llvm-project/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp

3090 lines
110 KiB
C++
Raw Normal View History

//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief This is the parent TargetLowering class for hardware code gen
/// targets.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUISelLowering.h"
#include "AMDGPU.h"
#include "AMDGPUFrameLowering.h"
#include "AMDGPUIntrinsicInfo.h"
#include "AMDGPURegisterInfo.h"
#include "AMDGPUSubtarget.h"
#include "R600MachineFunctionInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "SIInstrInfo.h"
using namespace llvm;
static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
MachineFunction &MF = State.getMachineFunction();
AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(),
ArgFlags.getOrigAlign());
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return true;
}
#include "AMDGPUGenCallingConv.inc"
// Find a larger type to do a load / store of a vector with.
EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
unsigned StoreSize = VT.getStoreSizeInBits();
if (StoreSize <= 32)
return EVT::getIntegerVT(Ctx, StoreSize);
assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
}
AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
const AMDGPUSubtarget &STI)
: TargetLowering(TM), Subtarget(&STI) {
// Lower floating point store/load to integer store/load to reduce the number
// of patterns in tablegen.
setOperationAction(ISD::LOAD, MVT::f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
setOperationAction(ISD::LOAD, MVT::i64, Promote);
AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
setOperationAction(ISD::LOAD, MVT::f64, Promote);
AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
// There are no 64-bit extloads. These should be done as a 32-bit extload and
// an extension to 64-bit.
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
}
for (MVT VT : MVT::integer_valuetypes()) {
if (VT == MVT::i64)
continue;
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
}
for (MVT VT : MVT::integer_vector_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
}
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
setOperationAction(ISD::STORE, MVT::f32, Promote);
AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
setOperationAction(ISD::STORE, MVT::v2f32, Promote);
AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
setOperationAction(ISD::STORE, MVT::v4f32, Promote);
AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
setOperationAction(ISD::STORE, MVT::v8f32, Promote);
AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
setOperationAction(ISD::STORE, MVT::v16f32, Promote);
AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
setOperationAction(ISD::STORE, MVT::i64, Promote);
AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
setOperationAction(ISD::STORE, MVT::v2i64, Promote);
AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
setOperationAction(ISD::STORE, MVT::f64, Promote);
AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
setOperationAction(ISD::STORE, MVT::v2f64, Promote);
AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
setTruncStoreAction(MVT::i64, MVT::i1, Expand);
setTruncStoreAction(MVT::i64, MVT::i8, Expand);
setTruncStoreAction(MVT::i64, MVT::i16, Expand);
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
setOperationAction(ISD::Constant, MVT::i32, Legal);
setOperationAction(ISD::Constant, MVT::i64, Legal);
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BRIND, MVT::Other, Expand);
// This is totally unsupported, just custom lower to produce an error.
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
// We need to custom lower some of the intrinsics
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
// Library functions. These default to Expand, but we have instructions
// for them.
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
setOperationAction(ISD::FEXP2, MVT::f32, Legal);
setOperationAction(ISD::FPOW, MVT::f32, Legal);
setOperationAction(ISD::FLOG2, MVT::f32, Legal);
setOperationAction(ISD::FABS, MVT::f32, Legal);
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
setOperationAction(ISD::FRINT, MVT::f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
setOperationAction(ISD::FROUND, MVT::f32, Custom);
setOperationAction(ISD::FROUND, MVT::f64, Custom);
setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
setOperationAction(ISD::FREM, MVT::f32, Custom);
setOperationAction(ISD::FREM, MVT::f64, Custom);
// v_mad_f32 does not support denormals according to some sources.
if (!Subtarget->hasFP32Denormals())
setOperationAction(ISD::FMAD, MVT::f32, Legal);
// Expand to fneg + fadd.
setOperationAction(ISD::FSUB, MVT::f64, Expand);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
setOperationAction(ISD::FCEIL, MVT::f64, Custom);
setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
setOperationAction(ISD::FRINT, MVT::f64, Custom);
setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
}
if (!Subtarget->hasBFI()) {
// fcopysign can be done in a single instruction with BFI.
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
}
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
for (MVT VT : ScalarIntVTs) {
// These should use [SU]DIVREM, so set them to expand
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
// GPU does not have divrem function for signed or unsigned.
setOperationAction(ISD::SDIVREM, VT, Custom);
setOperationAction(ISD::UDIVREM, VT, Custom);
// GPU does not have [S|U]MUL_LOHI functions as a single instruction.
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
setOperationAction(ISD::CTTZ, VT, Expand);
setOperationAction(ISD::CTLZ, VT, Expand);
}
if (!Subtarget->hasBCNT(32))
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
if (!Subtarget->hasBCNT(64))
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
// The hardware supports 32-bit ROTR, but not ROTL.
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::ROTL, MVT::i64, Expand);
setOperationAction(ISD::ROTR, MVT::i64, Expand);
setOperationAction(ISD::MUL, MVT::i64, Expand);
setOperationAction(ISD::MULHU, MVT::i64, Expand);
setOperationAction(ISD::MULHS, MVT::i64, Expand);
setOperationAction(ISD::UDIV, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
setOperationAction(ISD::SMIN, MVT::i32, Legal);
setOperationAction(ISD::UMIN, MVT::i32, Legal);
setOperationAction(ISD::SMAX, MVT::i32, Legal);
setOperationAction(ISD::UMAX, MVT::i32, Legal);
if (Subtarget->hasFFBH())
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
if (Subtarget->hasFFBL())
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal);
setOperationAction(ISD::CTLZ, MVT::i64, Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
// We only really have 32-bit BFE instructions (and 16-bit on VI).
//
// On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
// effort to match them now. We want this to be false for i64 cases when the
// extraction isn't restricted to the upper or lower half. Ideally we would
// have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
// span the midpoint are probably relatively rare, so don't worry about them
// for now.
if (Subtarget->hasBFE())
setHasExtractBitsInsn(true);
static const MVT::SimpleValueType VectorIntTypes[] = {
MVT::v2i32, MVT::v4i32
};
for (MVT VT : VectorIntTypes) {
// Expand the following operations for the current type by default.
setOperationAction(ISD::ADD, VT, Expand);
setOperationAction(ISD::AND, VT, Expand);
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
setOperationAction(ISD::MUL, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::OR, VT, Expand);
setOperationAction(ISD::SHL, VT, Expand);
setOperationAction(ISD::SRA, VT, Expand);
setOperationAction(ISD::SRL, VT, Expand);
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
setOperationAction(ISD::SUB, VT, Expand);
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Custom);
setOperationAction(ISD::UDIVREM, VT, Expand);
setOperationAction(ISD::ADDC, VT, Expand);
setOperationAction(ISD::SUBC, VT, Expand);
setOperationAction(ISD::ADDE, VT, Expand);
setOperationAction(ISD::SUBE, VT, Expand);
setOperationAction(ISD::SELECT, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::XOR, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
setOperationAction(ISD::CTPOP, VT, Expand);
setOperationAction(ISD::CTTZ, VT, Expand);
setOperationAction(ISD::CTLZ, VT, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
}
static const MVT::SimpleValueType FloatVectorTypes[] = {
MVT::v2f32, MVT::v4f32
};
for (MVT VT : FloatVectorTypes) {
setOperationAction(ISD::FABS, VT, Expand);
setOperationAction(ISD::FMINNUM, VT, Expand);
setOperationAction(ISD::FMAXNUM, VT, Expand);
setOperationAction(ISD::FADD, VT, Expand);
setOperationAction(ISD::FCEIL, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FDIV, VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::FFLOOR, VT, Expand);
setOperationAction(ISD::FTRUNC, VT, Expand);
setOperationAction(ISD::FMUL, VT, Expand);
2014-06-26 09:28:05 +08:00
setOperationAction(ISD::FMA, VT, Expand);
setOperationAction(ISD::FRINT, VT, Expand);
setOperationAction(ISD::FNEARBYINT, VT, Expand);
setOperationAction(ISD::FSQRT, VT, Expand);
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FSUB, VT, Expand);
setOperationAction(ISD::FNEG, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
}
// This causes using an unrolled select operation rather than expansion with
// bit operations. This is in general better, but the alternative using BFI
// instructions may be better if the select sources are SGPRs.
setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
setBooleanContents(ZeroOrNegativeOneBooleanContent);
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
setSchedulingPreference(Sched::RegPressure);
setJumpIsExpensive(true);
// SI at least has hardware support for floating point exceptions, but no way
// of using or handling them is implemented. They are also optional in OpenCL
// (Section 7.3)
setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
PredictableSelectIsExpensive = false;
// We want to find all load dependencies for long chains of stores to enable
// merging into very wide vectors. The problem is with vectors with > 4
// elements. MergeConsecutiveStores will attempt to merge these because x8/x16
// vectors are a legal type, even though we have to split the loads
// usually. When we can more precisely specify load legality per address
// space, we should be able to make FindBetterChain/MergeConsecutiveStores
// smarter so that they can figure out what to do in 2 iterations without all
// N > 4 stores on the same chain.
GatherAllAliasesMaxDepth = 16;
// FIXME: Need to really handle these.
MaxStoresPerMemcpy = 4096;
MaxStoresPerMemmove = 4096;
MaxStoresPerMemset = 4096;
setTargetDAGCombine(ISD::BITCAST);
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::SRA);
setTargetDAGCombine(ISD::SRL);
setTargetDAGCombine(ISD::MUL);
setTargetDAGCombine(ISD::MULHU);
setTargetDAGCombine(ISD::MULHS);
setTargetDAGCombine(ISD::SELECT);
setTargetDAGCombine(ISD::SELECT_CC);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::FADD);
setTargetDAGCombine(ISD::FSUB);
}
//===----------------------------------------------------------------------===//
// Target Information
//===----------------------------------------------------------------------===//
MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
return MVT::i32;
}
bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
return true;
}
// The backend supports 32 and 64 bit floating point immediates.
// FIXME: Why are we reporting vectors of FP immediates as legal?
bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
EVT ScalarVT = VT.getScalarType();
2014-06-16 05:22:52 +08:00
return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
}
// We don't want to shrink f64 / f32 constants.
bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
EVT ScalarVT = VT.getScalarType();
return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
}
bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
ISD::LoadExtType,
EVT NewVT) const {
unsigned NewSize = NewVT.getStoreSizeInBits();
// If we are reducing to a 32-bit load, this is always better.
if (NewSize == 32)
return true;
EVT OldVT = N->getValueType(0);
unsigned OldSize = OldVT.getStoreSizeInBits();
// Don't produce extloads from sub 32-bit types. SI doesn't have scalar
// extloads, so doing one requires using a buffer_load. In cases where we
// still couldn't use a scalar load, using the wider load shouldn't really
// hurt anything.
// If the old size already had to be an extload, there's no harm in continuing
// to reduce the width.
return (OldSize < 32);
}
bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
EVT CastTy) const {
assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
if (LoadTy.getScalarType() == MVT::i32)
return false;
unsigned LScalarSize = LoadTy.getScalarSizeInBits();
unsigned CastScalarSize = CastTy.getScalarSizeInBits();
return (LScalarSize < CastScalarSize) ||
(CastScalarSize >= 32);
}
// SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
// profitable with the expansion for 64-bit since it's generally good to
// speculate things.
// FIXME: These should really have the size as a parameter.
bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
return true;
}
bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
return true;
}
//===---------------------------------------------------------------------===//
// Target Properties
//===---------------------------------------------------------------------===//
bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
assert(VT.isFloatingPoint());
return VT == MVT::f32 || VT == MVT::f64;
}
bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
assert(VT.isFloatingPoint());
return VT == MVT::f32 || VT == MVT::f64;
}
bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
unsigned NumElem,
unsigned AS) const {
return true;
}
bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
// There are few operations which truly have vector input operands. Any vector
// operation is going to involve operations on each component, and a
// build_vector will be a copy per element, so it always makes sense to use a
// build_vector input in place of the extracted element to avoid a copy into a
// super register.
//
// We should probably only do this if all users are extracts only, but this
// should be the common case.
return true;
}
bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
// Truncate is just accessing a subregister.
unsigned SrcSize = Source.getSizeInBits();
unsigned DestSize = Dest.getSizeInBits();
return DestSize < SrcSize && DestSize % 32 == 0 ;
}
bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
// Truncate is just accessing a subregister.
unsigned SrcSize = Source->getScalarSizeInBits();
unsigned DestSize = Dest->getScalarSizeInBits();
if (DestSize== 16 && Subtarget->has16BitInsts())
return SrcSize >= 32;
return DestSize < SrcSize && DestSize % 32 == 0;
}
bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
unsigned SrcSize = Src->getScalarSizeInBits();
unsigned DestSize = Dest->getScalarSizeInBits();
if (SrcSize == 16 && Subtarget->has16BitInsts())
return DestSize >= 32;
return SrcSize == 32 && DestSize == 64;
}
bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
// Any register load of a 64-bit value really requires 2 32-bit moves. For all
// practical purposes, the extra mov 0 to load a 64-bit is free. As used,
// this will enable reducing 64-bit operations the 32-bit, which is always
// good.
if (Src == MVT::i16)
return Dest == MVT::i32 ||Dest == MVT::i64 ;
return Src == MVT::i32 && Dest == MVT::i64;
}
bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
return isZExtFree(Val.getValueType(), VT2);
}
bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
// There aren't really 64-bit registers, but pairs of 32-bit ones and only a
// limited number of native 64-bit operations. Shrinking an operation to fit
// in a single 32-bit register should always be helpful. As currently used,
// this is much less general than the name suggests, and is only used in
// places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
// not profitable, and may actually be harmful.
return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
}
//===---------------------------------------------------------------------===//
// TargetLowering Callbacks
//===---------------------------------------------------------------------===//
/// The SelectionDAGBuilder will automatically promote function arguments
/// with illegal types. However, this does not work for the AMDGPU targets
/// since the function arguments are stored in memory as these illegal types.
/// In order to handle this properly we need to get the original types sizes
/// from the LLVM IR Function and fixup the ISD:InputArg values before
/// passing them to AnalyzeFormalArguments()
/// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
/// input values across multiple registers. Each item in the Ins array
/// represents a single value that will be stored in regsters. Ins[x].VT is
/// the value type of the value that will be stored in the register, so
/// whatever SDNode we lower the argument to needs to be this type.
///
/// In order to correctly lower the arguments we need to know the size of each
/// argument. Since Ins[x].VT gives us the size of the register that will
/// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
/// for the orignal function argument so that we can deduce the correct memory
/// type to use for Ins[x]. In most cases the correct memory type will be
/// Ins[x].ArgVT. However, this will not always be the case. If, for example,
/// we have a kernel argument of type v8i8, this argument will be split into
/// 8 parts and each part will be represented by its own item in the Ins array.
/// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
/// the argument before it was split. From this, we deduce that the memory type
/// for each individual part is i8. We pass the memory type as LocVT to the
/// calling convention analysis function and the register type (Ins[x].VT) as
/// the ValVT.
void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State,
const SmallVectorImpl<ISD::InputArg> &Ins) const {
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
const ISD::InputArg &In = Ins[i];
EVT MemVT;
unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT);
if (!Subtarget->isAmdHsaOS() &&
(In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) {
// The ABI says the caller will extend these values to 32-bits.
MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32;
} else if (NumRegs == 1) {
// This argument is not split, so the IR type is the memory type.
assert(!In.Flags.isSplit());
if (In.ArgVT.isExtended()) {
// We have an extended type, like i24, so we should just use the register type
MemVT = In.VT;
} else {
MemVT = In.ArgVT;
}
} else if (In.ArgVT.isVector() && In.VT.isVector() &&
In.ArgVT.getScalarType() == In.VT.getScalarType()) {
assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements());
// We have a vector value which has been split into a vector with
// the same scalar type, but fewer elements. This should handle
// all the floating-point vector types.
MemVT = In.VT;
} else if (In.ArgVT.isVector() &&
In.ArgVT.getVectorNumElements() == NumRegs) {
// This arg has been split so that each element is stored in a separate
// register.
MemVT = In.ArgVT.getScalarType();
} else if (In.ArgVT.isExtended()) {
// We have an extended type, like i65.
MemVT = In.VT;
} else {
unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs;
assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0);
if (In.VT.isInteger()) {
MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
} else if (In.VT.isVector()) {
assert(!In.VT.getScalarType().isFloatingPoint());
unsigned NumElements = In.VT.getVectorNumElements();
assert(MemoryBits % NumElements == 0);
// This vector type has been split into another vector type with
// a different elements size.
EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
MemoryBits / NumElements);
MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
} else {
llvm_unreachable("cannot deduce memory type.");
}
}
// Convert one element vectors to scalar.
if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
MemVT = MemVT.getScalarType();
if (MemVT.isExtended()) {
// This should really only happen if we have vec3 arguments
assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
MemVT = MemVT.getPow2VectorType(State.getContext());
}
assert(MemVT.isSimple());
allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags,
State);
}
}
void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
const SmallVectorImpl<ISD::InputArg> &Ins) const {
State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
}
void AMDGPUTargetLowering::AnalyzeReturn(CCState &State,
const SmallVectorImpl<ISD::OutputArg> &Outs) const {
State.AnalyzeReturn(Outs, RetCC_SI);
}
SDValue
AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
}
//===---------------------------------------------------------------------===//
// Target specific lowering
//===---------------------------------------------------------------------===//
SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SDValue Callee = CLI.Callee;
SelectionDAG &DAG = CLI.DAG;
const Function &Fn = *DAG.getMachineFunction().getFunction();
StringRef FuncName("<unknown>");
if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
FuncName = G->getSymbol();
else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
FuncName = G->getGlobal()->getName();
DiagnosticInfoUnsupported NoCalls(
Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc());
DAG.getContext()->diagnose(NoCalls);
for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
return DAG.getEntryNode();
}
SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
const Function &Fn = *DAG.getMachineFunction().getFunction();
DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
SDLoc(Op).getDebugLoc());
DAG.getContext()->diagnose(NoDynamicAlloca);
auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
return DAG.getMergeValues(Ops, SDLoc());
}
SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default:
Op->dump(&DAG);
llvm_unreachable("Custom lowering code for this"
"instruction is not implemented yet!");
break;
case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
case ISD::FREM: return LowerFREM(Op, DAG);
case ISD::FCEIL: return LowerFCEIL(Op, DAG);
case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
case ISD::FRINT: return LowerFRINT(Op, DAG);
case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
case ISD::FROUND: return LowerFROUND(Op, DAG);
case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
return LowerCTLZ(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
}
return Op;
}
void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
switch (N->getOpcode()) {
case ISD::SIGN_EXTEND_INREG:
// Different parts of legalization seem to interpret which type of
// sign_extend_inreg is the one to check for custom lowering. The extended
// from type is what really matters, but some places check for custom
// lowering of the result type. This results in trying to use
// ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
// nothing here and let the illegal result integer be handled normally.
return;
default:
return;
}
}
static bool hasDefinedInitializer(const GlobalValue *GV) {
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
if (!GVar || !GVar->hasInitializer())
return false;
return !isa<UndefValue>(GVar->getInitializer());
}
SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
SDValue Op,
SelectionDAG &DAG) const {
const DataLayout &DL = DAG.getDataLayout();
GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = G->getGlobal();
switch (G->getAddressSpace()) {
case AMDGPUAS::LOCAL_ADDRESS: {
// XXX: What does the value of G->getOffset() mean?
assert(G->getOffset() == 0 &&
"Do not know what to do with an non-zero offset");
// TODO: We could emit code to handle the initialization somewhere.
if (hasDefinedInitializer(GV))
break;
unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
}
}
const Function &Fn = *DAG.getMachineFunction().getFunction();
DiagnosticInfoUnsupported BadInit(
Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
DAG.getContext()->diagnose(BadInit);
return SDValue();
}
SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
SelectionDAG &DAG) const {
SmallVector<SDValue, 8> Args;
for (const SDUse &U : Op->ops())
DAG.ExtractVectorElements(U.get(), Args);
return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
}
SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
SelectionDAG &DAG) const {
SmallVector<SDValue, 8> Args;
unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
EVT VT = Op.getValueType();
DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
VT.getVectorNumElements());
return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
}
SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDLoc DL(Op);
EVT VT = Op.getValueType();
switch (IntrinsicID) {
default: return Op;
case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name.
return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case AMDGPUIntrinsic::AMDGPU_bfe_i32:
return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3));
case AMDGPUIntrinsic::AMDGPU_bfe_u32:
return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3));
}
}
/// \brief Generate Min/Max node
SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT,
SDValue LHS, SDValue RHS,
SDValue True, SDValue False,
SDValue CC,
DAGCombinerInfo &DCI) const {
if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
return SDValue();
if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
return SDValue();
SelectionDAG &DAG = DCI.DAG;
ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
switch (CCOpcode) {
case ISD::SETOEQ:
case ISD::SETONE:
case ISD::SETUNE:
case ISD::SETNE:
case ISD::SETUEQ:
case ISD::SETEQ:
case ISD::SETFALSE:
case ISD::SETFALSE2:
case ISD::SETTRUE:
case ISD::SETTRUE2:
case ISD::SETUO:
case ISD::SETO:
break;
case ISD::SETULE:
case ISD::SETULT: {
if (LHS == True)
return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
}
case ISD::SETOLE:
case ISD::SETOLT:
case ISD::SETLE:
case ISD::SETLT: {
// Ordered. Assume ordered for undefined.
// Only do this after legalization to avoid interfering with other combines
// which might occur.
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
!DCI.isCalledByLegalizer())
return SDValue();
// We need to permute the operands to get the correct NaN behavior. The
// selected operand is the second one based on the failing compare with NaN,
// so permute it based on the compare type the hardware uses.
if (LHS == True)
return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
}
case ISD::SETUGE:
case ISD::SETUGT: {
if (LHS == True)
return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
}
case ISD::SETGT:
case ISD::SETGE:
case ISD::SETOGE:
case ISD::SETOGT: {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
!DCI.isCalledByLegalizer())
return SDValue();
if (LHS == True)
return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
}
case ISD::SETCC_INVALID:
llvm_unreachable("Invalid setcc condcode!");
}
return SDValue();
}
std::pair<SDValue, SDValue>
AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
const SDValue One = DAG.getConstant(1, SL, MVT::i32);
SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
return std::make_pair(Lo, Hi);
}
SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
}
SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
const SDValue One = DAG.getConstant(1, SL, MVT::i32);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
}
SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
SelectionDAG &DAG) const {
LoadSDNode *Load = cast<LoadSDNode>(Op);
EVT VT = Op.getValueType();
// If this is a 2 element vector, we really want to scalarize and not create
// weird 1 element vectors.
