llvm-project/lldb/source/Plugins/ABI/X86/ABIWindows_x86_64.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

839 lines
28 KiB
C++
Raw Normal View History

//===-- ABIWindows_x86_64.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABIWindows_x86_64.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Core/ValueObjectRegister.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"
using namespace lldb;
using namespace lldb_private;
LLDB_PLUGIN_DEFINE(ABIWindows_x86_64)
enum dwarf_regnums {
dwarf_rax = 0,
dwarf_rdx,
dwarf_rcx,
dwarf_rbx,
dwarf_rsi,
dwarf_rdi,
dwarf_rbp,
dwarf_rsp,
dwarf_r8,
dwarf_r9,
dwarf_r10,
dwarf_r11,
dwarf_r12,
dwarf_r13,
dwarf_r14,
dwarf_r15,
dwarf_rip,
dwarf_xmm0,
dwarf_xmm1,
dwarf_xmm2,
dwarf_xmm3,
dwarf_xmm4,
dwarf_xmm5,
dwarf_xmm6,
dwarf_xmm7,
dwarf_xmm8,
dwarf_xmm9,
dwarf_xmm10,
dwarf_xmm11,
dwarf_xmm12,
dwarf_xmm13,
dwarf_xmm14,
dwarf_xmm15,
dwarf_stmm0,
dwarf_stmm1,
dwarf_stmm2,
dwarf_stmm3,
dwarf_stmm4,
dwarf_stmm5,
dwarf_stmm6,
dwarf_stmm7,
dwarf_ymm0,
dwarf_ymm1,
dwarf_ymm2,
dwarf_ymm3,
dwarf_ymm4,
dwarf_ymm5,
dwarf_ymm6,
dwarf_ymm7,
dwarf_ymm8,
dwarf_ymm9,
dwarf_ymm10,
dwarf_ymm11,
dwarf_ymm12,
dwarf_ymm13,
dwarf_ymm14,
dwarf_ymm15,
dwarf_bnd0 = 126,
dwarf_bnd1,
dwarf_bnd2,
dwarf_bnd3
};
bool ABIWindows_x86_64::GetPointerReturnRegister(const char *&name) {
name = "rax";
return true;
}
size_t ABIWindows_x86_64::GetRedZoneSize() const { return 0; }
//------------------------------------------------------------------
// Static Functions
//------------------------------------------------------------------
ABISP
ABIWindows_x86_64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
if (arch.GetTriple().getArch() == llvm::Triple::x86_64 &&
arch.GetTriple().isOSWindows()) {
Have ABI plugins vend llvm MCRegisterInfo data Summary: I was recently surprised to learn that there is a total of 2 (two) users of the register info definitions contained in the ABI plugins. Yet, the defitions themselves span nearly 10kLOC. The two users are: - dwarf expression pretty printer - the mechanism for augmenting the register info definitions obtained over gdb-remote protocol (AugmentRegisterInfoViaABI) Both of these uses need the DWARF an EH register numbers, which is information that is already available in LLVM. This patch makes it possible to do so. It adds a GetMCRegisterInfo method to the ABI class, which every class is expected to implement. Normally, it should be sufficient to obtain the definitions from the appropriate llvm::Target object (for which I provide a utility function), but the subclasses are free to construct it in any way they deem fit. We should be able to always get the MCRegisterInfo object from llvm, with one important exception: if the relevant llvm target was disabled at compile time. To handle this, I add a mechanism to disable the compilation of ABI plugins based on the value of LLVM_TARGETS_TO_BUILD cmake setting. This ensures all our existing are able to create their MCRegisterInfo objects. The new MCRegisterInfo api is not used yet, but the intention is to make use of it in follow-up patches. Reviewers: jasonmolenda, aprantl, JDevlieghere, tatyana-krasnukha Subscribers: wuzish, nemanjai, mgorny, kbarton, atanasyan, lldb-commits Differential Revision: https://reviews.llvm.org/D67965 llvm-svn: 372862
2019-09-25 21:03:04 +08:00
return ABISP(
new ABIWindows_x86_64(std::move(process_sp), MakeMCRegisterInfo(arch)));
}
return ABISP();
}
bool ABIWindows_x86_64::PrepareTrivialCall(Thread &thread, addr_t sp,
addr_t func_addr, addr_t return_addr,
llvm::ArrayRef<addr_t> args) const {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
if (log) {
StreamString s;
s.Printf("ABIWindows_x86_64::PrepareTrivialCall (tid = 0x%" PRIx64
", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
", return_addr = 0x%" PRIx64,
thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
(uint64_t)return_addr);
for (size_t i = 0; i < args.size(); ++i)
s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1),
args[i]);
s.PutCString(")");
log->PutString(s.GetString());
}
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
const RegisterInfo *reg_info = nullptr;
if (args.size() > 4) // Windows x64 only put first 4 arguments into registers
