llvm-project/clang/lib/Analysis/BugReporter.cpp

1028 lines
33 KiB
C++
Raw Normal View History

// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines BugReporter, a utility class for generating
// PathDiagnostics for analyses based on GRSimpleVals.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/BugReporter.h"
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CFG.h"
#include "clang/AST/Expr.h"
#include "clang/Analysis/ProgramPoint.h"
#include "clang/Analysis/PathDiagnostic.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include <queue>
using namespace clang;
//===----------------------------------------------------------------------===//
// static functions.
//===----------------------------------------------------------------------===//
static inline Stmt* GetStmt(ProgramPoint P) {
if (const PostStmt* PS = dyn_cast<PostStmt>(&P))
return PS->getStmt();
else if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P))
return BE->getSrc()->getTerminator();
return 0;
}
static inline const ExplodedNode<GRState>*
GetPredecessorNode(const ExplodedNode<GRState>* N) {
return N->pred_empty() ? NULL : *(N->pred_begin());
}
static inline const ExplodedNode<GRState>*
GetSuccessorNode(const ExplodedNode<GRState>* N) {
return N->succ_empty() ? NULL : *(N->succ_begin());
}
static Stmt* GetPreviousStmt(const ExplodedNode<GRState>* N) {
for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
if (Stmt *S = GetStmt(N->getLocation()))
return S;
return 0;
}
static Stmt* GetNextStmt(const ExplodedNode<GRState>* N) {
for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
if (Stmt *S = GetStmt(N->getLocation()))
return S;
return 0;
}
static inline Stmt* GetCurrentOrPreviousStmt(const ExplodedNode<GRState>* N) {
if (Stmt *S = GetStmt(N->getLocation()))
return S;
return GetPreviousStmt(N);
}
static inline Stmt* GetCurrentOrNextStmt(const ExplodedNode<GRState>* N) {
if (Stmt *S = GetStmt(N->getLocation()))
return S;
return GetNextStmt(N);
}
//===----------------------------------------------------------------------===//
// Diagnostics for 'execution continues on line XXX'.
//===----------------------------------------------------------------------===//
static SourceLocation ExecutionContinues(SourceManager& SMgr,
const ExplodedNode<GRState>* N,
const Decl& D,
bool* OutHasStmt = 0) {
if (Stmt *S = GetNextStmt(N)) {
if (OutHasStmt) *OutHasStmt = true;
return S->getLocStart();
}
else {
if (OutHasStmt) *OutHasStmt = false;
return D.getBody()->getRBracLoc();
}
}
static SourceLocation ExecutionContinues(llvm::raw_string_ostream& os,
SourceManager& SMgr,
const ExplodedNode<GRState>* N,
const Decl& D) {
// Slow, but probably doesn't matter.
if (os.str().empty())
os << ' ';
bool hasStmt;
SourceLocation Loc = ExecutionContinues(SMgr, N, D, &hasStmt);
if (hasStmt)
os << "Execution continues on line "
<< SMgr.getInstantiationLineNumber(Loc) << '.';
else
os << "Execution jumps to the end of the "
<< (isa<ObjCMethodDecl>(D) ? "method" : "function") << '.';
return Loc;
}
//===----------------------------------------------------------------------===//
// Methods for BugType and subclasses.
//===----------------------------------------------------------------------===//
BugType::~BugType() {}
void BugType::FlushReports(BugReporter &BR) {}
//===----------------------------------------------------------------------===//
// Methods for BugReport and subclasses.
//===----------------------------------------------------------------------===//
BugReport::~BugReport() {}
RangedBugReport::~RangedBugReport() {}
Stmt* BugReport::getStmt(BugReporter& BR) const {
ProgramPoint ProgP = EndNode->getLocation();
Stmt *S = NULL;
if (BlockEntrance* BE = dyn_cast<BlockEntrance>(&ProgP)) {
if (BE->getBlock() == &BR.getCFG()->getExit()) S = GetPreviousStmt(EndNode);
}
if (!S) S = GetStmt(ProgP);
return S;
}
PathDiagnosticPiece*
BugReport::getEndPath(BugReporter& BR,
const ExplodedNode<GRState>* EndPathNode) {
Stmt* S = getStmt(BR);
if (!S)
return NULL;
FullSourceLoc L(S->getLocStart(), BR.getContext().getSourceManager());
PathDiagnosticPiece* P = new PathDiagnosticEventPiece(L, getDescription());
const SourceRange *Beg, *End;
getRanges(BR, Beg, End);
for (; Beg != End; ++Beg)
P->addRange(*Beg);
return P;
}
void BugReport::getRanges(BugReporter& BR, const SourceRange*& beg,
const SourceRange*& end) {
if (Expr* E = dyn_cast_or_null<Expr>(getStmt(BR))) {
R = E->getSourceRange();
assert(R.isValid());
beg = &R;
end = beg+1;
}
else
beg = end = 0;
}
SourceLocation BugReport::getLocation() const {
if (EndNode)
if (Stmt* S = GetCurrentOrPreviousStmt(EndNode)) {
// For member expressions, return the location of the '.' or '->'.
