llvm-project/clang/test/Modules/redecl-add-after-load.cpp

53 lines
1.6 KiB
C++
Raw Normal View History

If a declaration is loaded, and then a module import adds a redeclaration, then ensure that querying the first declaration for its most recent declaration checks for redeclarations from the imported module. This works as follows: * The 'most recent' pointer on a canonical declaration grows a pointer to the external AST source and a generation number (space- and time-optimized for the case where there is no external source). * Each time the 'most recent' pointer is queried, if it has an external source, we check whether it's up to date, and update it if not. * The ancillary data stored on the canonical declaration is allocated lazily to avoid filling it in for declarations that end up being non-canonical. We'll still perform a redundant (ASTContext) allocation if someone asks for the most recent declaration from a decl before setPreviousDecl is called, but such cases are probably all bugs, and are now easy to find. Some finessing is still in order here -- in particular, we use a very general mechanism for handling the DefinitionData pointer on CXXRecordData, and a more targeted approach would be more compact. Also, the MayHaveOutOfDateDef mechanism should now be expunged, since it was addressing only a corner of the full problem space here. That's not covered by this patch. Early performance benchmarks show that this makes no measurable difference to Clang performance without modules enabled (and fixes a major correctness issue with modules enabled). I'll revert if a full performance comparison shows any problems. llvm-svn: 209046
2014-05-17 07:01:30 +08:00
// RUN: rm -rf %t
// RUN: %clang_cc1 -x objective-c++ -fmodules -fimplicit-module-maps -fno-modules-error-recovery -fmodules-cache-path=%t -I %S/Inputs %s -verify -std=c++11
// RUN: %clang_cc1 -x objective-c++ -fmodules -fimplicit-module-maps -fno-modules-error-recovery -fmodules-cache-path=%t -I %S/Inputs %s -verify -std=c++11 -DIMPORT_DECLS
If a declaration is loaded, and then a module import adds a redeclaration, then ensure that querying the first declaration for its most recent declaration checks for redeclarations from the imported module. This works as follows: * The 'most recent' pointer on a canonical declaration grows a pointer to the external AST source and a generation number (space- and time-optimized for the case where there is no external source). * Each time the 'most recent' pointer is queried, if it has an external source, we check whether it's up to date, and update it if not. * The ancillary data stored on the canonical declaration is allocated lazily to avoid filling it in for declarations that end up being non-canonical. We'll still perform a redundant (ASTContext) allocation if someone asks for the most recent declaration from a decl before setPreviousDecl is called, but such cases are probably all bugs, and are now easy to find. Some finessing is still in order here -- in particular, we use a very general mechanism for handling the DefinitionData pointer on CXXRecordData, and a more targeted approach would be more compact. Also, the MayHaveOutOfDateDef mechanism should now be expunged, since it was addressing only a corner of the full problem space here. That's not covered by this patch. Early performance benchmarks show that this makes no measurable difference to Clang performance without modules enabled (and fixes a major correctness issue with modules enabled). I'll revert if a full performance comparison shows any problems. llvm-svn: 209046
2014-05-17 07:01:30 +08:00
// expected-no-diagnostics
#ifdef IMPORT_DECLS
@import redecl_add_after_load_decls;
#else
If a declaration is loaded, and then a module import adds a redeclaration, then ensure that querying the first declaration for its most recent declaration checks for redeclarations from the imported module. This works as follows: * The 'most recent' pointer on a canonical declaration grows a pointer to the external AST source and a generation number (space- and time-optimized for the case where there is no external source). * Each time the 'most recent' pointer is queried, if it has an external source, we check whether it's up to date, and update it if not. * The ancillary data stored on the canonical declaration is allocated lazily to avoid filling it in for declarations that end up being non-canonical. We'll still perform a redundant (ASTContext) allocation if someone asks for the most recent declaration from a decl before setPreviousDecl is called, but such cases are probably all bugs, and are now easy to find. Some finessing is still in order here -- in particular, we use a very general mechanism for handling the DefinitionData pointer on CXXRecordData, and a more targeted approach would be more compact. Also, the MayHaveOutOfDateDef mechanism should now be expunged, since it was addressing only a corner of the full problem space here. That's not covered by this patch. Early performance benchmarks show that this makes no measurable difference to Clang performance without modules enabled (and fixes a major correctness issue with modules enabled). I'll revert if a full performance comparison shows any problems. llvm-svn: 209046
2014-05-17 07:01:30 +08:00
typedef struct A B;
extern const int variable;
extern constexpr int function();
constexpr int test(bool b) { return b ? variable : function(); }
namespace N {
typedef struct A B;
extern const int variable;
extern constexpr int function();
}
typedef N::B NB;
constexpr int N_test(bool b) { return b ? N::variable : N::function(); }