return false;
for (size_t i = 0; i < args.size(); ++i) {
reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_ARG1 + i);
LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s",
static_cast<uint64_t>(i + 1), args[i], reg_info->name);
if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
return false;
}
// First, align the SP
LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
(uint64_t)sp, (uint64_t)(sp & ~0xfull));
sp &= ~(0xfull); // 16-byte alignment
sp -= 8; // return address
Status error;
const RegisterInfo *pc_reg_info =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
const RegisterInfo *sp_reg_info =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
ProcessSP process_sp(thread.GetProcess());
RegisterValue reg_value;
LLDB_LOGF(log,
"Pushing the return address onto the stack: 0x%" PRIx64
": 0x%" PRIx64,
(uint64_t)sp, (uint64_t)return_addr);
// Save return address onto the stack
if (!process_sp->WritePointerToMemory(sp, return_addr, error))
return false;
// %rsp is set to the actual stack value.
LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp);
if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
return false;
// %rip is set to the address of the called function.
LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr);
if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
return false;
return true;
}
static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
bool is_signed, Thread &thread,
uint32_t *argument_register_ids,
unsigned int &current_argument_register,
addr_t &current_stack_argument) {
if (bit_width > 64)
return false; // Scalar can't hold large integer arguments
if (current_argument_register < 4) { // Windows pass first 4 arguments to register
scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
argument_register_ids[current_argument_register], 0);
current_argument_register++;
if (is_signed)
scalar.SignExtend(bit_width);
return true;
}
uint32_t byte_size = (bit_width + (CHAR_BIT - 1)) / CHAR_BIT;
Status error;
if (thread.GetProcess()->ReadScalarIntegerFromMemory(
current_stack_argument, byte_size, is_signed, scalar, error)) {
current_stack_argument += byte_size;
return true;
}
return false;
}
bool ABIWindows_x86_64::GetArgumentValues(Thread &thread,
ValueList &values) const {
unsigned int num_values = values.GetSize();
unsigned int value_index;
// Extract the register context so we can read arguments from registers
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
// Get the pointer to the first stack argument so we have a place to start
// when reading data
addr_t sp = reg_ctx->GetSP(0);
if (!sp)
return false;
addr_t current_stack_argument = sp + 8; // jump over return address
uint32_t argument_register_ids[4];
argument_register_ids[0] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1)
->kinds[eRegisterKindLLDB];
argument_register_ids[1] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2)
->kinds[eRegisterKindLLDB];
argument_register_ids[2] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3)
->kinds[eRegisterKindLLDB];
argument_register_ids[3] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4)
->kinds[eRegisterKindLLDB];
unsigned int current_argument_register = 0;
for (value_index = 0; value_index < num_values; ++value_index) {
Value *value = values.GetValueAtIndex(value_index);
if (!value)
return false;
CompilerType compiler_type = value->GetCompilerType();
llvm::Optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
if (!bit_size)
return false;
bool is_signed;
if (compiler_type.IsIntegerOrEnumerationType(is_signed)) {
ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread,
argument_register_ids, current_argument_register,
current_stack_argument);
} else if (compiler_type.IsPointerType()) {
ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread,
argument_register_ids, current_argument_register,
current_stack_argument);
}
}
return true;
}
Status ABIWindows_x86_64::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
lldb::ValueObjectSP &new_value_sp) {
Status error;
if (!new_value_sp) {
error.SetErrorString("Empty value object for return value.");
return error;
}
CompilerType compiler_type = new_value_sp->GetCompilerType();
if (!compiler_type) {