if (MemberExpr* ME = dyn_cast<MemberExpr>(S))
return ME->getMemberLoc();
return S->getLocStart();
}
return FullSourceLoc();
}
PathDiagnosticPiece* BugReport::VisitNode(const ExplodedNode<GRState>* N,
const ExplodedNode<GRState>* PrevN,
const ExplodedGraph<GRState>& G,
BugReporter& BR,
NodeResolver &NR) {
return NULL;
}
//===----------------------------------------------------------------------===//
// Methods for BugReporter and subclasses.
//===----------------------------------------------------------------------===//
BugReportEquivClass::~BugReportEquivClass() {
for (iterator I=begin(), E=end(); I!=E; ++I) delete *I;
}
GRBugReporter::~GRBugReporter() { FlushReports(); }
BugReporterData::~BugReporterData() {}
ExplodedGraph<GRState>&
GRBugReporter::getGraph() { return Eng.getGraph(); }
GRStateManager&
GRBugReporter::getStateManager() { return Eng.getStateManager(); }
BugReporter::~BugReporter() { FlushReports(); }
void BugReporter::FlushReports() {
if (BugTypes.isEmpty())
return;
// First flush the warnings for each BugType. This may end up creating new
// warnings and new BugTypes. Because ImmutableSet is a functional data
// structure, we do not need to worry about the iterators being invalidated.
for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
const_cast<BugType*>(*I)->FlushReports(*this);
// Iterate through BugTypes a second time. BugTypes may have been updated
// with new BugType objects and new warnings.
for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I) {
BugType *BT = const_cast<BugType*>(*I);
typedef llvm::FoldingSet<BugReportEquivClass> SetTy;
SetTy& EQClasses = BT->EQClasses;
for (SetTy::iterator EI=EQClasses.begin(), EE=EQClasses.end(); EI!=EE;++EI){
BugReportEquivClass& EQ = *EI;
FlushReport(EQ);
}
// Delete the BugType object. This will also delete the equivalence
// classes.
delete BT;
}
// Remove all references to the BugType objects.
BugTypes = F.GetEmptySet();
}
//===----------------------------------------------------------------------===//
// PathDiagnostics generation.
//===----------------------------------------------------------------------===//
typedef llvm::DenseMap<const ExplodedNode<GRState>*,
const ExplodedNode<GRState>*> NodeBackMap;
static std::pair<std::pair<ExplodedGraph<GRState>*, NodeBackMap*>,
std::pair<ExplodedNode<GRState>*, unsigned> >
MakeReportGraph(const ExplodedGraph<GRState>* G,
const ExplodedNode<GRState>** NStart,
const ExplodedNode<GRState>** NEnd) {
// Create the trimmed graph. It will contain the shortest paths from the
// error nodes to the root. In the new graph we should only have one
// error node unless there are two or more error nodes with the same minimum
// path length.
ExplodedGraph<GRState>* GTrim;
InterExplodedGraphMap<GRState>* NMap;
llvm::DenseMap<const void*, const void*> InverseMap;
llvm::tie(GTrim, NMap) = G->Trim(NStart, NEnd, &InverseMap);
// Create owning pointers for GTrim and NMap just to ensure that they are
// released when this function exists.
llvm::OwningPtr<ExplodedGraph<GRState> > AutoReleaseGTrim(GTrim);
llvm::OwningPtr<InterExplodedGraphMap<GRState> > AutoReleaseNMap(NMap);
// Find the (first) error node in the trimmed graph. We just need to consult
// the node map (NMap) which maps from nodes in the original graph to nodes
// in the new graph.
const ExplodedNode<GRState>* N = 0;
unsigned NodeIndex = 0;
for (const ExplodedNode<GRState>** I = NStart; I != NEnd; ++I)
if ((N = NMap->getMappedNode(*I))) {
NodeIndex = (I - NStart) / sizeof(*I);
break;
}
assert(N && "No error node found in the trimmed graph.");
// Create a new (third!) graph with a single path. This is the graph
// that will be returned to the caller.