if (VT.getVectorNumElements() == 2)
return scalarizeVectorLoad(Load, DAG);
SDValue BasePtr = Load->getBasePtr();
EVT PtrVT = BasePtr.getValueType();
EVT MemVT = Load->getMemoryVT();
SDLoc SL(Op);
const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
EVT LoVT, HiVT;
EVT LoMemVT, HiMemVT;
SDValue Lo, Hi;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
unsigned Size = LoMemVT.getStoreSize();
unsigned BaseAlign = Load->getAlignment();
unsigned HiAlign = MinAlign(BaseAlign, Size);
SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
Load->getChain(), BasePtr, SrcValue, LoMemVT,
BaseAlign, Load->getMemOperand()->getFlags());
SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
DAG.getConstant(Size, SL, PtrVT));
SDValue HiLoad =
DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
SDValue Ops[] = {
DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
LoLoad.getValue(1), HiLoad.getValue(1))
};
return DAG.getMergeValues(Ops, SL);
}
SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
SelectionDAG &DAG) const {
StoreSDNode *Store = cast<StoreSDNode>(Op);
SDValue Val = Store->getValue();
EVT VT = Val.getValueType();
// If this is a 2 element vector, we really want to scalarize and not create
// weird 1 element vectors.
if (VT.getVectorNumElements() == 2)
return scalarizeVectorStore(Store, DAG);
EVT MemVT = Store->getMemoryVT();
SDValue Chain = Store->getChain();
SDValue BasePtr = Store->getBasePtr();
SDLoc SL(Op);
EVT LoVT, HiVT;
EVT LoMemVT, HiMemVT;
SDValue Lo, Hi;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
EVT PtrVT = BasePtr.getValueType();
SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
DAG.getConstant(LoMemVT.getStoreSize(), SL,
PtrVT));
const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
unsigned BaseAlign = Store->getAlignment();
unsigned Size = LoMemVT.getStoreSize();
unsigned HiAlign = MinAlign(BaseAlign, Size);
SDValue LoStore =
DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
Store->getMemOperand()->getFlags());
SDValue HiStore =
DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
}
// This is a shortcut for integer division because we have fast i32<->f32
// conversions, and fast f32 reciprocal instructions. The fractional part of a
// float is enough to accurately represent up to a 24-bit signed integer.
SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
bool Sign) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
MVT IntVT = MVT::i32;
MVT FltVT = MVT::f32;
unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
if (LHSSignBits < 9)
return SDValue();
unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
if (RHSSignBits < 9)
return SDValue();
unsigned BitSize = VT.getSizeInBits();
unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
unsigned DivBits = BitSize - SignBits;
if (Sign)
++DivBits;
ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
SDValue jq = DAG.getConstant(1, DL, IntVT);
if (Sign) {
// char|short jq = ia ^ ib;
jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
// jq = jq >> (bitsize - 2)
jq = DAG.getNode(ISD::SRA, DL, VT, jq,
DAG.getConstant(BitSize - 2, DL, VT));
// jq = jq | 0x1
jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
}
// int ia = (int)LHS;
SDValue ia = LHS;
// int ib, (int)RHS;
SDValue ib = RHS;
// float fa = (float)ia;
SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
// float fb = (float)ib;
SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
// fq = trunc(fq);
fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
// float fqneg = -fq;
SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
// float fr = mad(fqneg, fb, fa);
SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa);
// int iq = (int)fq;
SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
// fr = fabs(fr);
fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
// fb = fabs(fb);
fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
// int cv = fr >= fb;
SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
// jq = (cv ? jq : 0);
jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
// dst = iq + jq;
SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
// Rem needs compensation, it's easier to recompute it
SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
// Truncate to number of bits this divide really is.
if (Sign) {
SDValue InRegSize
= DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
} else {
SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
}
return DAG.getMergeValues({ Div, Rem }, DL);
}
void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &Results) const {
assert(Op.getValueType() == MVT::i64);
SDLoc DL(Op);
EVT VT = Op.getValueType();
EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
SDValue one = DAG.getConstant(1, DL, HalfVT);
SDValue zero = DAG.getConstant(0, DL, HalfVT);
//HiLo split
SDValue LHS = Op.getOperand(0);
SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
SDValue RHS = Op.getOperand(1);
SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
if (VT == MVT::i64 &&
DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
LHS_Lo, RHS_Lo);
SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero});
SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero});
Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
return;
}
// Get Speculative values
SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero});
REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
SDValue DIV_Lo = zero;
const unsigned halfBitWidth = HalfVT.getSizeInBits();
for (unsigned i = 0; i < halfBitWidth; ++i) {
const unsigned bitPos = halfBitWidth - i - 1;
SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
// Get value of high bit
SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
// Shift
REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
// Add LHS high bit
REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
// Update REM
SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
}
SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
Results.push_back(DIV);
Results.push_back(REM);
}
SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
if (VT == MVT::i64) {
SmallVector<SDValue, 2> Results;
LowerUDIVREM64(Op, DAG, Results);
return DAG.getMergeValues(Results, DL);
}
if (VT == MVT::i32) {
if (SDValue Res = LowerDIVREM24(Op, DAG, false))
return Res;
}
SDValue Num = Op.getOperand(0);
SDValue Den = Op.getOperand(1);
// RCP = URECIP(Den) = 2^32 / Den + e
// e is rounding error.
SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
// RCP_LO = mul(RCP, Den) */
SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
// RCP_HI = mulhu (RCP, Den) */
SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
// NEG_RCP_LO = -RCP_LO
SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
RCP_LO);
// ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
NEG_RCP_LO, RCP_LO,
ISD::SETEQ);
// Calculate the rounding error from the URECIP instruction
// E = mulhu(ABS_RCP_LO, RCP)
SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
// RCP_A_E = RCP + E
SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
// RCP_S_E = RCP - E
SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
// Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
RCP_A_E, RCP_S_E,
ISD::SETEQ);
// Quotient = mulhu(Tmp0, Num)
SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
// Num_S_Remainder = Quotient * Den
SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
// Remainder = Num - Num_S_Remainder
SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
// Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
DAG.getConstant(-1, DL, VT),
DAG.getConstant(0, DL, VT),
ISD::SETUGE);
// Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
Num_S_Remainder,
DAG.getConstant(-1, DL, VT),
DAG.getConstant(0, DL, VT),
ISD::SETUGE);
// Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
Remainder_GE_Zero);
// Calculate Division result:
// Quotient_A_One = Quotient + 1
SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
DAG.getConstant(1, DL, VT));
// Quotient_S_One = Quotient - 1
SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
DAG.getConstant(1, DL, VT));
// Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
Quotient, Quotient_A_One, ISD::SETEQ);
// Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
Quotient_S_One, Div, ISD::SETEQ);
// Calculate Rem result:
// Remainder_S_Den = Remainder - Den
SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
// Remainder_A_Den = Remainder + Den
SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
// Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
Remainder, Remainder_S_Den, ISD::SETEQ);
// Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
Remainder_A_Den, Rem, ISD::SETEQ);
SDValue Ops[2] = {
Div,
Rem
};
return DAG.getMergeValues(Ops, DL);
}
SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue NegOne = DAG.getConstant(-1, DL, VT);
if (VT == MVT::i32) {
if (SDValue Res = LowerDIVREM24(Op, DAG, true))
return Res;
}
if (VT == MVT::i64 &&
DAG.ComputeNumSignBits(LHS) > 32 &&
DAG.ComputeNumSignBits(RHS) > 32) {
EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
//HiLo split
SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
LHS_Lo, RHS_Lo);
SDValue Res[2] = {
DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
};
return DAG.getMergeValues(Res, DL);
}
SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
SDValue RSign = LHSign; // Remainder sign is the same as LHS
LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
SDValue Rem = Div.getValue(1);
Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
SDValue Res[2] = {
Div,
Rem
};
return DAG.getMergeValues(Res, DL);
}
// (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
EVT VT = Op.getValueType();
SDValue X = Op.getOperand(0);
SDValue Y = Op.getOperand(1);
// TODO: Should this propagate fast-math-flags?
SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
}
SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
// result = trunc(src)
// if (src > 0.0 && src != result)
// result += 1.0
SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
// TODO: Should this propagate fast-math-flags?
return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
}
static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
SelectionDAG &DAG) {
const unsigned FractBits = 52;
const unsigned ExpBits = 11;
SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
Hi,
DAG.getConstant(FractBits - 32, SL, MVT::i32),
DAG.getConstant(ExpBits, SL, MVT::i32));
SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
DAG.getConstant(1023, SL, MVT::i32));
return Exp;
}
SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
assert(Op.getValueType() == MVT::f64);
const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
const SDValue One = DAG.getConstant(1, SL, MVT::i32);
SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
// Extract the upper half, since this is where we will find the sign and
// exponent.
SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
SDValue Exp = extractF64Exponent(Hi, SL, DAG);
const unsigned FractBits = 52;
// Extract the sign bit.
const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
// Extend back to to 64-bits.
SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
const SDValue FractMask
= DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
}
SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
assert(Op.getValueType() == MVT::f64);
APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
// TODO: Should this propagate fast-math-flags?
SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
}
SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
// FNEARBYINT and FRINT are the same, except in their handling of FP
// exceptions. Those aren't really meaningful for us, and OpenCL only has
// rint, so just treat them as equivalent.
return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
}
// XXX - May require not supporting f32 denormals?
SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue X = Op.getOperand(0);
SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
// TODO: Should this propagate fast-math-flags?
SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32);
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32);
SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
}
SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue X = Op.getOperand(0);
SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
const SDValue One = DAG.getConstant(1, SL, MVT::i32);
const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
SDValue Exp = extractF64Exponent(Hi, SL, DAG);
const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
MVT::i64);
SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
DAG.getConstant(INT64_C(0x0008000000000000), SL,
MVT::i64),
Exp);
SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
DAG.getConstant(0, SL, MVT::i64), Tmp0,
ISD::SETNE);
SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
D, DAG.getConstant(0, SL, MVT::i64));
SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
ExpEqNegOne,
DAG.getConstantFP(1.0, SL, MVT::f64),
DAG.getConstantFP(0.0, SL, MVT::f64));
SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
return K;
}
SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT == MVT::f32)
return LowerFROUND32(Op, DAG);
if (VT == MVT::f64)
return LowerFROUND64(Op, DAG);
llvm_unreachable("unhandled type");
}
SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
// result = trunc(src);
// if (src < 0.0 && src != result)
// result += -1.0.
SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
// TODO: Should this propagate fast-math-flags?
return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
}
SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
if (ZeroUndef && Src.getValueType() == MVT::i32)
return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src);
SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
const SDValue One = DAG.getConstant(1, SL, MVT::i32);
SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
*DAG.getContext(), MVT::i32);
SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ);
SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo);
SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi);
const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32);
// ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi);
if (!ZeroUndef) {
// Test if the full 64-bit input is zero.
// FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
// which we probably don't want.
SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ);
SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0);
// TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
// with the same cycles, otherwise it is slower.
// SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
// DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
// The instruction returns -1 for 0 input, but the defined intrinsic
// behavior is to return the number of bits.
NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32,
SrcIsZero, Bits32, NewCtlz);
}
return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz);
}
SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
bool Signed) const {
// Unsigned
// cul2f(ulong u)
//{
// uint lz = clz(u);
// uint e = (u != 0) ? 127U + 63U - lz : 0;
// u = (u << lz) & 0x7fffffffffffffffUL;
// ulong t = u & 0xffffffffffUL;
// uint v = (e << 23) | (uint)(u >> 40);
// uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
// return as_float(v + r);
//}
// Signed
// cl2f(long l)
//{
// long s = l >> 63;
// float r = cul2f((l + s) ^ s);
// return s ? -r : r;
//}
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
SDValue L = Src;
SDValue S;
if (Signed) {
const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
}
EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
*DAG.getContext(), MVT::f32);
SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
SDValue E = DAG.getSelect(SL, MVT::i32,
DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
ZeroI32);
SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
U, DAG.getConstant(40, SL, MVT::i64));
SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl));
SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
SDValue One = DAG.getConstant(1, SL, MVT::i32);
SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
SDValue R = DAG.getSelect(SL, MVT::i32,
RCmp,
One,
DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
if (!Signed)
return R;
SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
}
SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
bool Signed) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
DAG.getConstant(0, SL, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
DAG.getConstant(1, SL, MVT::i32));
SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
SL, MVT::f64, Hi);
SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
DAG.getConstant(32, SL, MVT::i32));
// TODO: Should this propagate fast-math-flags?
return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
}
SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOperand(0).getValueType() == MVT::i64 &&
"operation should be legal");
EVT DestVT = Op.getValueType();
if (DestVT == MVT::f32)
return LowerINT_TO_FP32(Op, DAG, false);
assert(DestVT == MVT::f64);
return LowerINT_TO_FP64(Op, DAG, false);
}
SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOperand(0).getValueType() == MVT::i64 &&
"operation should be legal");
EVT DestVT = Op.getValueType();
if (DestVT == MVT::f32)
return LowerINT_TO_FP32(Op, DAG, true);
assert(DestVT == MVT::f64);
return LowerINT_TO_FP64(Op, DAG, true);
}
SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
bool Signed) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
MVT::f64);
SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
MVT::f64);
// TODO: Should this propagate fast-math-flags?
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
MVT::i32, FloorMul);
SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
}
SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
if (getTargetMachine().Options.UnsafeFPMath) {
// There is a generic expand for FP_TO_FP16 with unsafe fast math.
return SDValue();
}
SDLoc DL(Op);
SDValue N0 = Op.getOperand(0);
assert (N0.getSimpleValueType() == MVT::f64);
// f64 -> f16 conversion using round-to-nearest-even rounding mode.
const unsigned ExpMask = 0x7ff;
const unsigned ExpBiasf64 = 1023;
const unsigned ExpBiasf16 = 15;
SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
SDValue One = DAG.getConstant(1, DL, MVT::i32);
SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
DAG.getConstant(32, DL, MVT::i64));
UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
DAG.getConstant(20, DL, MVT::i64));
E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
DAG.getConstant(ExpMask, DL, MVT::i32));
// Subtract the fp64 exponent bias (1023) to get the real exponent and
// add the f16 bias (15) to get the biased exponent for the f16 format.
E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
DAG.getConstant(8, DL, MVT::i32));
M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
DAG.getConstant(0xffe, DL, MVT::i32));
SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
DAG.getConstant(0x1ff, DL, MVT::i32));
MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
// (M != 0 ? 0x0200 : 0) | 0x7c00;
SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
// N = M | (E << 12);
SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
DAG.getNode(ISD::SHL, DL, MVT::i32, E,
DAG.getConstant(12, DL, MVT::i32)));
// B = clamp(1-E, 0, 13);
SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
One, E);
SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
DAG.getConstant(13, DL, MVT::i32));
SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
DAG.getConstant(0x1000, DL, MVT::i32));
SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
DAG.getConstant(0x7, DL, MVT::i32));
V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
DAG.getConstant(2, DL, MVT::i32));
SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
One, Zero, ISD::SETEQ);
SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
One, Zero, ISD::SETGT);
V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
I, V, ISD::SETEQ);
// Extract the sign bit.
SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
DAG.getConstant(16, DL, MVT::i32));
Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
DAG.getConstant(0x8000, DL, MVT::i32));
V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
}
SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
SelectionDAG &DAG) const {
SDValue Src = Op.getOperand(0);
if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
return LowerFP64_TO_INT(Op, DAG, true);
return SDValue();
}
SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
SelectionDAG &DAG) const {
SDValue Src = Op.getOperand(0);
if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
return LowerFP64_TO_INT(Op, DAG, false);
return SDValue();
}
SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
SelectionDAG &DAG) const {
EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
MVT VT = Op.getSimpleValueType();
MVT ScalarVT = VT.getScalarType();
assert(VT.isVector());
SDValue Src = Op.getOperand(0);
SDLoc DL(Op);
// TODO: Don't scalarize on Evergreen?
unsigned NElts = VT.getVectorNumElements();
SmallVector<SDValue, 8> Args;
DAG.ExtractVectorElements(Src, Args, 0, NElts);
SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
for (unsigned I = 0; I < NElts; ++I)
Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
return DAG.getBuildVector(VT, DL, Args);
}
//===----------------------------------------------------------------------===//
// Custom DAG optimizations
//===----------------------------------------------------------------------===//
static bool isU24(SDValue Op, SelectionDAG &DAG) {
APInt KnownZero, KnownOne;
EVT VT = Op.getValueType();
DAG.computeKnownBits(Op, KnownZero, KnownOne);
return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
}
static bool isI24(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
// In order for this to be a signed 24-bit value, bit 23, must
// be a sign bit.
return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
// as unsigned 24-bit values.
(VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
}
static bool simplifyI24(SDNode *Node24, unsigned OpIdx,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
SDValue Op = Node24->getOperand(OpIdx);
EVT VT = Op.getValueType();
APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
if (TLO.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI))
return true;
return false;
}
template <typename IntTy>
static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
uint32_t Width, const SDLoc &DL) {
if (Width + Offset < 32) {
uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
return DAG.getConstant(Result, DL, MVT::i32);
}
return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
}
static bool hasVolatileUser(SDNode *Val) {
for (SDNode *U : Val->uses()) {
if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
if (M->isVolatile())
return true;
}
}
return false;
}
bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
// i32 vectors are the canonical memory type.
if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
return false;
if (!VT.isByteSized())
return false;
unsigned Size = VT.getStoreSize();
if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
return false;
if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
return false;
return true;
}
// Replace load of an illegal type with a store of a bitcast to a friendlier
// type.
SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (!DCI.isBeforeLegalize())
return SDValue();
LoadSDNode *LN = cast<LoadSDNode>(N);
if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
return SDValue();
SDLoc SL(N);
SelectionDAG &DAG = DCI.DAG;
EVT VT = LN->getMemoryVT();
unsigned Size = VT.getStoreSize();
unsigned Align = LN->getAlignment();
if (Align < Size && isTypeLegal(VT)) {
bool IsFast;
unsigned AS = LN->getAddressSpace();
// Expand unaligned loads earlier than legalization. Due to visitation order
// problems during legalization, the emitted instructions to pack and unpack
// the bytes again are not eliminated in the case of an unaligned copy.
if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
if (VT.isVector())
return scalarizeVectorLoad(LN, DAG);
SDValue Ops[2];
std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
return DAG.getMergeValues(Ops, SDLoc(N));
}
if (!IsFast)
return SDValue();
}
if (!shouldCombineMemoryType(VT))
return SDValue();
EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
SDValue NewLoad
= DAG.getLoad(NewVT, SL, LN->getChain(),
LN->getBasePtr(), LN->getMemOperand());
SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
DCI.CombineTo(N, BC, NewLoad.getValue(1));
return SDValue(N, 0);
}
// Replace store of an illegal type with a store of a bitcast to a friendlier
// type.
SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (!DCI.isBeforeLegalize())
return SDValue();
StoreSDNode *SN = cast<StoreSDNode>(N);
if (SN->isVolatile() || !ISD::isNormalStore(SN))
return SDValue();
EVT VT = SN->getMemoryVT();
unsigned Size = VT.getStoreSize();
SDLoc SL(N);
SelectionDAG &DAG = DCI.DAG;
unsigned Align = SN->getAlignment();
if (Align < Size && isTypeLegal(VT)) {
bool IsFast;
unsigned AS = SN->getAddressSpace();
// Expand unaligned stores earlier than legalization. Due to visitation
// order problems during legalization, the emitted instructions to pack and
// unpack the bytes again are not eliminated in the case of an unaligned
// copy.
if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
if (VT.isVector())
return scalarizeVectorStore(SN, DAG);
return expandUnalignedStore(SN, DAG);
}
if (!IsFast)
return SDValue();
}
if (!shouldCombineMemoryType(VT))
return SDValue();
EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
SDValue Val = SN->getValue();
//DCI.AddToWorklist(Val.getNode());
bool OtherUses = !Val.hasOneUse();
SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
if (OtherUses) {
SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
}
return DAG.getStore(SN->getChain(), SL, CastVal,
SN->getBasePtr(), SN->getMemOperand());
}
/// Split the 64-bit value \p LHS into two 32-bit components, and perform the
/// binary operation \p Opc to it with the corresponding constant operands.
SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
DAGCombinerInfo &DCI, const SDLoc &SL,
unsigned Opc, SDValue LHS,
uint32_t ValLo, uint32_t ValHi) const {
SelectionDAG &DAG = DCI.DAG;
SDValue Lo, Hi;
std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
// Re-visit the ands. It's possible we eliminated one of them and it could
// simplify the vector.
DCI.AddToWorklist(Lo.getNode());
DCI.AddToWorklist(Hi.getNode());
SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
}
SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (N->getValueType(0) != MVT::i64)
return SDValue();
// i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
// On some subtargets, 64-bit shift is a quarter rate instruction. In the
// common case, splitting this into a move and a 32-bit shift is faster and
// the same code size.
const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!RHS)
return SDValue();
unsigned RHSVal = RHS->getZExtValue();
if (RHSVal < 32)
return SDValue();
SDValue LHS = N->getOperand(0);
SDLoc SL(N);
SelectionDAG &DAG = DCI.DAG;
SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
}
SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (N->getValueType(0) != MVT::i64)
return SDValue();
const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!RHS)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
unsigned RHSVal = RHS->getZExtValue();
// (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
if (RHSVal == 32) {
SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
DAG.getConstant(31, SL, MVT::i32));
SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
}
// (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
if (RHSVal == 63) {
SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
DAG.getConstant(31, SL, MVT::i32));
SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
}
return SDValue();
}
SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (N->getValueType(0) != MVT::i64)
return SDValue();
const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!RHS)
return SDValue();
unsigned ShiftAmt = RHS->getZExtValue();
if (ShiftAmt < 32)
return SDValue();
// srl i64:x, C for C >= 32
// =>
// build_pair (srl hi_32(x), C - 32), 0
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
SDValue One = DAG.getConstant(1, SL, MVT::i32);
SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
VecOp, One);
SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
}
// We need to specifically handle i64 mul here to avoid unnecessary conversion
// instructions. If we only match on the legalized i64 mul expansion,
// SimplifyDemandedBits will be unable to remove them because there will be
// multiple uses due to the separate mul + mulh[su].
static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
SDValue N0, SDValue N1, unsigned Size, bool Signed) {
if (Size <= 32) {
unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
}
// Because we want to eliminate extension instructions before the
// operation, we need to create a single user here (i.e. not the separate
// mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
SDValue Mul = DAG.getNode(MulOpc, SL,
DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
Mul.getValue(0), Mul.getValue(1));
}
SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
unsigned Size = VT.getSizeInBits();
if (VT.isVector() || Size > 64)
return SDValue();
// There are i16 integer mul/mad.
if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue Mul;
if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
Mul = getMul24(DAG, DL, N0, N1, Size, false);
} else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
Mul = getMul24(DAG, DL, N0, N1, Size, true);
} else {
return SDValue();
}
// We need to use sext even for MUL_U24, because MUL_U24 is used
// for signed multiply of 8 and 16-bit types.
