llvm-project/llvm/lib/Target/Mips/MipsSubtarget.cpp

304 lines
10 KiB
C++
Raw Normal View History

//===-- MipsSubtarget.cpp - Mips Subtarget Information --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Mips specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
2013-04-10 03:46:01 +08:00
#include "MipsMachineFunction.h"
#include "Mips.h"
#include "MipsRegisterInfo.h"
#include "MipsSubtarget.h"
#include "MipsTargetMachine.h"
2013-04-10 03:46:01 +08:00
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TargetRegistry.h"
2013-04-10 03:46:01 +08:00
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "mips-subtarget"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "MipsGenSubtargetInfo.inc"
2013-04-10 03:46:01 +08:00
// FIXME: Maybe this should be on by default when Mips16 is specified
//
static cl::opt<bool> Mixed16_32(
"mips-mixed-16-32",
cl::init(false),
cl::desc("Allow for a mixture of Mips16 "
"and Mips32 code in a single source file"),
cl::Hidden);
static cl::opt<bool> Mips_Os16(
"mips-os16",
cl::init(false),
cl::desc("Compile all functions that don' use "
"floating point as Mips 16"),
cl::Hidden);
static cl::opt<bool>
Mips16HardFloat("mips16-hard-float", cl::NotHidden,
cl::desc("MIPS: mips16 hard float enable."),
cl::init(false));
static cl::opt<bool>
Mips16ConstantIslands(
"mips16-constant-islands", cl::NotHidden,
cl::desc("MIPS: mips16 constant islands enable."),
cl::init(true));
/// Select the Mips CPU for the given triple and cpu name.
/// FIXME: Merge with the copy in MipsMCTargetDesc.cpp
static StringRef selectMipsCPU(Triple TT, StringRef CPU) {
if (CPU.empty() || CPU == "generic") {
if (TT.getArch() == Triple::mips || TT.getArch() == Triple::mipsel)
CPU = "mips32";
else
CPU = "mips64";
}
return CPU;
}
void MipsSubtarget::anchor() { }
static std::string computeDataLayout(const MipsSubtarget &ST) {
std::string Ret = "";
// There are both little and big endian mips.
if (ST.isLittle())
Ret += "e";
else
Ret += "E";
Ret += "-m:m";
// Pointers are 32 bit on some ABIs.
if (!ST.isABI_N64())
Ret += "-p:32:32";
// 8 and 16 bit integers only need no have natural alignment, but try to
// align them to 32 bits. 64 bit integers have natural alignment.
Ret += "-i8:8:32-i16:16:32-i64:64";
// 32 bit registers are always available and the stack is at least 64 bit
// aligned. On N64 64 bit registers are also available and the stack is
// 128 bit aligned.
if (ST.isABI_N64() || ST.isABI_N32())
Ret += "-n32:64-S128";
else
Ret += "-n32-S64";
return Ret;
}
MipsSubtarget::MipsSubtarget(const std::string &TT, const std::string &CPU,
const std::string &FS, bool little,
Reloc::Model _RM, MipsTargetMachine *_TM)
: MipsGenSubtargetInfo(TT, CPU, FS), MipsArchVersion(Mips32),
MipsABI(UnknownABI), IsLittle(little), IsSingleFloat(false),
IsFPXX(false), IsFP64bit(false), UseOddSPReg(true), IsNaN2008bit(false),
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 llvm-svn: 212717
2014-07-10 21:38:23 +08:00
IsGP64bit(false), HasVFPU(false), HasCnMips(false), IsLinux(true),
HasMips3_32(false), HasMips3_32r2(false), HasMips4_32(false),
HasMips4_32r2(false), HasMips5_32r2(false), InMips16Mode(false),
InMips16HardFloat(Mips16HardFloat), InMicroMipsMode(false), HasDSP(false),
HasDSPR2(false), AllowMixed16_32(Mixed16_32 | Mips_Os16), Os16(Mips_Os16),
HasMSA(false), RM(_RM), OverrideMode(NoOverride), TM(_TM),
TargetTriple(TT),
DL(computeDataLayout(initializeSubtargetDependencies(CPU, FS, TM))),
TSInfo(DL), JITInfo(), InstrInfo(MipsInstrInfo::create(*TM)),
FrameLowering(MipsFrameLowering::create(*TM, *this)),
TLInfo(MipsTargetLowering::create(*TM)) {
2013-04-10 03:46:01 +08:00
PreviousInMips16Mode = InMips16Mode;
// Don't even attempt to generate code for MIPS-I, MIPS-II, MIPS-III, and
// MIPS-V. They have not been tested and currently exist for the integrated
// assembler only.
