llvm-project/flang/lib/Evaluate/formatting.cpp

725 lines
20 KiB
C++
Raw Normal View History

//===-- lib/Evaluate/formatting.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Evaluate/formatting.h"
#include "flang/Evaluate/call.h"
#include "flang/Evaluate/constant.h"
#include "flang/Evaluate/expression.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/tools.h"
#include "flang/Parser/characters.h"
#include "flang/Semantics/symbol.h"
#include <sstream>
namespace Fortran::evaluate {
bool formatForPGF90{false};
static void ShapeAsFortran(std::ostream &o, const ConstantSubscripts &shape) {
if (GetRank(shape) > 1) {
o << ",shape=";
char ch{'['};
for (auto dim : shape) {
o << ch << dim;
ch = ',';
}
o << "])";
}
}
template<typename RESULT, typename VALUE>
std::ostream &ConstantBase<RESULT, VALUE>::AsFortran(std::ostream &o) const {
if (Rank() > 1) {
o << "reshape(";
}
if (Rank() > 0) {
o << '[' << GetType().AsFortran() << "::";
}
bool first{true};
for (const auto &value : values_) {
if (first) {
first = false;
} else {
o << ',';
}
if constexpr (Result::category == TypeCategory::Integer) {
o << value.SignedDecimal() << '_' << Result::kind;
} else if constexpr (Result::category == TypeCategory::Real ||
Result::category == TypeCategory::Complex) {
value.AsFortran(o, Result::kind);
} else if constexpr (Result::category == TypeCategory::Character) {
o << Result::kind << '_' << parser::QuoteCharacterLiteral(value, true);
} else if constexpr (Result::category == TypeCategory::Logical) {
if (value.IsTrue()) {
o << ".true.";
} else {
o << ".false.";
}
o << '_' << Result::kind;
} else {
StructureConstructor{result_.derivedTypeSpec(), value}.AsFortran(o);
}
}
if (Rank() > 0) {
o << ']';
}
ShapeAsFortran(o, shape());
return o;
}
template<int KIND>
std::ostream &Constant<Type<TypeCategory::Character, KIND>>::AsFortran(
std::ostream &o) const {
if (Rank() > 1) {
o << "reshape(";
}
if (Rank() > 0) {
o << '[' << GetType().AsFortran(std::to_string(length_)) << "::";
}
auto total{static_cast<ConstantSubscript>(size())};
for (ConstantSubscript j{0}; j < total; ++j) {
Scalar<Result> value{values_.substr(j * length_, length_)};
if (j > 0) {
o << ',';
}
if (Result::kind != 1 || !formatForPGF90) {
o << Result::kind << '_';
}
o << parser::QuoteCharacterLiteral(value);
}
if (Rank() > 0) {
o << ']';
}
ShapeAsFortran(o, shape());
return o;
}
std::ostream &ActualArgument::AssumedType::AsFortran(std::ostream &o) const {
return o << symbol_->name().ToString();
}
std::ostream &ActualArgument::AsFortran(std::ostream &o) const {
if (keyword_) {
o << keyword_->ToString() << '=';
}
if (isAlternateReturn_) {
o << '*';
}
if (const auto *expr{UnwrapExpr()}) {
return expr->AsFortran(o);
} else {
return std::get<AssumedType>(u_).AsFortran(o);
}
}
std::ostream &SpecificIntrinsic::AsFortran(std::ostream &o) const {
return o << name;
}
std::ostream &ProcedureRef::AsFortran(std::ostream &o) const {
for (const auto &arg : arguments_) {
if (arg && arg->isPassedObject()) {
arg->AsFortran(o) << '%';
break;
}
}
proc_.AsFortran(o);
char separator{'('};
for (const auto &arg : arguments_) {
if (arg && !arg->isPassedObject()) {
arg->AsFortran(o << separator);
separator = ',';
}
}
if (separator == '(') {
o << '(';
}
return o << ')';
}
// Operator precedence formatting; insert parentheses around operands
// only when necessary.
enum class Precedence { // in increasing order for sane comparisons
DefinedBinary,
Or,
And,
Equivalence, // .EQV., .NEQV.