ExplodedGraph<GRState> *GNew =
new ExplodedGraph<GRState>(GTrim->getCFG(), GTrim->getCodeDecl(),
GTrim->getContext());
// Sometimes the trimmed graph can contain a cycle. Perform a reverse BFS
// to the root node, and then construct a new graph that contains only
// a single path.
llvm::DenseMap<const void*,unsigned> Visited;
std::queue<const ExplodedNode<GRState>*> WS;
WS.push(N);
unsigned cnt = 0;
const ExplodedNode<GRState>* Root = 0;
while (!WS.empty()) {
const ExplodedNode<GRState>* Node = WS.front();
WS.pop();
if (Visited.find(Node) != Visited.end())
continue;
Visited[Node] = cnt++;
if (Node->pred_empty()) {
Root = Node;
break;
}
for (ExplodedNode<GRState>::const_pred_iterator I=Node->pred_begin(),
E=Node->pred_end(); I!=E; ++I)
WS.push(*I);
}
assert (Root);
// Now walk from the root down the BFS path, always taking the successor
// with the lowest number.
ExplodedNode<GRState> *Last = 0, *First = 0;
NodeBackMap *BM = new NodeBackMap();
for ( N = Root ;;) {
// Lookup the number associated with the current node.
llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
assert (I != Visited.end());
// Create the equivalent node in the new graph with the same state
// and location.
ExplodedNode<GRState>* NewN =
GNew->getNode(N->getLocation(), N->getState());
// Store the mapping to the original node.
llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
assert(IMitr != InverseMap.end() && "No mapping to original node.");
(*BM)[NewN] = (const ExplodedNode<GRState>*) IMitr->second;
// Link up the new node with the previous node.
if (Last)
NewN->addPredecessor(Last);
Last = NewN;
// Are we at the final node?
if (I->second == 0) {
First = NewN;
break;
}
// Find the next successor node. We choose the node that is marked
// with the lowest DFS number.
ExplodedNode<GRState>::const_succ_iterator SI = N->succ_begin();
ExplodedNode<GRState>::const_succ_iterator SE = N->succ_end();
N = 0;
for (unsigned MinVal = 0; SI != SE; ++SI) {
I = Visited.find(*SI);
if (I == Visited.end())
continue;
if (!N || I->second < MinVal) {
N = *SI;
MinVal = I->second;
}
}
assert (N);
}
assert (First);
return std::make_pair(std::make_pair(GNew, BM),
std::make_pair(First, NodeIndex));
}
static const VarDecl*
GetMostRecentVarDeclBinding(const ExplodedNode<GRState>* N,
GRStateManager& VMgr, SVal X) {
for ( ; N ; N = N->pred_empty() ? 0 : *N->pred_begin()) {
ProgramPoint P = N->getLocation();
if (!isa<PostStmt>(P))
continue;
DeclRefExpr* DR = dyn_cast<DeclRefExpr>(cast<PostStmt>(P).getStmt());
if (!DR)
continue;
SVal Y = VMgr.GetSVal(N->getState(), DR);
if (X != Y)
continue;
VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl());
if (!VD)
continue;
return VD;
}
return 0;
}
namespace {
class VISIBILITY_HIDDEN NotableSymbolHandler
: public StoreManager::BindingsHandler {
SymbolRef Sym;
const GRState* PrevSt;
const Stmt* S;
GRStateManager& VMgr;
const ExplodedNode<GRState>* Pred;
PathDiagnostic& PD;
BugReporter& BR;
public:
NotableSymbolHandler(SymbolRef sym, const GRState* prevst, const Stmt* s,
GRStateManager& vmgr, const ExplodedNode<GRState>* pred,
PathDiagnostic& pd, BugReporter& br)
: Sym(sym), PrevSt(prevst), S(s), VMgr(vmgr), Pred(pred), PD(pd), BR(br) {}
bool HandleBinding(StoreManager& SMgr, Store store,
const MemRegion* R, SVal V) {
SymbolRef ScanSym = 0;
if (loc::SymbolVal* SV = dyn_cast<loc::SymbolVal>(&V))
ScanSym = SV->getSymbol();
else if (nonloc::SymbolVal* SV = dyn_cast<nonloc::SymbolVal>(&V))
ScanSym = SV->getSymbol();
else
return true;
if (ScanSym != Sym)
return true;
// Check if the previous state has this binding.
