-NEXT: [[NULL:%.*]] = icmp eq i8 [[ADJUSTED]], 0
; CHECK-NEXT: call void @use1(i1 [[NULL]])
; CHECK-NEXT: [[R:%.*]] = or i1 [[NULL]], [[UNDERFLOW]]
; CHECK-NEXT: ret i1 [[R]]
;
%adjusted = sub i8 %base, %offset
call void @use8(i8 %adjusted)
%underflow = icmp ult i8 %base, %adjusted ; swapped
call void @use1(i1 %underflow)
%null = icmp eq i8 %adjusted, 0
call void @use1(i1 %null)
%r = or i1 %null, %underflow
ret i1 %r
}
;-------------------------------------------------------------------------------
; If we are checking that we either did not get null or got no overflow,
; this is tautological and is always true.
define i1 @t10(i8 %base, i8 %offset) {
; CHECK-LABEL: @t10(
; CHECK-NEXT: [[ADJUSTED:%.*]] = sub i8 [[BASE:%.*]], [[OFFSET:%.*]]
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[NO_UNDERFLOW:%.*]] = icmp uge i8 [[BASE]], [[OFFSET]]
; CHECK-NEXT: call void @use1(i1 [[NO_UNDERFLOW]])
; CHECK-NEXT: [[NOT_NULL:%.*]] = icmp ne i8 [[ADJUSTED]], 0
; CHECK-NEXT: call void @use1(i1 [[NOT_NULL]])
; CHECK-NEXT: [[R:%.*]] = or i1 [[NOT_NULL]], [[NO_UNDERFLOW]]
; CHECK-NEXT: ret i1 [[R]]
;
%adjusted = sub i8 %base, %offset
call void @use8(i8 %adjusted)
%no_underflow = icmp uge i8 %base, %offset
call void @use1(i1 %no_underflow)
%not_null = icmp ne i8 %adjusted, 0
call void @use1(i1 %not_null)
%r = or i1 %not_null, %no_underflow
ret i1 %r
}
define i1 @t10_strict_bad(i8 %base, i8 %offset) {
; CHECK-LABEL: @t10_strict_bad(
; CHECK-NEXT: [[ADJUSTED:%.*]] = sub i8 [[BASE:%.*]], [[OFFSET:%.*]]
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[NO_UNDERFLOW:%.*]] = icmp ugt i8 [[BASE]], [[OFFSET]]
; CHECK-NEXT: call void @use1(i1 [[NO_UNDERFLOW]])
; CHECK-NEXT: [[NOT_NULL:%.*]] = icmp ne i8 [[ADJUSTED]], 0
; CHECK-NEXT: call void @use1(i1 [[NOT_NULL]])
; CHECK-NEXT: [[R:%.*]] = or i1 [[NOT_NULL]], [[NO_UNDERFLOW]]
; CHECK-NEXT: ret i1 [[R]]
;
%adjusted = sub i8 %base, %offset
call void @use8(i8 %adjusted)
%no_underflow = icmp ugt i8 %base, %offset ; but not for non-strict predicate
call void @use1(i1 %no_underflow)
%not_null = icmp ne i8 %adjusted, 0
call void @use1(i1 %not_null)
%r = or i1 %not_null, %no_underflow
ret i1 %r
}
define i1 @t11(i8 %base, i8 %offset) {
; CHECK-LABEL: @t11(
; CHECK-NEXT: [[AGG:%.*]] = call { i8, i1 } @llvm.usub.with.overflow.i8(i8 [[BASE:%.*]], i8 [[OFFSET:%.*]])
; CHECK-NEXT: call void @useagg({ i8, i1 } [[AGG]])
; CHECK-NEXT: [[ADJUSTED:%.*]] = extractvalue { i8, i1 } [[AGG]], 0
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[UNDERFLOW:%.*]] = extractvalue { i8, i1 } [[AGG]], 1
; CHECK-NEXT: call void @use1(i1 [[UNDERFLOW]])
; CHECK-NEXT: [[NO_UNDERFLOW:%.*]] = xor i1 [[UNDERFLOW]], true
; CHECK-NEXT: call void @use1(i1 [[NO_UNDERFLOW]])
; CHECK-NEXT: [[NOT_NULL:%.*]] = icmp ne i8 [[ADJUSTED]], 0
; CHECK-NEXT: [[R:%.*]] = or i1 [[NOT_NULL]], [[NO_UNDERFLOW]]
; CHECK-NEXT: ret i1 [[R]]
;
%agg = call {i8, i1} @llvm.usub.with.overflow(i8 %base, i8 %offset)
call void @useagg({i8, i1} %agg)
%adjusted = extractvalue {i8, i1} %agg, 0
call void @use8(i8 %adjusted)
%underflow = extractvalue {i8, i1} %agg, 1
call void @use1(i1 %underflow)
%no_underflow = xor i1 %underflow, -1
call void @use1(i1 %no_underflow)
%not_null = icmp ne i8 %adjusted, 0
%r = or i1 %not_null, %no_underflow
ret i1 %r
}
; Likewise, if we are checking that we both got null and overflow happened,
; it makes no sense and is always false.