Not, // which binds *less* tightly in Fortran than relations
Relational,
Additive, // +, -, and (arbitrarily) //
Negate, // which binds *less* tightly than *, /, **
Multiplicative, // *, /
Power, // **, which is right-associative unlike the other dyadic operators
DefinedUnary,
Top,
};
template<typename A> constexpr Precedence ToPrecedence(const A &) {
return Precedence::Top;
}
template<int KIND>
static Precedence ToPrecedence(const LogicalOperation<KIND> &x) {
switch (x.logicalOperator) {
SWITCH_COVERS_ALL_CASES
case LogicalOperator::And: return Precedence::And;
case LogicalOperator::Or: return Precedence::Or;
case LogicalOperator::Not: return Precedence::Not;
case LogicalOperator::Eqv:
case LogicalOperator::Neqv: return Precedence::Equivalence;
}
}
template<int KIND> constexpr Precedence ToPrecedence(const Not<KIND> &) {
return Precedence::Not;
}
template<typename T> constexpr Precedence ToPrecedence(const Relational<T> &) {
return Precedence::Relational;
}
template<typename T> constexpr Precedence ToPrecedence(const Add<T> &) {
return Precedence::Additive;
}
template<typename T> constexpr Precedence ToPrecedence(const Subtract<T> &) {
return Precedence::Additive;
}
template<int KIND> constexpr Precedence ToPrecedence(const Concat<KIND> &) {
return Precedence::Additive;
}
template<typename T> constexpr Precedence ToPrecedence(const Negate<T> &) {
return Precedence::Negate;
}
template<typename T> constexpr Precedence ToPrecedence(const Multiply<T> &) {
return Precedence::Multiplicative;
}
template<typename T> constexpr Precedence ToPrecedence(const Divide<T> &) {
return Precedence::Multiplicative;
}
template<typename T> constexpr Precedence ToPrecedence(const Power<T> &) {
return Precedence::Power;
}
template<typename T>
constexpr Precedence ToPrecedence(const RealToIntPower<T> &) {
return Precedence::Power;
}
template<typename T> static Precedence ToPrecedence(const Constant<T> &x) {
static constexpr TypeCategory cat{T::category};
if constexpr (cat == TypeCategory::Integer || cat == TypeCategory::Real) {
if (auto n{GetScalarConstantValue<T>(x)}) {
if (n->IsNegative()) {
return Precedence::Negate;
}
}
}
return Precedence::Top;
}
template<typename T> static Precedence ToPrecedence(const Expr<T> &expr) {
return std::visit([](const auto &x) { return ToPrecedence(x); }, expr.u);
}
template<typename T> static bool IsNegatedScalarConstant(const Expr<T> &expr) {
static constexpr TypeCategory cat{T::category};
if constexpr (cat == TypeCategory::Integer || cat == TypeCategory::Real) {
if (auto n{GetScalarConstantValue<T>(expr)}) {
return n->IsNegative();
}
}
return false;
}
template<TypeCategory CAT>
static bool IsNegatedScalarConstant(const Expr<SomeKind<CAT>> &expr) {
return std::visit(
[](const auto &x) { return IsNegatedScalarConstant(x); }, expr.u);
}
struct OperatorSpelling {
const char *prefix{""}, *infix{","}, *suffix{""};
};
template<typename A> constexpr OperatorSpelling SpellOperator(const A &) {
return OperatorSpelling{};
}
template<typename A>
constexpr OperatorSpelling SpellOperator(const Negate<A> &) {
return OperatorSpelling{"-", "", ""};
}
template<typename A>
constexpr OperatorSpelling SpellOperator(const Parentheses<A> &) {
return OperatorSpelling{"(", "", ")"};
}
template<int KIND>
static OperatorSpelling SpellOperator(const ComplexComponent<KIND> &x) {
return {x.isImaginaryPart ? "aimag(" : "real(", "", ")"};
}
template<int KIND> constexpr OperatorSpelling SpellOperator(const Not<KIND> &) {
return OperatorSpelling{".NOT.", "", ""};
}
template<int KIND>
constexpr OperatorSpelling SpellOperator(const SetLength<KIND> &) {
return OperatorSpelling{"%SET_LENGTH(", ",", ")"};
}
template<int KIND>
constexpr OperatorSpelling SpellOperator(const ComplexConstructor<KIND> &) {
return OperatorSpelling{"(", ",", ")"};