SVal X = VMgr.GetSVal(PrevSt, loc::MemRegionVal(R));
if (X == V) // Same binding?
return true;
// Different binding. Only handle assignments for now. We don't pull
// this check out of the loop because we will eventually handle other
// cases.
VarDecl *VD = 0;
if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
if (!B->isAssignmentOp())
return true;
// What variable did we assign to?
DeclRefExpr* DR = dyn_cast<DeclRefExpr>(B->getLHS()->IgnoreParenCasts());
if (!DR)
return true;
VD = dyn_cast<VarDecl>(DR->getDecl());
}
else if (const DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
// FIXME: Eventually CFGs won't have DeclStmts. Right now we
// assume that each DeclStmt has a single Decl. This invariant
// holds by contruction in the CFG.
VD = dyn_cast<VarDecl>(*DS->decl_begin());
}
if (!VD)
return true;
// What is the most recently referenced variable with this binding?
const VarDecl* MostRecent = GetMostRecentVarDeclBinding(Pred, VMgr, V);
if (!MostRecent)
return true;
// Create the diagnostic.
FullSourceLoc L(S->getLocStart(), BR.getSourceManager());
if (Loc::IsLocType(VD->getType())) {
std::string msg = "'" + std::string(VD->getNameAsString()) +
"' now aliases '" + MostRecent->getNameAsString() + "'";
PD.push_front(new PathDiagnosticEventPiece(L, msg));
}
return true;
}
};
}
static void HandleNotableSymbol(const ExplodedNode<GRState>* N,
const Stmt* S,
SymbolRef Sym, BugReporter& BR,
PathDiagnostic& PD) {
const ExplodedNode<GRState>* Pred = N->pred_empty() ? 0 : *N->pred_begin();
const GRState* PrevSt = Pred ? Pred->getState() : 0;
if (!PrevSt)
return;
// Look at the region bindings of the current state that map to the
// specified symbol. Are any of them not in the previous state?
GRStateManager& VMgr = cast<GRBugReporter>(BR).getStateManager();
NotableSymbolHandler H(Sym, PrevSt, S, VMgr, Pred, PD, BR);
cast<GRBugReporter>(BR).getStateManager().iterBindings(N->getState(), H);
}
namespace {
class VISIBILITY_HIDDEN ScanNotableSymbols
: public StoreManager::BindingsHandler {
llvm::SmallSet<SymbolRef, 10> AlreadyProcessed;
const ExplodedNode<GRState>* N;
Stmt* S;
GRBugReporter& BR;
PathDiagnostic& PD;
public:
ScanNotableSymbols(const ExplodedNode<GRState>* n, Stmt* s, GRBugReporter& br,
PathDiagnostic& pd)
: N(n), S(s), BR(br), PD(pd) {}
bool HandleBinding(StoreManager& SMgr, Store store,
const MemRegion* R, SVal V) {
SymbolRef ScanSym = 0;
if (loc::SymbolVal* SV = dyn_cast<loc::SymbolVal>(&V))
ScanSym = SV->getSymbol();
else if (nonloc::SymbolVal* SV = dyn_cast<nonloc::SymbolVal>(&V))
ScanSym = SV->getSymbol();
else
return true;
assert (ScanSym);
if (!BR.isNotable(ScanSym))
return true;
if (AlreadyProcessed.count(ScanSym))
return true;
AlreadyProcessed.insert(ScanSym);
HandleNotableSymbol(N, S, ScanSym, BR, PD);
return true;
}
};
} // end anonymous namespace
namespace {
class VISIBILITY_HIDDEN NodeMapClosure : public BugReport::NodeResolver {
NodeBackMap& M;
public:
NodeMapClosure(NodeBackMap *m) : M(*m) {}
~NodeMapClosure() {}
const ExplodedNode<GRState>* getOriginalNode(const ExplodedNode<GRState>* N) {
NodeBackMap::iterator I = M.find(N);
return I == M.end() ? 0 : I->second;
}
};
}
/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
/// and collapses PathDiagosticPieces that are expanded by macros.
