forked from OSchip/llvm-project
330 lines
8.2 KiB
C++
330 lines
8.2 KiB
C++
|
//===-- asan_noinst_test.cc ------------*- C++ -*-===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file is a part of AddressSanitizer, an address sanity checker.
|
||
|
//
|
||
|
// This test file should be compiled w/o asan instrumentation.
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
#include "asan_allocator.h"
|
||
|
#include "asan_interface.h"
|
||
|
#include "asan_internal.h"
|
||
|
#include "asan_mapping.h"
|
||
|
#include "asan_stack.h"
|
||
|
#include "asan_test_utils.h"
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <vector>
|
||
|
#include <algorithm>
|
||
|
#include "gtest/gtest.h"
|
||
|
|
||
|
// Simple stand-alone pseudorandom number generator.
|
||
|
// Current algorithm is ANSI C linear congruential PRNG.
|
||
|
static inline uint32_t my_rand(uint32_t* state) {
|
||
|
return (*state = *state * 1103515245 + 12345) >> 16;
|
||
|
}
|
||
|
|
||
|
static uint32_t global_seed = 0;
|
||
|
|
||
|
|
||
|
TEST(AddressSanitizer, InternalSimpleDeathTest) {
|
||
|
EXPECT_DEATH(exit(1), "");
|
||
|
}
|
||
|
|
||
|
static void MallocStress(size_t n) {
|
||
|
uint32_t seed = my_rand(&global_seed);
|
||
|
__asan::AsanStackTrace stack1;
|
||
|
stack1.trace[0] = 0xa123;
|
||
|
stack1.trace[1] = 0xa456;
|
||
|
stack1.size = 2;
|
||
|
|
||
|
__asan::AsanStackTrace stack2;
|
||
|
stack2.trace[0] = 0xb123;
|
||
|
stack2.trace[1] = 0xb456;
|
||
|
stack2.size = 2;
|
||
|
|
||
|
__asan::AsanStackTrace stack3;
|
||
|
stack3.trace[0] = 0xc123;
|
||
|
stack3.trace[1] = 0xc456;
|
||
|
stack3.size = 2;
|
||
|
|
||
|
std::vector<void *> vec;
|
||
|
for (size_t i = 0; i < n; i++) {
|
||
|
if ((i % 3) == 0) {
|
||
|
if (vec.empty()) continue;
|
||
|
size_t idx = my_rand(&seed) % vec.size();
|
||
|
void *ptr = vec[idx];
|
||
|
vec[idx] = vec.back();
|
||
|
vec.pop_back();
|
||
|
__asan::asan_free(ptr, &stack1);
|
||
|
} else {
|
||
|
size_t size = my_rand(&seed) % 1000 + 1;
|
||
|
switch ((my_rand(&seed) % 128)) {
|
||
|
case 0: size += 1024; break;
|
||
|
case 1: size += 2048; break;
|
||
|
case 2: size += 4096; break;
|
||
|
}
|
||
|
size_t alignment = 1 << (my_rand(&seed) % 10 + 1);
|
||
|
char *ptr = (char*)__asan::asan_memalign(alignment, size, &stack2);
|
||
|
vec.push_back(ptr);
|
||
|
ptr[0] = 0;
|
||
|
ptr[size-1] = 0;
|
||
|
ptr[size/2] = 0;
|
||
|
}
|
||
|
}
|
||
|
for (size_t i = 0; i < vec.size(); i++)
|
||
|
__asan::asan_free(vec[i], &stack3);
|
||
|
}
|
||
|
|
||
|
|
||
|
TEST(AddressSanitizer, NoInstMallocTest) {
|
||
|
#ifdef __arm__
|
||
|
MallocStress(300000);
|
||
|
#else
|
||
|
MallocStress(1000000);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static void PrintShadow(const char *tag, uintptr_t ptr, size_t size) {
|
||
|
fprintf(stderr, "%s shadow: %lx size % 3ld: ", tag, (long)ptr, (long)size);
|
||
|
uintptr_t prev_shadow = 0;
|
||
|
for (intptr_t i = -32; i < (intptr_t)size + 32; i++) {
|
||
|
uintptr_t shadow = __asan::MemToShadow(ptr + i);
|
||
|
if (i == 0 || i == (intptr_t)size)
|
||
|
fprintf(stderr, ".");
|
||
|
if (shadow != prev_shadow) {
|
||
|
prev_shadow = shadow;
|
||
|
fprintf(stderr, "%02x", (int)*(uint8_t*)shadow);
|
||
|
}
|
||
|
}
|
||
|
fprintf(stderr, "\n");
|
||
|
}
|
||
|
|
||
|