}
template<typename A> constexpr OperatorSpelling SpellOperator(const Add<A> &) {
return OperatorSpelling{"", "+", ""};
}
template<typename A>
constexpr OperatorSpelling SpellOperator(const Subtract<A> &) {
return OperatorSpelling{"", "-", ""};
}
template<typename A>
constexpr OperatorSpelling SpellOperator(const Multiply<A> &) {
return OperatorSpelling{"", "*", ""};
}
template<typename A>
constexpr OperatorSpelling SpellOperator(const Divide<A> &) {
return OperatorSpelling{"", "/", ""};
}
template<typename A>
constexpr OperatorSpelling SpellOperator(const Power<A> &) {
return OperatorSpelling{"", "**", ""};
}
template<typename A>
constexpr OperatorSpelling SpellOperator(const RealToIntPower<A> &) {
return OperatorSpelling{"", "**", ""};
}
template<typename A>
static OperatorSpelling SpellOperator(const Extremum<A> &x) {
return OperatorSpelling{
x.ordering == Ordering::Less ? "min(" : "max(", ",", ")"};
}
template<int KIND>
constexpr OperatorSpelling SpellOperator(const Concat<KIND> &) {
return OperatorSpelling{"", "//", ""};
}
template<int KIND>
static OperatorSpelling SpellOperator(const LogicalOperation<KIND> &x) {
return OperatorSpelling{"", AsFortran(x.logicalOperator), ""};
}
template<typename T>
static OperatorSpelling SpellOperator(const Relational<T> &x) {
return OperatorSpelling{"", AsFortran(x.opr), ""};
}
template<typename D, typename R, typename... O>
std::ostream &Operation<D, R, O...>::AsFortran(std::ostream &o) const {
Precedence lhsPrec{ToPrecedence(left())};
OperatorSpelling spelling{SpellOperator(derived())};
o << spelling.prefix;
Precedence thisPrec{ToPrecedence(derived())};
if constexpr (operands == 1) {
if (thisPrec != Precedence::Top && lhsPrec < thisPrec) {
left().AsFortran(o << '(') << ')';
} else {
left().AsFortran(o);
}
} else {
if (thisPrec != Precedence::Top &&
(lhsPrec < thisPrec ||
(lhsPrec == Precedence::Power && thisPrec == Precedence::Power))) {
left().AsFortran(o << '(') << ')';
} else {
left().AsFortran(o);
}
o << spelling.infix;
Precedence rhsPrec{ToPrecedence(right())};
if (thisPrec != Precedence::Top && rhsPrec < thisPrec) {
right().AsFortran(o << '(') << ')';
} else {
right().AsFortran(o);
}
}
return o << spelling.suffix;
}
template<typename TO, TypeCategory FROMCAT>
std::ostream &Convert<TO, FROMCAT>::AsFortran(std::ostream &o) const {
static_assert(TO::category == TypeCategory::Integer ||
TO::category == TypeCategory::Real ||
TO::category == TypeCategory::Character ||
TO::category == TypeCategory::Logical,
"Convert<> to bad category!");
if constexpr (TO::category == TypeCategory::Character) {
this->left().AsFortran(o << "achar(iachar(") << ')';
} else if constexpr (TO::category == TypeCategory::Integer) {
this->left().AsFortran(o << "int(");
} else if constexpr (TO::category == TypeCategory::Real) {
this->left().AsFortran(o << "real(");
} else {
this->left().AsFortran(o << "logical(");
}
return o << ",kind=" << TO::kind << ')';
}
std::ostream &Relational<SomeType>::AsFortran(std::ostream &o) const {
std::visit([&](const auto &rel) { rel.AsFortran(o); }, u);
return o;
}
template<typename T>
std::ostream &EmitArray(std::ostream &o, const Expr<T> &expr) {
return expr.AsFortran(o);
}
template<typename T>
std::ostream &EmitArray(std::ostream &, const ArrayConstructorValues<T> &);
template<typename T>
std::ostream &EmitArray(std::ostream &o, const ImpliedDo<T> &implDo) {
o << '(';
EmitArray(o, implDo.values());
o << ',' << ImpliedDoIndex::Result::AsFortran()
<< "::" << implDo.name().ToString() << '=';
implDo.lower().AsFortran(o) << ',';
implDo.upper().AsFortran(o) << ',';
implDo.stride().AsFortran(o) << ')';
return o;
}
template<typename T>
std::ostream &EmitArray(
std::ostream &o, const ArrayConstructorValues<T> &values) {
const char *sep{""};
for (const auto &value : values) {