static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM) {
typedef std::vector<std::pair<PathDiagnosticMacroPiece*, SourceLocation> >
MacroStackTy;
typedef std::vector<PathDiagnosticPiece*>
PiecesTy;
MacroStackTy MacroStack;
PiecesTy Pieces;
for (PathDiagnostic::iterator I = PD.begin(), E = PD.end(); I!=E; ++I) {
// Get the location of the PathDiagnosticPiece.
const FullSourceLoc Loc = I->getLocation();
// Determine the instantiation location, which is the location we group
// related PathDiagnosticPieces.
SourceLocation InstantiationLoc = Loc.isMacroID() ?
SM.getInstantiationLoc(Loc) :
SourceLocation();
if (Loc.isFileID()) {
MacroStack.clear();
Pieces.push_back(&*I);
continue;
}
assert(Loc.isMacroID());
// Is the PathDiagnosticPiece within the same macro group?
if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
MacroStack.back().first->push_back(&*I);
continue;
}
// We aren't in the same group. Are we descending into a new macro
// or are part of an old one?
PathDiagnosticMacroPiece *MacroGroup = 0;
SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
SM.getInstantiationLoc(Loc) :
SourceLocation();
// Walk the entire macro stack.
while (!MacroStack.empty()) {
if (InstantiationLoc == MacroStack.back().second) {
MacroGroup = MacroStack.back().first;
break;
}
if (ParentInstantiationLoc == MacroStack.back().second) {
MacroGroup = MacroStack.back().first;
break;
}
MacroStack.pop_back();
}
if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
// Create a new macro group and add it to the stack.
PathDiagnosticMacroPiece *NewGroup = new PathDiagnosticMacroPiece(Loc);
if (MacroGroup)
MacroGroup->push_back(NewGroup);
else {
assert(InstantiationLoc.isFileID());
Pieces.push_back(NewGroup);
}
MacroGroup = NewGroup;
MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
}
// Finally, add the PathDiagnosticPiece to the group.
MacroGroup->push_back(&*I);
}
// Now take the pieces and construct a new PathDiagnostic.
PD.resetPath(false);
for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I) {
if (PathDiagnosticMacroPiece *MP=dyn_cast<PathDiagnosticMacroPiece>(*I))
if (!MP->containsEvent()) {
delete MP;
continue;
}
PD.push_back(*I);
}
}
void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD,
BugReportEquivClass& EQ) {
std::vector<const ExplodedNode<GRState>*> Nodes;
for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
const ExplodedNode<GRState>* N = I->getEndNode();
if (N) Nodes.push_back(N);
}
if (Nodes.empty())
return;
// Construct a new graph that contains only a single path from the error
// node to a root.
const std::pair<std::pair<ExplodedGraph<GRState>*, NodeBackMap*>,
std::pair<ExplodedNode<GRState>*, unsigned> >&
GPair = MakeReportGraph(&getGraph(), &Nodes[0], &Nodes[0] + Nodes.size());
// Find the BugReport with the original location.
BugReport *R = 0;
unsigned i = 0;
for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I, ++i)
if (i == GPair.second.second) { R = *I; break; }
assert(R && "No original report found for sliced graph.");
llvm::OwningPtr<ExplodedGraph<GRState> > ReportGraph(GPair.first.first);
llvm::OwningPtr<NodeBackMap> BackMap(GPair.first.second);
const ExplodedNode<GRState> *N = GPair.second.first;
// Start building the path diagnostic...