@import redecl_add_after_load_top;
typedef C::A CB;
constexpr int C_test(bool b) { return b ? C::variable : C::function(); }
struct D {
struct A;
If a declaration is loaded, and then a module import adds a redeclaration, then ensure that querying the first declaration for its most recent declaration checks for redeclarations from the imported module. This works as follows: * The 'most recent' pointer on a canonical declaration grows a pointer to the external AST source and a generation number (space- and time-optimized for the case where there is no external source). * Each time the 'most recent' pointer is queried, if it has an external source, we check whether it's up to date, and update it if not. * The ancillary data stored on the canonical declaration is allocated lazily to avoid filling it in for declarations that end up being non-canonical. We'll still perform a redundant (ASTContext) allocation if someone asks for the most recent declaration from a decl before setPreviousDecl is called, but such cases are probably all bugs, and are now easy to find. Some finessing is still in order here -- in particular, we use a very general mechanism for handling the DefinitionData pointer on CXXRecordData, and a more targeted approach would be more compact. Also, the MayHaveOutOfDateDef mechanism should now be expunged, since it was addressing only a corner of the full problem space here. That's not covered by this patch. Early performance benchmarks show that this makes no measurable difference to Clang performance without modules enabled (and fixes a major correctness issue with modules enabled). I'll revert if a full performance comparison shows any problems. llvm-svn: 209046
2014-05-17 07:01:30 +08:00
static const int variable;
static constexpr int function();
If a declaration is loaded, and then a module import adds a redeclaration, then ensure that querying the first declaration for its most recent declaration checks for redeclarations from the imported module. This works as follows: * The 'most recent' pointer on a canonical declaration grows a pointer to the external AST source and a generation number (space- and time-optimized for the case where there is no external source). * Each time the 'most recent' pointer is queried, if it has an external source, we check whether it's up to date, and update it if not. * The ancillary data stored on the canonical declaration is allocated lazily to avoid filling it in for declarations that end up being non-canonical. We'll still perform a redundant (ASTContext) allocation if someone asks for the most recent declaration from a decl before setPreviousDecl is called, but such cases are probably all bugs, and are now easy to find. Some finessing is still in order here -- in particular, we use a very general mechanism for handling the DefinitionData pointer on CXXRecordData, and a more targeted approach would be more compact. Also, the MayHaveOutOfDateDef mechanism should now be expunged, since it was addressing only a corner of the full problem space here. That's not covered by this patch. Early performance benchmarks show that this makes no measurable difference to Clang performance without modules enabled (and fixes a major correctness issue with modules enabled). I'll revert if a full performance comparison shows any problems. llvm-svn: 209046
2014-05-17 07:01:30 +08:00
};
typedef D::A DB;
constexpr int D_test(bool b) { return b ? D::variable : D::function(); }
#endif
If a declaration is loaded, and then a module import adds a redeclaration, then ensure that querying the first declaration for its most recent declaration checks for redeclarations from the imported module. This works as follows: * The 'most recent' pointer on a canonical declaration grows a pointer to the external AST source and a generation number (space- and time-optimized for the case where there is no external source). * Each time the 'most recent' pointer is queried, if it has an external source, we check whether it's up to date, and update it if not. * The ancillary data stored on the canonical declaration is allocated lazily to avoid filling it in for declarations that end up being non-canonical. We'll still perform a redundant (ASTContext) allocation if someone asks for the most recent declaration from a decl before setPreviousDecl is called, but such cases are probably all bugs, and are now easy to find. Some finessing is still in order here -- in particular, we use a very general mechanism for handling the DefinitionData pointer on CXXRecordData, and a more targeted approach would be more compact. Also, the MayHaveOutOfDateDef mechanism should now be expunged, since it was addressing only a corner of the full problem space here. That's not covered by this patch. Early performance benchmarks show that this makes no measurable difference to Clang performance without modules enabled (and fixes a major correctness issue with modules enabled). I'll revert if a full performance comparison shows any problems. llvm-svn: 209046
2014-05-17 07:01:30 +08:00
@import redecl_add_after_load;
B tu_struct_test;
constexpr int tu_variable_test = test(true);
constexpr int tu_function_test = test(false);
NB ns_struct_test;
constexpr int ns_variable_test = N_test(true);
constexpr int ns_function_test = N_test(false);
CB struct_struct_test;
constexpr int struct_variable_test = C_test(true);
constexpr int struct_function_test = C_test(false);
DB merged_struct_struct_test;
constexpr int merged_struct_variable_test = D_test(true);
constexpr int merged_struct_function_test = D_test(false);