error.SetErrorString("Null clang type for return value.");
return error;
}
Thread *thread = frame_sp->GetThread().get();
bool is_signed;
uint32_t count;
bool is_complex;
RegisterContext *reg_ctx = thread->GetRegisterContext().get();
bool set_it_simple = false;
if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
compiler_type.IsPointerType()) {
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("rax", 0);
DataExtractor data;
Status data_error;
size_t num_bytes = new_value_sp->GetData(data, data_error);
if (data_error.Fail()) {
error.SetErrorStringWithFormat(
"Couldn't convert return value to raw data: %s",
data_error.AsCString());
return error;
}
lldb::offset_t offset = 0;
if (num_bytes <= 8) {
uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value))
set_it_simple = true;
} else {
error.SetErrorString("We don't support returning longer than 64 bit "
"integer values at present.");
}
} else if (compiler_type.IsFloatingPointType(count, is_complex)) {
if (is_complex)
error.SetErrorString(
"We don't support returning complex values at present");
else {
llvm::Optional<uint64_t> bit_width =
compiler_type.GetBitSize(frame_sp.get());
if (!bit_width) {
error.SetErrorString("can't get type size");
return error;
}
if (*bit_width <= 64) {
const RegisterInfo *xmm0_info =
reg_ctx->GetRegisterInfoByName("xmm0", 0);
RegisterValue xmm0_value;
DataExtractor data;
Status data_error;
size_t num_bytes = new_value_sp->GetData(data, data_error);
if (data_error.Fail()) {
error.SetErrorStringWithFormat(
"Couldn't convert return value to raw data: %s",
data_error.AsCString());
return error;
}
unsigned char buffer[16];
ByteOrder byte_order = data.GetByteOrder();
data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order);
xmm0_value.SetBytes(buffer, 16, byte_order);
reg_ctx->WriteRegister(xmm0_info, xmm0_value);
set_it_simple = true;
} else {
// Windows doesn't support 80 bit FP
error.SetErrorString(
"Windows-x86_64 doesn't allow FP larger than 64 bits.");
}
}
}
if (!set_it_simple) {
// Okay we've got a structure or something that doesn't fit in a simple
// register.
// TODO(wanyi): On Windows, if the return type is a struct:
// 1) smaller that 64 bits and return by value -> RAX
// 2) bigger than 64 bits, the caller will allocate memory for that struct
// and pass the struct pointer in RCX then return the pointer in RAX
error.SetErrorString("We only support setting simple integer and float "
"return types at present.");
}
return error;
}
ValueObjectSP ABIWindows_x86_64::GetReturnValueObjectSimple(
Thread &thread, CompilerType &return_compiler_type) const {
ValueObjectSP return_valobj_sp;
Value value;
if (!return_compiler_type)
return return_valobj_sp;
value.SetCompilerType(return_compiler_type);
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return return_valobj_sp;
const uint32_t type_flags = return_compiler_type.GetTypeInfo();
if (type_flags & eTypeIsScalar) {
value.SetValueType(Value::ValueType::Scalar);
bool success = false;
if (type_flags & eTypeIsInteger) {
// Extract the register context so we can read arguments from registers
llvm::Optional<uint64_t> byte_size =
return_compiler_type.GetByteSize(&thread);
if (!byte_size)
return return_valobj_sp;
uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
reg_ctx->GetRegisterInfoByName("rax", 0), 0);
const bool is_signed = (type_flags & eTypeIsSigned) != 0;
switch (*byte_size) {
default:
break;
case sizeof(uint64_t):
if (is_signed)
value.GetScalar() = (int64_t)(raw_value);
else
value.GetScalar() = (uint64_t)(raw_value);
success = true;
break;
case sizeof(uint32_t):
if (is_signed)
value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
else
value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
success = true;
break;
case sizeof(uint16_t):
if (is_signed)
value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
else
value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
success = true;
break;
case sizeof(uint8_t):
if (is_signed)
value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
else
value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
success = true;
break;
}
} else if (type_flags & eTypeIsFloat) {
if (type_flags & eTypeIsComplex) {
// Don't handle complex yet.