if (PathDiagnosticPiece* Piece = R->getEndPath(*this, N))
PD.push_back(Piece);
else
return;
const ExplodedNode<GRState>* NextNode = N->pred_empty()
? NULL : *(N->pred_begin());
ASTContext& Ctx = getContext();
SourceManager& SMgr = Ctx.getSourceManager();
NodeMapClosure NMC(BackMap.get());
while (NextNode) {
N = NextNode;
NextNode = GetPredecessorNode(N);
ProgramPoint P = N->getLocation();
if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P)) {
CFGBlock* Src = BE->getSrc();
CFGBlock* Dst = BE->getDst();
Stmt* T = Src->getTerminator();
if (!T)
continue;
FullSourceLoc Start(T->getLocStart(), SMgr);
switch (T->getStmtClass()) {
default:
break;
case Stmt::GotoStmtClass:
case Stmt::IndirectGotoStmtClass: {
Stmt* S = GetNextStmt(N);
if (!S)
continue;
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
SourceLocation End = S->getLocStart();
os << "Control jumps to line " << SMgr.getInstantiationLineNumber(End);
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
break;
}
case Stmt::SwitchStmtClass: {
// Figure out what case arm we took.
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
SourceLocation End;
if (Stmt* S = Dst->getLabel()) {
End = S->getLocStart();
switch (S->getStmtClass()) {
default:
os << "No cases match in the switch statement. "
"Control jumps to line "
<< SMgr.getInstantiationLineNumber(End);
break;
case Stmt::DefaultStmtClass:
os << "Control jumps to the 'default' case at line "
<< SMgr.getInstantiationLineNumber(End);
break;
case Stmt::CaseStmtClass: {
os << "Control jumps to 'case ";
CaseStmt* Case = cast<CaseStmt>(S);
Expr* LHS = Case->getLHS()->IgnoreParenCasts();
// Determine if it is an enum.
bool GetRawInt = true;
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(LHS)) {
// FIXME: Maybe this should be an assertion. Are there cases
// were it is not an EnumConstantDecl?
EnumConstantDecl* D =
dyn_cast<EnumConstantDecl>(DR->getDecl());
if (D) {
GetRawInt = false;
os << D->getNameAsString();
}
}
if (GetRawInt) {
// Not an enum.
Expr* CondE = cast<SwitchStmt>(T)->getCond();
unsigned bits = Ctx.getTypeSize(CondE->getType());
llvm::APSInt V(bits, false);
if (!LHS->isIntegerConstantExpr(V, Ctx, 0, true)) {
assert (false && "Case condition must be constant.");
continue;
}
os << V;
}
os << ":' at line " << SMgr.getInstantiationLineNumber(End);
break;
}
}
}
else {
os << "'Default' branch taken. ";
End = ExecutionContinues(os, SMgr, N,
getStateManager().getCodeDecl());
}
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
break;
}
case Stmt::BreakStmtClass:
case Stmt::ContinueStmtClass: {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
SourceLocation End = ExecutionContinues(os, SMgr, N,
getStateManager().getCodeDecl());
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
break;
}
case Stmt::ConditionalOperatorClass: {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
os << "'?' condition evaluates to ";
if (*(Src->succ_begin()+1) == Dst)
os << "false";
else
os << "true";
SourceLocation End =
ExecutionContinues(SMgr, N, getStateManager().getCodeDecl());
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
break;
}
case Stmt::DoStmtClass: {
if (*(Src->succ_begin()) == Dst) {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
os << "Loop condition is true. ";
SourceLocation End =
ExecutionContinues(os, SMgr, N, getStateManager().getCodeDecl());
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
}
else {
SourceLocation End =
ExecutionContinues(SMgr, N, getStateManager().getCodeDecl());
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
"Loop condition is false. Exiting loop"));
}
break;
}
case Stmt::WhileStmtClass:
case Stmt::ForStmtClass: {
if (*(Src->succ_begin()+1) == Dst) {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
os << "Loop condition is false. ";
SourceLocation End =
ExecutionContinues(os, SMgr, N, getStateManager().getCodeDecl());
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
}
else {
SourceLocation End =
ExecutionContinues(SMgr, N, getStateManager().getCodeDecl());
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
"Loop condition is true. Entering loop body"));
}
break;
}
case Stmt::IfStmtClass: {
SourceLocation End =
ExecutionContinues(SMgr, N, getStateManager().getCodeDecl());
if (*(Src->succ_begin()+1) == Dst)
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
"Taking false branch"));
else
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
"Taking true branch"));
break;
}
}
}
if (PathDiagnosticPiece* p = R->VisitNode(N, NextNode, *ReportGraph, *this,
NMC))
PD.push_front(p);
if (const PostStmt* PS = dyn_cast<PostStmt>(&P)) {
// Scan the region bindings, and see if a "notable" symbol has a new
// lval binding.