o << sep;
std::visit([&](const auto &x) { EmitArray(o, x); }, value.u);
sep = ",";
}
return o;
}
template<typename T>
std::ostream &ArrayConstructor<T>::AsFortran(std::ostream &o) const {
o << '[' << GetType().AsFortran() << "::";
EmitArray(o, *this);
return o << ']';
}
template<int KIND>
std::ostream &ArrayConstructor<Type<TypeCategory::Character, KIND>>::AsFortran(
std::ostream &o) const {
o << '[' << GetType().AsFortran(LEN().AsFortran()) << "::";
EmitArray(o, *this);
return o << ']';
}
std::ostream &ArrayConstructor<SomeDerived>::AsFortran(std::ostream &o) const {
o << '[' << GetType().AsFortran() << "::";
EmitArray(o, *this);
return o << ']';
}
template<typename RESULT>
std::string ExpressionBase<RESULT>::AsFortran() const {
std::ostringstream ss;
AsFortran(ss);
return ss.str();
}
template<typename RESULT>
std::ostream &ExpressionBase<RESULT>::AsFortran(std::ostream &o) const {
std::visit(
common::visitors{
[&](const BOZLiteralConstant &x) {
o << "z'" << x.Hexadecimal() << "'";
},
[&](const NullPointer &) { o << "NULL()"; },
[&](const common::CopyableIndirection<Substring> &s) {
s.value().AsFortran(o);
},
[&](const ImpliedDoIndex &i) { o << i.name.ToString(); },
[&](const auto &x) { x.AsFortran(o); },
},
derived().u);
return o;
}
std::ostream &StructureConstructor::AsFortran(std::ostream &o) const {
o << DerivedTypeSpecAsFortran(result_.derivedTypeSpec());
if (values_.empty()) {
o << '(';
} else {
char ch{'('};
for (const auto &[symbol, value] : values_) {
value.value().AsFortran(o << ch << symbol->name().ToString() << '=');
ch = ',';
}
}
return o << ')';
}
std::string DynamicType::AsFortran() const {
if (derived_) {
CHECK(category_ == TypeCategory::Derived);
return DerivedTypeSpecAsFortran(*derived_);
} else if (charLength_) {
std::string result{"CHARACTER(KIND="s + std::to_string(kind_) + ",LEN="};
if (charLength_->isAssumed()) {
result += '*';
} else if (charLength_->isDeferred()) {
result += ':';
} else if (const auto &length{charLength_->GetExplicit()}) {
result += length->AsFortran();
}
return result + ')';
} else if (IsUnlimitedPolymorphic()) {
return "CLASS(*)";
} else if (IsAssumedType()) {
return "TYPE(*)";
} else if (IsTypelessIntrinsicArgument()) {
return "(typeless intrinsic function argument)";
} else {
return parser::ToUpperCaseLetters(EnumToString(category_)) + '(' +
std::to_string(kind_) + ')';
}
}
std::string DynamicType::AsFortran(std::string &&charLenExpr) const {
if (!charLenExpr.empty() && category_ == TypeCategory::Character) {
return "CHARACTER(KIND=" + std::to_string(kind_) +
",LEN=" + std::move(charLenExpr) + ')';
} else {
return AsFortran();
}
}
std::string SomeDerived::AsFortran() const {
if (IsUnlimitedPolymorphic()) {
return "CLASS(*)";
} else {
return "TYPE("s + DerivedTypeSpecAsFortran(derivedTypeSpec()) + ')';
}
}
std::string DerivedTypeSpecAsFortran(const semantics::DerivedTypeSpec &spec) {
std::stringstream ss;
ss << spec.name().ToString();
char ch{'('};
for (const auto &[name, value] : spec.parameters()) {
ss << ch << name.ToString() << '=';
ch = ',';
if (value.isAssumed()) {
ss << '*';
} else if (value.isDeferred()) {
ss << ':';
} else {
value.GetExplicit()->AsFortran(ss);
}
}
if (ch != '(') {
ss << ')';
}
return ss.str();
}
std::ostream &EmitVar(std::ostream &o, const Symbol &symbol) {
return o << symbol.name().ToString();
}
std::ostream &EmitVar(std::ostream &o, const std::string &lit) {
return o << parser::QuoteCharacterLiteral(lit);
}
std::ostream &EmitVar(std::ostream &o, const std::u16string &lit) {
return o << parser::QuoteCharacterLiteral(lit);
}
std::ostream &EmitVar(std::ostream &o, const std::u32string &lit) {
return o << parser::QuoteCharacterLiteral(lit);
}
template<typename A> std::ostream &EmitVar(std::ostream &o, const A &x) {
return x.AsFortran(o);
}