} else {
llvm::Optional<uint64_t> byte_size =
return_compiler_type.GetByteSize(&thread);
if (byte_size && *byte_size <= sizeof(long double)) {
const RegisterInfo *xmm0_info =
reg_ctx->GetRegisterInfoByName("xmm0", 0);
RegisterValue xmm0_value;
if (reg_ctx->ReadRegister(xmm0_info, xmm0_value)) {
DataExtractor data;
if (xmm0_value.GetData(data)) {
lldb::offset_t offset = 0;
if (*byte_size == sizeof(float)) {
value.GetScalar() = (float)data.GetFloat(&offset);
success = true;
} else if (*byte_size == sizeof(double)) {
// double and long double are the same on windows
value.GetScalar() = (double)data.GetDouble(&offset);
success = true;
}
}
}
}
}
}
if (success)
return_valobj_sp = ValueObjectConstResult::Create(
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
} else if ((type_flags & eTypeIsPointer) ||
(type_flags & eTypeInstanceIsPointer)) {
unsigned rax_id =
reg_ctx->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
value.GetScalar() =
(uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id,
0);
value.SetValueType(Value::ValueType::Scalar);
return_valobj_sp = ValueObjectConstResult::Create(
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
} else if (type_flags & eTypeIsVector) {
llvm::Optional<uint64_t> byte_size =
return_compiler_type.GetByteSize(&thread);
if (byte_size && *byte_size > 0) {
const RegisterInfo *xmm_reg =
reg_ctx->GetRegisterInfoByName("xmm0", 0);
if (xmm_reg == nullptr)
xmm_reg = reg_ctx->GetRegisterInfoByName("mm0", 0);
if (xmm_reg) {
if (*byte_size <= xmm_reg->byte_size) {
ProcessSP process_sp(thread.GetProcess());
if (process_sp) {
std::unique_ptr<DataBufferHeap> heap_data_up(
new DataBufferHeap(*byte_size, 0));
const ByteOrder byte_order = process_sp->GetByteOrder();
RegisterValue reg_value;
if (reg_ctx->ReadRegister(xmm_reg, reg_value)) {
Status error;
if (reg_value.GetAsMemoryData(
xmm_reg, heap_data_up->GetBytes(),
heap_data_up->GetByteSize(), byte_order, error)) {
DataExtractor data(DataBufferSP(heap_data_up.release()),
byte_order,
process_sp->GetTarget()
.GetArchitecture()
.GetAddressByteSize());
return_valobj_sp = ValueObjectConstResult::Create(
&thread, return_compiler_type, ConstString(""), data);
}
}
}
}
}
}
}
return return_valobj_sp;
}
// The compiler will flatten the nested aggregate type into single
// layer and push the value to stack
// This helper function will flatten an aggregate type
// and return true if it can be returned in register(s) by value
// return false if the aggregate is in memory
static bool FlattenAggregateType(
Thread &thread, ExecutionContext &exe_ctx,
CompilerType &return_compiler_type,
uint32_t data_byte_offset,
std::vector<uint32_t> &aggregate_field_offsets,
std::vector<CompilerType> &aggregate_compiler_types) {
const uint32_t num_children = return_compiler_type.GetNumFields();
for (uint32_t idx = 0; idx < num_children; ++idx) {
std::string name;
bool is_signed;
uint32_t count;
bool is_complex;
uint64_t field_bit_offset = 0;
CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
idx, name, &field_bit_offset, nullptr, nullptr);
llvm::Optional<uint64_t> field_bit_width =
field_compiler_type.GetBitSize(&thread);
// if we don't know the size of the field (e.g. invalid type), exit
if (!field_bit_width || *field_bit_width == 0) {
return false;
}
// If there are any unaligned fields, this is stored in memory.