define i1 @t12(i8 %base, i8 %offset) {
; CHECK-LABEL: @t12(
; CHECK-NEXT: [[ADJUSTED:%.*]] = sub i8 [[BASE:%.*]], [[OFFSET:%.*]]
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[UNDERFLOW:%.*]] = icmp ult i8 [[BASE]], [[OFFSET]]
; CHECK-NEXT: call void @use1(i1 [[UNDERFLOW]])
; CHECK-NEXT: [[NULL:%.*]] = icmp eq i8 [[ADJUSTED]], 0
; CHECK-NEXT: call void @use1(i1 [[NULL]])
; CHECK-NEXT: [[R:%.*]] = and i1 [[NULL]], [[UNDERFLOW]]
; CHECK-NEXT: ret i1 [[R]]
;
%adjusted = sub i8 %base, %offset
call void @use8(i8 %adjusted)
%underflow = icmp ugt i8 %adjusted, %base
call void @use1(i1 %underflow)
%null = icmp eq i8 %adjusted, 0
call void @use1(i1 %null)
%r = and i1 %null, %underflow
ret i1 %r
}
define i1 @t12_nonstrict_bad(i8 %base, i8 %offset) {
; CHECK-LABEL: @t12_nonstrict_bad(
; CHECK-NEXT: [[ADJUSTED:%.*]] = sub i8 [[BASE:%.*]], [[OFFSET:%.*]]
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[UNDERFLOW:%.*]] = icmp uge i8 [[ADJUSTED]], [[BASE]]
; CHECK-NEXT: call void @use1(i1 [[UNDERFLOW]])
; CHECK-NEXT: [[NULL:%.*]] = icmp eq i8 [[ADJUSTED]], 0
; CHECK-NEXT: call void @use1(i1 [[NULL]])
; CHECK-NEXT: [[R:%.*]] = and i1 [[NULL]], [[UNDERFLOW]]
; CHECK-NEXT: ret i1 [[R]]
;
%adjusted = sub i8 %base, %offset
call void @use8(i8 %adjusted)
%underflow = icmp uge i8 %adjusted, %base ; but not for non-strict predicate
call void @use1(i1 %underflow)
%null = icmp eq i8 %adjusted, 0
call void @use1(i1 %null)
%r = and i1 %null, %underflow
ret i1 %r
}
define i1 @t13(i8 %base, i8 %offset) {
; CHECK-LABEL: @t13(
; CHECK-NEXT: [[AGG:%.*]] = call { i8, i1 } @llvm.usub.with.overflow.i8(i8 [[BASE:%.*]], i8 [[OFFSET:%.*]])
; CHECK-NEXT: call void @useagg({ i8, i1 } [[AGG]])
; CHECK-NEXT: [[ADJUSTED:%.*]] = extractvalue { i8, i1 } [[AGG]], 0
; CHECK-NEXT: call void @use8(i8 [[ADJUSTED]])
; CHECK-NEXT: [[UNDERFLOW:%.*]] = extractvalue { i8, i1 } [[AGG]], 1
; CHECK-NEXT: call void @use1(i1 [[UNDERFLOW]])
; CHECK-NEXT: [[NULL:%.*]] = icmp eq i8 [[ADJUSTED]], 0
; CHECK-NEXT: [[R:%.*]] = and i1 [[NULL]], [[UNDERFLOW]]
; CHECK-NEXT: ret i1 [[R]]
;
%agg = call {i8, i1} @llvm.usub.with.overflow(i8 %base, i8 %offset)
call void @useagg({i8, i1} %agg)
%adjusted = extractvalue {i8, i1} %agg, 0
call void @use8(i8 %adjusted)
%underflow = extractvalue {i8, i1} %agg, 1
call void @use1(i1 %underflow)
%null = icmp eq i8 %adjusted, 0
%r = and i1 %null, %underflow
ret i1 %r
}