ScanNotableSymbols SNS(N, PS->getStmt(), *this, PD);
getStateManager().iterBindings(N->getState(), SNS);
}
}
// After constructing the full PathDiagnostic, do a pass over it to compact
// PathDiagnosticPieces that occur within a macro.
CompactPathDiagnostic(PD, getSourceManager());
}
void BugReporter::Register(BugType *BT) {
BugTypes = F.Add(BugTypes, BT);
}
void BugReporter::EmitReport(BugReport* R) {
// Compute the bug report's hash to determine its equivalence class.
llvm::FoldingSetNodeID ID;
R->Profile(ID);
// Lookup the equivance class. If there isn't one, create it.
BugType& BT = R->getBugType();
Register(&BT);
void *InsertPos;
BugReportEquivClass* EQ = BT.EQClasses.FindNodeOrInsertPos(ID, InsertPos);
if (!EQ) {
EQ = new BugReportEquivClass(R);
BT.EQClasses.InsertNode(EQ, InsertPos);
}
else
EQ->AddReport(R);
}
void BugReporter::FlushReport(BugReportEquivClass& EQ) {
assert(!EQ.Reports.empty());
BugReport &R = **EQ.begin();
// FIXME: Make sure we use the 'R' for the path that was actually used.
// Probably doesn't make a difference in practice.
BugType& BT = R.getBugType();
llvm::OwningPtr<PathDiagnostic> D(new PathDiagnostic(R.getBugType().getName(),
R.getDescription(),
BT.getCategory()));
GeneratePathDiagnostic(*D.get(), EQ);
// Get the meta data.
std::pair<const char**, const char**> Meta = R.getExtraDescriptiveText();
for (const char** s = Meta.first; s != Meta.second; ++s) D->addMeta(*s);
// Emit a summary diagnostic to the regular Diagnostics engine.
PathDiagnosticClient* PD = getPathDiagnosticClient();
const SourceRange *Beg = 0, *End = 0;
R.getRanges(*this, Beg, End);
Diagnostic& Diag = getDiagnostic();
FullSourceLoc L(R.getLocation(), getSourceManager());
unsigned ErrorDiag = Diag.getCustomDiagID(Diagnostic::Warning,
R.getDescription().c_str());
This reworks some of the Diagnostic interfaces a bit to change how diagnostics are formed. In particular, a diagnostic with all its strings and ranges is now packaged up and sent to DiagnosticClients as a DiagnosticInfo instead of as a ton of random stuff. This has the benefit of simplifying the interface, making it more extensible, and allowing us to do more checking for things like access past the end of the various arrays passed in. In addition to introducing DiagnosticInfo, this also substantially changes how Diagnostic::Report works. Instead of being passed in all of the info required to issue a diagnostic, Report now takes only the required info (a location and ID) and returns a fresh DiagnosticInfo *by value*. The caller is then free to stuff strings and ranges into the DiagnosticInfo with the << operator. When the dtor runs on the DiagnosticInfo object (which should happen at the end of the statement), the diagnostic is actually emitted with all of the accumulated information. This is a somewhat tricky dance, but it means that the accumulated DiagnosticInfo is allowed to keep pointers to other expression temporaries without those pointers getting invalidated. This is just the minimal change to get this stuff working, but this will allow us to eliminate the zillions of variant "Diag" methods scattered throughout (e.g.) sema. For example, instead of calling: Diag(BuiltinLoc, diag::err_overload_no_match, typeNames, SourceRange(BuiltinLoc, RParenLoc)); We will soon be able to just do: Diag(BuiltinLoc, diag::err_overload_no_match) << typeNames << SourceRange(BuiltinLoc, RParenLoc)); This scales better to support arbitrary types being passed in (not just strings) in a type-safe way. Go operator overloading?! llvm-svn: 59502
2008-11-18 15:04:44 +08:00
switch (End-Beg) {