if (field_bit_offset % *field_bit_width != 0) {
return false;
}
// add overall offset
uint32_t field_byte_offset = field_bit_offset / 8 + data_byte_offset;
const uint32_t field_type_flags = field_compiler_type.GetTypeInfo();
if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
field_compiler_type.IsPointerType() ||
field_compiler_type.IsFloatingPointType(count, is_complex)) {
aggregate_field_offsets.push_back(field_byte_offset);
aggregate_compiler_types.push_back(field_compiler_type);
} else if (field_type_flags & eTypeHasChildren) {
if (!FlattenAggregateType(thread, exe_ctx, field_compiler_type,
field_byte_offset, aggregate_field_offsets,
aggregate_compiler_types)) {
return false;
}
}
}
return true;
}
ValueObjectSP ABIWindows_x86_64::GetReturnValueObjectImpl(
Thread &thread, CompilerType &return_compiler_type) const {
ValueObjectSP return_valobj_sp;
if (!return_compiler_type) {
return return_valobj_sp;
}
// try extract value as if it's a simple type
return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
if (return_valobj_sp) {
return return_valobj_sp;
}
RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
if (!reg_ctx_sp) {
return return_valobj_sp;
}
llvm::Optional<uint64_t> bit_width = return_compiler_type.GetBitSize(&thread);
if (!bit_width) {
return return_valobj_sp;
}
// if it's not simple or aggregate type, then we don't know how to handle it
if (!return_compiler_type.IsAggregateType()) {
return return_valobj_sp;
}
ExecutionContext exe_ctx(thread.shared_from_this());
Target *target = exe_ctx.GetTargetPtr();
uint32_t max_register_value_bit_width = 64;
// The scenario here is to have a struct/class which is POD
// if the return struct/class size is larger than 64 bits,
// the caller will allocate memory for it and pass the return addr in RCX
// then return the address in RAX
// if the struct is returned by value in register (RAX)
// its size has to be: 1, 2, 4, 8, 16, 32, or 64 bits (aligned)
// for floating point, the return value will be copied over to RAX
bool is_memory = *bit_width > max_register_value_bit_width ||
*bit_width & (*bit_width - 1);
std::vector<uint32_t> aggregate_field_offsets;
std::vector<CompilerType> aggregate_compiler_types;
if (!is_memory &&
FlattenAggregateType(thread, exe_ctx, return_compiler_type,
0, aggregate_field_offsets,
aggregate_compiler_types)) {
ByteOrder byte_order = target->GetArchitecture().GetByteOrder();
DataBufferSP data_sp(
new DataBufferHeap(max_register_value_bit_width / 8, 0));
DataExtractor return_ext(data_sp, byte_order,
target->GetArchitecture().GetAddressByteSize());
// The only register used to return struct/class by value
const RegisterInfo *rax_info =
reg_ctx_sp->GetRegisterInfoByName("rax", 0);
RegisterValue rax_value;
reg_ctx_sp->ReadRegister(rax_info, rax_value);
DataExtractor rax_data;
rax_value.GetData(rax_data);
uint32_t used_bytes =
0; // Tracks how much of the rax registers we've consumed so far
// in case of the returned type is a subclass of non-abstract-base class
// it will have a padding to skip the base content
if (aggregate_field_offsets.size())
used_bytes = aggregate_field_offsets[0];
const uint32_t num_children = aggregate_compiler_types.size();
for (uint32_t idx = 0; idx < num_children; idx++) {
bool is_signed;
bool is_complex;
uint32_t count;
CompilerType field_compiler_type = aggregate_compiler_types[idx];
uint32_t field_byte_width = (uint32_t) (*field_compiler_type.GetByteSize(&thread));
uint32_t field_byte_offset = aggregate_field_offsets[idx];
// this is unlikely w/o the overall size being greater than 8 bytes
// For now, return a nullptr return value object.
if (used_bytes >= 8 || used_bytes + field_byte_width > 8) {
return return_valobj_sp;
}
DataExtractor *copy_from_extractor = nullptr;
uint32_t copy_from_offset = 0;
if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
field_compiler_type.IsPointerType() ||
field_compiler_type.IsFloatingPointType(count, is_complex)) {
copy_from_extractor = &rax_data;
copy_from_offset = used_bytes;
used_bytes += field_byte_width;
}
// These two tests are just sanity checks. If I somehow get the type
// calculation wrong above it is better to just return nothing than to
// assert or crash.
if (!copy_from_extractor) {
return return_valobj_sp;
}
if (copy_from_offset + field_byte_width >
copy_from_extractor->GetByteSize()) {
return return_valobj_sp;
}
copy_from_extractor->CopyByteOrderedData(copy_from_offset,
field_byte_width, data_sp->GetBytes() + field_byte_offset,
field_byte_width, byte_order);
}
if (!is_memory) {
// The result is in our data buffer. Let's make a variable object out
// of it:
return_valobj_sp = ValueObjectConstResult::Create(
&thread, return_compiler_type, ConstString(""), return_ext);
}
}
// The Windows x86_64 ABI specifies that the return address for MEMORY
// objects be placed in rax on exit from the function.