TEST(AddressSanitizer, DISABLED_InternalPrintShadow) {
|
||
|
for (size_t size = 1; size <= 513; size++) {
|
||
|
char *ptr = new char[size];
|
||
|
PrintShadow("m", (uintptr_t)ptr, size);
|
||
|
delete [] ptr;
|
||
|
PrintShadow("f", (uintptr_t)ptr, size);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static uintptr_t pc_array[] = {
|
||
|
#if __WORDSIZE == 64
|
||
|
0x7effbf756068ULL,
|
||
|
0x7effbf75e5abULL,
|
||
|
0x7effc0625b7cULL,
|
||
|
0x7effc05b8997ULL,
|
||
|
0x7effbf990577ULL,
|
||
|
0x7effbf990c56ULL,
|
||
|
0x7effbf992f3cULL,
|
||
|
0x7effbf950c22ULL,
|
||
|
0x7effc036dba0ULL,
|
||
|
0x7effc03638a3ULL,
|
||
|
0x7effc035be4aULL,
|
||
|
0x7effc0539c45ULL,
|
||
|
0x7effc0539a65ULL,
|
||
|
0x7effc03db9b3ULL,
|
||
|
0x7effc03db100ULL,
|
||
|
0x7effc037c7b8ULL,
|
||
|
0x7effc037bfffULL,
|
||
|
0x7effc038b777ULL,
|
||
|
0x7effc038021cULL,
|
||
|
0x7effc037c7d1ULL,
|
||
|
0x7effc037bfffULL,
|
||
|
0x7effc038b777ULL,
|
||
|
0x7effc038021cULL,
|
||
|
0x7effc037c7d1ULL,
|
||
|
0x7effc037bfffULL,
|
||
|
0x7effc038b777ULL,
|
||
|
0x7effc038021cULL,
|
||
|
0x7effc037c7d1ULL,
|
||
|
0x7effc037bfffULL,
|
||
|
0x7effc0520d26ULL,
|
||
|
0x7effc009ddffULL,
|
||
|
0x7effbf90bb50ULL,
|
||
|
0x7effbdddfa69ULL,
|
||
|
0x7effbdde1fe2ULL,
|
||
|
0x7effbdde2424ULL,
|
||
|
0x7effbdde27b3ULL,
|
||
|
0x7effbddee53bULL,
|
||
|
0x7effbdde1988ULL,
|
||
|
0x7effbdde0904ULL,
|
||
|
0x7effc106ce0dULL,
|
||
|
0x7effbcc3fa04ULL,
|
||
|
0x7effbcc3f6a4ULL,
|
||
|
0x7effbcc3e726ULL,
|
||
|
0x7effbcc40852ULL,
|
||
|
0x7effb681ec4dULL,
|
||
|
#endif // __WORDSIZE
|
||
|
0xB0B5E768,
|
||
|
0x7B682EC1,
|
||
|
0x367F9918,
|
||
|
0xAE34E13,
|
||
|
0xBA0C6C6,
|
||
|
0x13250F46,
|
||
|
0xA0D6A8AB,
|
||
|
0x2B07C1A8,
|
||
|
0x6C844F4A,
|
||
|
0x2321B53,
|
||
|
0x1F3D4F8F,
|
||
|
0x3FE2924B,
|
||
|
0xB7A2F568,
|
||
|
0xBD23950A,
|
||
|
0x61020930,
|
||
|
0x33E7970C,
|
||
|
0x405998A1,
|
||
|
0x59F3551D,
|
||
|
0x350E3028,
|
||
|
0xBC55A28D,
|
||
|
0x361F3AED,
|
||
|
0xBEAD0F73,
|
||
|
0xAEF28479,
|
||
|
0x757E971F,
|
||
|
0xAEBA450,
|
||
|
0x43AD22F5,
|
||
|
0x8C2C50C4,
|
||
|
0x7AD8A2E1,
|
||
|
0x69EE4EE8,
|
||
|
0xC08DFF,
|
||
|
0x4BA6538,
|
||
|
0x3708AB2,
|
||
|
0xC24B6475,
|
||
|
0x7C8890D7,
|
||
|
0x6662495F,
|
||
|
0x9B641689,
|
||
|
0xD3596B,
|
||
|
0xA1049569,
|
||
|
0x44CBC16,
|
||
|
0x4D39C39F
|
||
|
};
|
||
|
|
||
|
void CompressStackTraceTest(size_t n_iter) {
|
||
|
uint32_t seed = my_rand(&global_seed);
|
||
|
const size_t kNumPcs = ASAN_ARRAY_SIZE(pc_array);
|
||
|
uint32_t compressed[2 * kNumPcs];
|
||
|
|
||
|
for (size_t iter = 0; iter < n_iter; iter++) {
|
||
|
std::random_shuffle(pc_array, pc_array + kNumPcs);
|
||
|
__asan::AsanStackTrace stack0, stack1;
|
||
|
stack0.CopyFrom(pc_array, kNumPcs);
|
||
|
stack0.size = std::max((size_t)1, (size_t)my_rand(&seed) % stack0.size);
|
||
|
size_t compress_size =
|
||
|
std::max((size_t)2, (size_t)my_rand(&seed) % (2 * kNumPcs));
|
||
|
size_t n_frames =
|
||
|
__asan::AsanStackTrace::CompressStack(&stack0, compressed, compress_size);
|
||
|
assert(n_frames <= stack0.size);
|
||
|
__asan::AsanStackTrace::UncompressStack(&stack1, compressed, compress_size);
|
||
|
assert(stack1.size == n_frames);
|
||
|
for (size_t i = 0; i < stack1.size; i++) {
|
||
|