template<typename A>
std::ostream &EmitVar(std::ostream &o, common::Reference<A> x) {
return EmitVar(o, *x);
}
template<typename A>
std::ostream &EmitVar(std::ostream &o, const A *p, const char *kw = nullptr) {
if (p) {
if (kw) {
o << kw;
}
EmitVar(o, *p);
}
return o;
}
template<typename A>
std::ostream &EmitVar(
std::ostream &o, const std::optional<A> &x, const char *kw = nullptr) {
if (x) {
if (kw) {
o << kw;
}
EmitVar(o, *x);
}
return o;
}
template<typename A, bool COPY>
std::ostream &EmitVar(std::ostream &o, const common::Indirection<A, COPY> &p,
const char *kw = nullptr) {
if (kw) {
o << kw;
}
EmitVar(o, p.value());
return o;
}
template<typename A>
std::ostream &EmitVar(std::ostream &o, const std::shared_ptr<A> &p) {
CHECK(p);
return EmitVar(o, *p);
}
template<typename... A>
std::ostream &EmitVar(std::ostream &o, const std::variant<A...> &u) {
std::visit([&](const auto &x) { EmitVar(o, x); }, u);
return o;
}
std::ostream &BaseObject::AsFortran(std::ostream &o) const {
return EmitVar(o, u);
}
template<int KIND>
std::ostream &TypeParamInquiry<KIND>::AsFortran(std::ostream &o) const {
if (base_) {
return base_->AsFortran(o) << '%';
}
return EmitVar(o, parameter_);
}
std::ostream &Component::AsFortran(std::ostream &o) const {
base_.value().AsFortran(o);
return EmitVar(o << '%', symbol_);
}
std::ostream &NamedEntity::AsFortran(std::ostream &o) const {
std::visit(
common::visitors{
[&](SymbolRef s) { EmitVar(o, s); },
[&](const Component &c) { c.AsFortran(o); },
},
u_);
return o;
}
std::ostream &Triplet::AsFortran(std::ostream &o) const {
EmitVar(o, lower_) << ':';
EmitVar(o, upper_);
EmitVar(o << ':', stride_.value());
return o;
}
std::ostream &Subscript::AsFortran(std::ostream &o) const {
return EmitVar(o, u);
}
std::ostream &ArrayRef::AsFortran(std::ostream &o) const {
base_.AsFortran(o);
char separator{'('};
for (const Subscript &ss : subscript_) {
ss.AsFortran(o << separator);
separator = ',';
}
return o << ')';
}
std::ostream &CoarrayRef::AsFortran(std::ostream &o) const {
bool first{true};
for (const Symbol &part : base_) {
if (first) {
first = false;
} else {
o << '%';
}
EmitVar(o, part);
}
char separator{'('};
for (const auto &sscript : subscript_) {
EmitVar(o << separator, sscript);
separator = ',';
}
if (separator == ',') {
o << ')';
}
separator = '[';
for (const auto &css : cosubscript_) {
EmitVar(o << separator, css);
separator = ',';
}
if (stat_) {
EmitVar(o << separator, stat_, "STAT=");
separator = ',';
}
if (team_) {
EmitVar(
o << separator, team_, teamIsTeamNumber_ ? "TEAM_NUMBER=" : "TEAM=");
}
return o << ']';
}
std::ostream &DataRef::AsFortran(std::ostream &o) const {
return EmitVar(o, u);
}
std::ostream &Substring::AsFortran(std::ostream &o) const {
EmitVar(o, parent_) << '(';
EmitVar(o, lower_) << ':';
return EmitVar(o, upper_) << ')';
}
std::ostream &ComplexPart::AsFortran(std::ostream &o) const {
return complex_.AsFortran(o) << '%' << EnumToString(part_);
}
std::ostream &ProcedureDesignator::AsFortran(std::ostream &o) const {
return EmitVar(o, u);
}
template<typename T>
std::ostream &Designator<T>::AsFortran(std::ostream &o) const {
std::visit(
common::visitors{
[&](SymbolRef symbol) { EmitVar(o, symbol); },
[&](const auto &x) { x.AsFortran(o); },
},
u);
return o;
}
std::ostream &DescriptorInquiry::AsFortran(std::ostream &o) const {
switch (field_) {
case Field::LowerBound: o << "lbound("; break;
case Field::Extent: o << "size("; break;
case Field::Stride: o << "%STRIDE("; break;
case Field::Rank: o << "rank("; break;
case Field::Len: break;
}
base_.AsFortran(o);
if (field_ == Field::Len) {
return o << "%len";
} else {
if (dimension_ >= 0) {
o << ",dim=" << (dimension_ + 1);
}
return o << ')';
}
}
INSTANTIATE_CONSTANT_TEMPLATES
INSTANTIATE_EXPRESSION_TEMPLATES
INSTANTIATE_VARIABLE_TEMPLATES
}