This reworks some of the Diagnostic interfaces a bit to change how diagnostics are formed. In particular, a diagnostic with all its strings and ranges is now packaged up and sent to DiagnosticClients as a DiagnosticInfo instead of as a ton of random stuff. This has the benefit of simplifying the interface, making it more extensible, and allowing us to do more checking for things like access past the end of the various arrays passed in. In addition to introducing DiagnosticInfo, this also substantially changes how Diagnostic::Report works. Instead of being passed in all of the info required to issue a diagnostic, Report now takes only the required info (a location and ID) and returns a fresh DiagnosticInfo *by value*. The caller is then free to stuff strings and ranges into the DiagnosticInfo with the << operator. When the dtor runs on the DiagnosticInfo object (which should happen at the end of the statement), the diagnostic is actually emitted with all of the accumulated information. This is a somewhat tricky dance, but it means that the accumulated DiagnosticInfo is allowed to keep pointers to other expression temporaries without those pointers getting invalidated. This is just the minimal change to get this stuff working, but this will allow us to eliminate the zillions of variant "Diag" methods scattered throughout (e.g.) sema. For example, instead of calling: Diag(BuiltinLoc, diag::err_overload_no_match, typeNames, SourceRange(BuiltinLoc, RParenLoc)); We will soon be able to just do: Diag(BuiltinLoc, diag::err_overload_no_match) << typeNames << SourceRange(BuiltinLoc, RParenLoc)); This scales better to support arbitrary types being passed in (not just strings) in a type-safe way. Go operator overloading?! llvm-svn: 59502
2008-11-18 15:04:44 +08:00
default: assert(0 && "Don't handle this many ranges yet!");
case 0: Diag.Report(L, ErrorDiag); break;
case 1: Diag.Report(L, ErrorDiag) << Beg[0]; break;
case 2: Diag.Report(L, ErrorDiag) << Beg[0] << Beg[1]; break;
case 3: Diag.Report(L, ErrorDiag) << Beg[0] << Beg[1] << Beg[2]; break;
}
// Emit a full diagnostic for the path if we have a PathDiagnosticClient.
if (!PD)
return;
if (D->empty()) {
PathDiagnosticPiece* piece =
new PathDiagnosticEventPiece(L, R.getDescription());
for ( ; Beg != End; ++Beg) piece->addRange(*Beg);
D->push_back(piece);
}
PD->HandlePathDiagnostic(D.take());
}
void BugReporter::EmitBasicReport(const char* name, const char* str,
SourceLocation Loc,
SourceRange* RBeg, unsigned NumRanges) {
EmitBasicReport(name, "", str, Loc, RBeg, NumRanges);
}
void BugReporter::EmitBasicReport(const char* name, const char* category,
const char* str, SourceLocation Loc,
SourceRange* RBeg, unsigned NumRanges) {
// 'BT' will be owned by BugReporter as soon as we call 'EmitReport'.
BugType *BT = new BugType(name, category);
This reworks some of the Diagnostic interfaces a bit to change how diagnostics are formed. In particular, a diagnostic with all its strings and ranges is now packaged up and sent to DiagnosticClients as a DiagnosticInfo instead of as a ton of random stuff. This has the benefit of simplifying the interface, making it more extensible, and allowing us to do more checking for things like access past the end of the various arrays passed in. In addition to introducing DiagnosticInfo, this also substantially changes how Diagnostic::Report works. Instead of being passed in all of the info required to issue a diagnostic, Report now takes only the required info (a location and ID) and returns a fresh DiagnosticInfo *by value*. The caller is then free to stuff strings and ranges into the DiagnosticInfo with the << operator. When the dtor runs on the DiagnosticInfo object (which should happen at the end of the statement), the diagnostic is actually emitted with all of the accumulated information. This is a somewhat tricky dance, but it means that the accumulated DiagnosticInfo is allowed to keep pointers to other expression temporaries without those pointers getting invalidated. This is just the minimal change to get this stuff working, but this will allow us to eliminate the zillions of variant "Diag" methods scattered throughout (e.g.) sema. For example, instead of calling: Diag(BuiltinLoc, diag::err_overload_no_match, typeNames, SourceRange(BuiltinLoc, RParenLoc)); We will soon be able to just do: Diag(BuiltinLoc, diag::err_overload_no_match) << typeNames << SourceRange(BuiltinLoc, RParenLoc)); This scales better to support arbitrary types being passed in (not just strings) in a type-safe way. Go operator overloading?! llvm-svn: 59502
2008-11-18 15:04:44 +08:00
FullSourceLoc L = getContext().getFullLoc(Loc);
RangedBugReport *R = new DiagBugReport(*BT, str, L);
for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
EmitReport(R);
}