assert(stack0.trace[i] == stack1.trace[i]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST(AddressSanitizer, CompressStackTraceTest) {
|
||
|
CompressStackTraceTest(10000);
|
||
|
}
|
||
|
|
||
|
void CompressStackTraceBenchmark(size_t n_iter) {
|
||
|
const size_t kNumPcs = ASAN_ARRAY_SIZE(pc_array);
|
||
|
uint32_t compressed[2 * kNumPcs];
|
||
|
std::random_shuffle(pc_array, pc_array + kNumPcs);
|
||
|
|
||
|
__asan::AsanStackTrace stack0;
|
||
|
stack0.CopyFrom(pc_array, kNumPcs);
|
||
|
stack0.size = kNumPcs;
|
||
|
for (size_t iter = 0; iter < n_iter; iter++) {
|
||
|
size_t compress_size = kNumPcs;
|
||
|
size_t n_frames =
|
||
|
__asan::AsanStackTrace::CompressStack(&stack0, compressed, compress_size);
|
||
|
Ident(n_frames);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST(AddressSanitizer, CompressStackTraceBenchmark) {
|
||
|
CompressStackTraceBenchmark(1 << 24);
|
||
|
}
|
||
|
|
||
|
TEST(AddressSanitizer, QuarantineTest) {
|
||
|
__asan::AsanStackTrace stack;
|
||
|
stack.trace[0] = 0x890;
|
||
|
stack.size = 1;
|
||
|
|
||
|
const int size = 32;
|
||
|
void *p = __asan::asan_malloc(size, &stack);
|
||
|
__asan::asan_free(p, &stack);
|
||
|
size_t i;
|
||
|
size_t max_i = 1 << 30;
|
||
|
for (i = 0; i < max_i; i++) {
|
||
|
void *p1 = __asan::asan_malloc(size, &stack);
|
||
|
__asan::asan_free(p1, &stack);
|
||
|
if (p1 == p) break;
|
||
|
}
|
||
|
// fprintf(stderr, "i=%ld\n", i);
|
||
|
EXPECT_GE(i, 100000U);
|
||
|
EXPECT_LT(i, max_i);
|
||
|
}
|
||
|
|
||
|
void *ThreadedQuarantineTestWorker(void *unused) {
|
||
|
uint32_t seed = my_rand(&global_seed);
|
||
|
__asan::AsanStackTrace stack;
|
||
|
stack.trace[0] = 0x890;
|
||
|
stack.size = 1;
|
||
|
|
||
|
for (size_t i = 0; i < 1000; i++) {
|
||
|
void *p = __asan::asan_malloc(1 + (my_rand(&seed) % 4000), &stack);
|
||
|
__asan::asan_free(p, &stack);
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
// Check that the thread local allocators are flushed when threads are
|
||
|
// destroyed.
|
||
|
TEST(AddressSanitizer, ThreadedQuarantineTest) {
|
||
|
const int n_threads = 3000;
|
||
|
size_t mmaped1 = __asan_get_heap_size();
|
||
|
for (int i = 0; i < n_threads; i++) {
|
||
|
pthread_t t;
|
||
|
pthread_create(&t, NULL, ThreadedQuarantineTestWorker, 0);
|
||
|
pthread_join(t, 0);
|
||
|
size_t mmaped2 = __asan_get_heap_size();
|
||
|
EXPECT_LT(mmaped2 - mmaped1, 320U * (1 << 20));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void *ThreadedOneSizeMallocStress(void *unused) {
|
||
|
__asan::AsanStackTrace stack;
|
||
|
stack.trace[0] = 0x890;
|
||
|
stack.size = 1;
|
||
|
const size_t kNumMallocs = 1000;
|
||
|
for (int iter = 0; iter < 1000; iter++) {
|
||
|
void *p[kNumMallocs];
|
||
|
for (size_t i = 0; i < kNumMallocs; i++) {
|
||
|
p[i] = __asan::asan_malloc(32, &stack);
|
||
|
}
|
||
|
for (size_t i = 0; i < kNumMallocs; i++) {
|
||
|
__asan::asan_free(p[i], &stack);
|
||
|
}
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
TEST(AddressSanitizer, ThreadedOneSizeMallocStressTest) {
|
||
|
const int kNumThreads = 4;
|
||
|
pthread_t t[kNumThreads];
|
||
|
for (int i = 0; i < kNumThreads; i++) {
|
||
|
pthread_create(&t[i], 0, ThreadedOneSizeMallocStress, 0);
|
||
|
}
|
||
|
for (int i = 0; i < kNumThreads; i++) {
|
||
|
pthread_join(t[i], 0);
|
||
|
}
|
||
|
}
|