// FIXME: This is just taking a guess, rax may very well no longer hold the
// return storage location.
// If we are going to do this right, when we make a new frame we should
// check to see if it uses a memory return, and if we are at the first
// instruction and if so stash away the return location. Then we would
// only return the memory return value if we know it is valid.
if (is_memory) {
unsigned rax_id =
reg_ctx_sp->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
lldb::addr_t storage_addr =
(uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id,
0);
return_valobj_sp = ValueObjectMemory::Create(
&thread, "", Address(storage_addr, nullptr), return_compiler_type);
}
return return_valobj_sp;
}
// This defines the CFA as rsp+8
// the saved pc is at CFA-8 (i.e. rsp+0)
// The saved rsp is CFA+0
bool ABIWindows_x86_64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
unwind_plan.Clear();
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
uint32_t sp_reg_num = dwarf_rsp;
uint32_t pc_reg_num = dwarf_rip;
UnwindPlan::RowSP row(new UnwindPlan::Row);
row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 8);
row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -8, false);
row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
unwind_plan.AppendRow(row);
unwind_plan.SetSourceName("x86_64 at-func-entry default");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
return true;
}
// Windows-x86_64 doesn't use %rbp
// No available Unwind information for Windows-x86_64 (section .pdata)
// Let's use SysV-x86_64 one for now
bool ABIWindows_x86_64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
unwind_plan.Clear();
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
uint32_t fp_reg_num = dwarf_rbp;
uint32_t sp_reg_num = dwarf_rsp;
uint32_t pc_reg_num = dwarf_rip;
UnwindPlan::RowSP row(new UnwindPlan::Row);
const int32_t ptr_size = 8;
row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_rbp, 2 * ptr_size);
row->SetOffset(0);
row->SetUnspecifiedRegistersAreUndefined(true);
row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
unwind_plan.AppendRow(row);
unwind_plan.SetSourceName("x86_64 default unwind plan");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
return true;
}
bool ABIWindows_x86_64::RegisterIsVolatile(const RegisterInfo *reg_info) {
return !RegisterIsCalleeSaved(reg_info);
}
bool ABIWindows_x86_64::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
if (!reg_info)
return false;
assert(reg_info->name != nullptr && "unnamed register?");
std::string Name = std::string(reg_info->name);
bool IsCalleeSaved =
llvm::StringSwitch<bool>(Name)
.Cases("rbx", "ebx", "rbp", "ebp", "rdi", "edi", "rsi", "esi", true)
.Cases("rsp", "esp", "r12", "r13", "r14", "r15", "sp", "fp", true)
.Cases("xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12",
"xmm13", "xmm14", "xmm15", true)
.Default(false);
return IsCalleeSaved;
}
uint32_t ABIWindows_x86_64::GetGenericNum(llvm::StringRef reg) {
return llvm::StringSwitch<uint32_t>(reg)
.Case("rip", LLDB_REGNUM_GENERIC_PC)
.Case("rsp", LLDB_REGNUM_GENERIC_SP)
.Case("rbp", LLDB_REGNUM_GENERIC_FP)
.Case("rflags", LLDB_REGNUM_GENERIC_FLAGS)
.Case("rcx", LLDB_REGNUM_GENERIC_ARG1)
.Case("rdx", LLDB_REGNUM_GENERIC_ARG2)
.Case("r8", LLDB_REGNUM_GENERIC_ARG3)
.Case("r9", LLDB_REGNUM_GENERIC_ARG4)
.Default(LLDB_INVALID_REGNUM);
}
void ABIWindows_x86_64::Initialize() {
PluginManager::RegisterPlugin(
GetPluginNameStatic(), "Windows ABI for x86_64 targets", CreateInstance);
}
void ABIWindows_x86_64::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
lldb_private::ConstString ABIWindows_x86_64::GetPluginNameStatic() {
static ConstString g_name("windows-x86_64");
return g_name;
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
lldb_private::ConstString ABIWindows_x86_64::GetPluginName() {
return GetPluginNameStatic();
}
uint32_t ABIWindows_x86_64::GetPluginVersion() { return 1; }