return DAG.getSExtOrTrunc(Mul, DL, VT);
}
SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
if (!Subtarget->hasMulI24() || VT.isVector())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (!isI24(N0, DAG) || !isI24(N1, DAG))
return SDValue();
N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
DCI.AddToWorklist(Mulhi.getNode());
return DAG.getSExtOrTrunc(Mulhi, DL, VT);
}
SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (!isU24(N0, DAG) || !isU24(N1, DAG))
return SDValue();
N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
DCI.AddToWorklist(Mulhi.getNode());
return DAG.getZExtOrTrunc(Mulhi, DL, VT);
}
SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
SDNode *N, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
// Simplify demanded bits before splitting into multiple users.
if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI))
return SDValue();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
SDLoc SL(N);
SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
return DAG.getMergeValues({ MulLo, MulHi }, SL);
}
static bool isNegativeOne(SDValue Val) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
return C->isAllOnesValue();
return false;
}
static bool isCtlzOpc(unsigned Opc) {
return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
}
SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG,
SDValue Op,
const SDLoc &DL) const {
EVT VT = Op.getValueType();
EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
LegalVT != MVT::i16))
return SDValue();
if (VT != MVT::i32)
Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op);
if (VT != MVT::i32)
FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH);
return FFBH;
}
// The native instructions return -1 on 0 input. Optimize out a select that
// produces -1 on 0.
//
// TODO: If zero is not undef, we could also do this if the output is compared
// against the bitwidth.
//
// TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond,
SDValue LHS, SDValue RHS,
DAGCombinerInfo &DCI) const {
ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
if (!CmpRhs || !CmpRhs->isNullValue())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
SDValue CmpLHS = Cond.getOperand(0);
// select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
if (CCOpcode == ISD::SETEQ &&
isCtlzOpc(RHS.getOpcode()) &&
RHS.getOperand(0) == CmpLHS &&
isNegativeOne(LHS)) {
return getFFBH_U32(DAG, CmpLHS, SL);
}
// select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
if (CCOpcode == ISD::SETNE &&
isCtlzOpc(LHS.getOpcode()) &&
LHS.getOperand(0) == CmpLHS &&
isNegativeOne(RHS)) {
return getFFBH_U32(DAG, CmpLHS, SL);
}
return SDValue();
}
SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SDValue Cond = N->getOperand(0);
if (Cond.getOpcode() != ISD::SETCC)
return SDValue();
EVT VT = N->getValueType(0);
SDValue LHS = Cond.getOperand(0);
SDValue RHS = Cond.getOperand(1);
SDValue CC = Cond.getOperand(2);
SDValue True = N->getOperand(1);
SDValue False = N->getOperand(2);
if (VT == MVT::f32 && Cond.hasOneUse()) {
SDValue MinMax
= CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
// Revisit this node so we can catch min3/max3/med3 patterns.
//DCI.AddToWorklist(MinMax.getNode());
return MinMax;
}
// There's no reason to not do this if the condition has other uses.
return performCtlzCombine(SDLoc(N), Cond, True, False, DCI);
}
SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
switch(N->getOpcode()) {
default:
break;
case ISD::BITCAST: {
EVT DestVT = N->getValueType(0);
// Push casts through vector builds. This helps avoid emitting a large
// number of copies when materializing floating point vector constants.
//
// vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
// vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
if (DestVT.isVector()) {
SDValue Src = N->getOperand(0);
if (Src.getOpcode() == ISD::BUILD_VECTOR) {
EVT SrcVT = Src.getValueType();
unsigned NElts = DestVT.getVectorNumElements();
if (SrcVT.getVectorNumElements() == NElts) {
EVT DestEltVT = DestVT.getVectorElementType();
SmallVector<SDValue, 8> CastedElts;
SDLoc SL(N);
for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
SDValue Elt = Src.getOperand(I);
CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
}
return DAG.getBuildVector(DestVT, SL, CastedElts);
}
}
}
if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
break;
// Fold bitcasts of constants.
//
// v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
// TODO: Generalize and move to DAGCombiner
SDValue Src = N->getOperand(0);
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
assert(Src.getValueType() == MVT::i64);
SDLoc SL(N);
uint64_t CVal = C->getZExtValue();
return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
}
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
const APInt &Val = C->getValueAPF().bitcastToAPInt();
SDLoc SL(N);
uint64_t CVal = Val.getZExtValue();
SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
}
break;
}
case ISD::SHL: {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
break;
return performShlCombine(N, DCI);
}
case ISD::SRL: {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
break;
return performSrlCombine(N, DCI);
}
case ISD::SRA: {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
break;
return performSraCombine(N, DCI);
}
case ISD::MUL:
return performMulCombine(N, DCI);
case ISD::MULHS:
return performMulhsCombine(N, DCI);
case ISD::MULHU:
return performMulhuCombine(N, DCI);
case AMDGPUISD::MUL_I24:
case AMDGPUISD::MUL_U24:
case AMDGPUISD::MULHI_I24:
case AMDGPUISD::MULHI_U24: {
// If the first call to simplify is successfull, then N may end up being
// deleted, so we shouldn't call simplifyI24 again.
simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI);
return SDValue();
}
case AMDGPUISD::MUL_LOHI_I24:
case AMDGPUISD::MUL_LOHI_U24:
return performMulLoHi24Combine(N, DCI);
case ISD::SELECT:
return performSelectCombine(N, DCI);
case AMDGPUISD::BFE_I32:
case AMDGPUISD::BFE_U32: {
assert(!N->getValueType(0).isVector() &&
"Vector handling of BFE not implemented");
ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
if (!Width)
break;
uint32_t WidthVal = Width->getZExtValue() & 0x1f;
if (WidthVal == 0)
return DAG.getConstant(0, DL, MVT::i32);
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!Offset)
break;
SDValue BitsFrom = N->getOperand(0);
uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
if (OffsetVal == 0) {
// This is already sign / zero extended, so try to fold away extra BFEs.
unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
if (OpSignBits >= SignBits)
return BitsFrom;
EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
if (Signed) {
// This is a sign_extend_inreg. Replace it to take advantage of existing
// DAG Combines. If not eliminated, we will match back to BFE during
// selection.
// TODO: The sext_inreg of extended types ends, although we can could
// handle them in a single BFE.
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
DAG.getValueType(SmallVT));
}
return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
}
if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
if (Signed) {
return constantFoldBFE<int32_t>(DAG,
CVal->getSExtValue(),
OffsetVal,
WidthVal,
DL);
}
return constantFoldBFE<uint32_t>(DAG,
CVal->getZExtValue(),
OffsetVal,
WidthVal,
DL);
}
if ((OffsetVal + WidthVal) >= 32) {
SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
BitsFrom, ShiftVal);
}
if (BitsFrom.hasOneUse()) {
APInt Demanded = APInt::getBitsSet(32,
OffsetVal,
OffsetVal + WidthVal);
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
TLI.SimplifyDemandedBits(BitsFrom, Demanded,
KnownZero, KnownOne, TLO)) {
DCI.CommitTargetLoweringOpt(TLO);
}
}
break;
}
case ISD::LOAD:
return performLoadCombine(N, DCI);
case ISD::STORE:
return performStoreCombine(N, DCI);
}
return SDValue();
}
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
const TargetRegisterClass *RC,
unsigned Reg, EVT VT) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned VirtualRegister;
if (!MRI.isLiveIn(Reg)) {
VirtualRegister = MRI.createVirtualRegister(RC);
MRI.addLiveIn(Reg, VirtualRegister);
} else {
VirtualRegister = MRI.getLiveInVirtReg(Reg);
}
return DAG.getRegister(VirtualRegister, VT);
}
uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr();
uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment);
switch (Param) {
case GRID_DIM:
return ArgOffset;
case GRID_OFFSET:
return ArgOffset + 4;
}
llvm_unreachable("unexpected implicit parameter type");
}
#define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((AMDGPUISD::NodeType)Opcode) {
case AMDGPUISD::FIRST_NUMBER: break;
// AMDIL DAG nodes
NODE_NAME_CASE(CALL);
NODE_NAME_CASE(UMUL);
NODE_NAME_CASE(BRANCH_COND);
// AMDGPU DAG nodes
NODE_NAME_CASE(ENDPGM)
NODE_NAME_CASE(RETURN)
NODE_NAME_CASE(DWORDADDR)
NODE_NAME_CASE(FRACT)
NODE_NAME_CASE(SETCC)
NODE_NAME_CASE(CLAMP)
NODE_NAME_CASE(COS_HW)
NODE_NAME_CASE(SIN_HW)
NODE_NAME_CASE(FMAX_LEGACY)
NODE_NAME_CASE(FMIN_LEGACY)
NODE_NAME_CASE(FMAX3)
NODE_NAME_CASE(SMAX3)
NODE_NAME_CASE(UMAX3)
NODE_NAME_CASE(FMIN3)
NODE_NAME_CASE(SMIN3)
NODE_NAME_CASE(UMIN3)
NODE_NAME_CASE(FMED3)
NODE_NAME_CASE(SMED3)
NODE_NAME_CASE(UMED3)
NODE_NAME_CASE(URECIP)
NODE_NAME_CASE(DIV_SCALE)
NODE_NAME_CASE(DIV_FMAS)
NODE_NAME_CASE(DIV_FIXUP)
NODE_NAME_CASE(TRIG_PREOP)
NODE_NAME_CASE(RCP)
NODE_NAME_CASE(RSQ)
NODE_NAME_CASE(RCP_LEGACY)
NODE_NAME_CASE(RSQ_LEGACY)
NODE_NAME_CASE(FMUL_LEGACY)
NODE_NAME_CASE(RSQ_CLAMP)
NODE_NAME_CASE(LDEXP)
NODE_NAME_CASE(FP_CLASS)
NODE_NAME_CASE(DOT4)
NODE_NAME_CASE(CARRY)
NODE_NAME_CASE(BORROW)
NODE_NAME_CASE(BFE_U32)
NODE_NAME_CASE(BFE_I32)
NODE_NAME_CASE(BFI)
NODE_NAME_CASE(BFM)
NODE_NAME_CASE(FFBH_U32)
NODE_NAME_CASE(FFBH_I32)
NODE_NAME_CASE(MUL_U24)
NODE_NAME_CASE(MUL_I24)
NODE_NAME_CASE(MULHI_U24)
NODE_NAME_CASE(MULHI_I24)
NODE_NAME_CASE(MUL_LOHI_U24)
NODE_NAME_CASE(MUL_LOHI_I24)
NODE_NAME_CASE(MAD_U24)
NODE_NAME_CASE(MAD_I24)
NODE_NAME_CASE(TEXTURE_FETCH)
NODE_NAME_CASE(EXPORT)
NODE_NAME_CASE(CONST_ADDRESS)
NODE_NAME_CASE(REGISTER_LOAD)
NODE_NAME_CASE(REGISTER_STORE)
NODE_NAME_CASE(LOAD_INPUT)
NODE_NAME_CASE(SAMPLE)
NODE_NAME_CASE(SAMPLEB)
NODE_NAME_CASE(SAMPLED)
NODE_NAME_CASE(SAMPLEL)
NODE_NAME_CASE(CVT_F32_UBYTE0)
NODE_NAME_CASE(CVT_F32_UBYTE1)
NODE_NAME_CASE(CVT_F32_UBYTE2)
NODE_NAME_CASE(CVT_F32_UBYTE3)
NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
NODE_NAME_CASE(CONST_DATA_PTR)
NODE_NAME_CASE(PC_ADD_REL_OFFSET)
NODE_NAME_CASE(KILL)
case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
NODE_NAME_CASE(SENDMSG)
NODE_NAME_CASE(INTERP_MOV)
NODE_NAME_CASE(INTERP_P1)
NODE_NAME_CASE(INTERP_P2)
NODE_NAME_CASE(STORE_MSKOR)
NODE_NAME_CASE(LOAD_CONSTANT)
NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
NODE_NAME_CASE(ATOMIC_CMP_SWAP)
NODE_NAME_CASE(ATOMIC_INC)
NODE_NAME_CASE(ATOMIC_DEC)
case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
}
return nullptr;
}
SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
SelectionDAG &DAG, int Enabled,
int &RefinementSteps,
bool &UseOneConstNR,
bool Reciprocal) const {
EVT VT = Operand.getValueType();
if (VT == MVT::f32) {
RefinementSteps = 0;
return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
}
// TODO: There is also f64 rsq instruction, but the documentation is less
// clear on its precision.
return SDValue();
}
SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
[Target] remove TargetRecip class; 2nd try This is a retry of r284495 which was reverted at r284513 due to use-after-scope bugs caused by faulty usage of StringRef. This version also renames a pair of functions: getRecipEstimateDivEnabled() getRecipEstimateSqrtEnabled() as suggested by Eric Christopher. original commit msg: [Target] remove TargetRecip class; move reciprocal estimate isel functionality to TargetLowering This is a follow-up to https://reviews.llvm.org/D24816 - where we changed reciprocal estimates to be function attributes rather than TargetOptions. This patch is intended to be a structural, but not functional change. By moving all of the TargetRecip functionality into TargetLowering, we can remove all of the reciprocal estimate state, shield the callers from the string format implementation, and simplify/localize the logic needed for a target to enable this. If a function has a "reciprocal-estimates" attribute, those settings may override the target's default reciprocal preferences for whatever operation and data type we're trying to optimize. If there's no attribute string or specific setting for the op/type pair, just use the target default settings. As noted earlier, a better solution would be to move the reciprocal estimate settings to IR instructions and SDNodes rather than function attributes, but that's a multi-step job that requires infrastructure improvements. I intend to work on that, but it's not clear how long it will take to get all the pieces in place. Differential Revision: https://reviews.llvm.org/D25440 llvm-svn: 284746
2016-10-21 00:55:45 +08:00
SelectionDAG &DAG, int Enabled,
int &RefinementSteps) const {
EVT VT = Operand.getValueType();
if (VT == MVT::f32) {
// Reciprocal, < 1 ulp error.
//
// This reciprocal approximation converges to < 0.5 ulp error with one
// newton rhapson performed with two fused multiple adds (FMAs).
RefinementSteps = 0;
return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
}
// TODO: There is also f64 rcp instruction, but the documentation is less
// clear on its precision.
return SDValue();
}
void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
APInt KnownZero2;
APInt KnownOne2;
unsigned Opc = Op.getOpcode();
switch (Opc) {
default:
break;
case AMDGPUISD::CARRY:
case AMDGPUISD::BORROW: {
KnownZero = APInt::getHighBitsSet(32, 31);
break;
}
case AMDGPUISD::BFE_I32:
case AMDGPUISD::BFE_U32: {
ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
if (!CWidth)
return;
unsigned BitWidth = 32;
uint32_t Width = CWidth->getZExtValue() & 0x1f;
if (Opc == AMDGPUISD::BFE_U32)
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
break;
}
}
}
unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
SDValue Op,
const SelectionDAG &DAG,
unsigned Depth) const {
switch (Op.getOpcode()) {
case AMDGPUISD::BFE_I32: {
ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
if (!Width)
return 1;
unsigned SignBits = 32 - Width->getZExtValue() + 1;
if (!isNullConstant(Op.getOperand(1)))
return SignBits;
// TODO: Could probably figure something out with non-0 offsets.
unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
return std::max(SignBits, Op0SignBits);
}
case AMDGPUISD::BFE_U32: {
ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
}
case AMDGPUISD::CARRY:
case AMDGPUISD::BORROW:
return 31;
default:
return 1;
}
}