if (MipsArchVersion == Mips1)
report_fatal_error("Code generation for MIPS-I is not implemented", false);
if (MipsArchVersion == Mips2)
report_fatal_error("Code generation for MIPS-II is not implemented", false);
if (MipsArchVersion == Mips3)
report_fatal_error("Code generation for MIPS-III is not implemented",
false);
if (MipsArchVersion == Mips5)
report_fatal_error("Code generation for MIPS-V is not implemented", false);
// Assert exactly one ABI was chosen.
assert(MipsABI != UnknownABI);
assert((((getFeatureBits() & Mips::FeatureO32) != 0) +
((getFeatureBits() & Mips::FeatureEABI) != 0) +
((getFeatureBits() & Mips::FeatureN32) != 0) +
((getFeatureBits() & Mips::FeatureN64) != 0)) == 1);
// Check if Architecture and ABI are compatible.
assert(((!isGP64bit() && (isABI_O32() || isABI_EABI())) ||
(isGP64bit() && (isABI_N32() || isABI_N64()))) &&
"Invalid Arch & ABI pair.");
if (hasMSA() && !isFP64bit())
report_fatal_error("MSA requires a 64-bit FPU register file (FR=1 mode). "
"See -mattr=+fp64.",
false);
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 llvm-svn: 212717
2014-07-10 21:38:23 +08:00
if (!isABI_O32() && !useOddSPReg())
report_fatal_error("-mattr=+nooddspreg is not currently permitted for a "
"the O32 ABI.",
false);
if (IsFPXX && (isABI_N32() || isABI_N64()))
report_fatal_error("FPXX is not permitted for the N32/N64 ABI's.", false);
if (hasMips32r6()) {
StringRef ISA = hasMips64r6() ? "MIPS64r6" : "MIPS32r6";
assert(isFP64bit());
assert(isNaN2008());
if (hasDSP())
report_fatal_error(ISA + " is not compatible with the DSP ASE", false);
}
// Is the target system Linux ?
if (TT.find("linux") == std::string::npos)
IsLinux = false;
// Set UseSmallSection.
// TODO: Investigate the IsLinux check. I suspect it's really checking for
// bare-metal.
UseSmallSection = !IsLinux && (RM == Reloc::Static);
}
bool
MipsSubtarget::enablePostRAScheduler(CodeGenOpt::Level OptLevel,
TargetSubtargetInfo::AntiDepBreakMode &Mode,
RegClassVector &CriticalPathRCs) const {
Mode = TargetSubtargetInfo::ANTIDEP_NONE;
CriticalPathRCs.clear();
CriticalPathRCs.push_back(isGP64bit() ? &Mips::GPR64RegClass
: &Mips::GPR32RegClass);
return OptLevel >= CodeGenOpt::Aggressive;
}
2013-04-10 03:46:01 +08:00
MipsSubtarget &
MipsSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS,
const TargetMachine *TM) {
std::string CPUName = selectMipsCPU(TargetTriple, CPU);
// Parse features string.
ParseSubtargetFeatures(CPUName, FS);
// Initialize scheduling itinerary for the specified CPU.
InstrItins = getInstrItineraryForCPU(CPUName);
if (InMips16Mode && !TM->Options.UseSoftFloat) {
// Hard float for mips16 means essentially to compile as soft float
// but to use a runtime library for soft float that is written with
// native mips32 floating point instructions (those runtime routines
// run in mips32 hard float mode).
TM->Options.UseSoftFloat = true;
TM->Options.FloatABIType = FloatABI::Soft;
InMips16HardFloat = true;
}
return *this;
}
2013-04-10 03:46:01 +08:00
//FIXME: This logic for reseting the subtarget along with
// the helper classes can probably be simplified but there are a lot of
// cases so we will defer rewriting this to later.
//
void MipsSubtarget::resetSubtarget(MachineFunction *MF) {
bool ChangeToMips16 = false, ChangeToNoMips16 = false;
DEBUG(dbgs() << "resetSubtargetFeatures" << "\n");
AttributeSet FnAttrs = MF->getFunction()->getAttributes();
ChangeToMips16 = FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
"mips16");
ChangeToNoMips16 = FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
"nomips16");
assert (!(ChangeToMips16 & ChangeToNoMips16) &&
"mips16 and nomips16 specified on the same function");
if (ChangeToMips16) {
if (PreviousInMips16Mode)
return;
OverrideMode = Mips16Override;
PreviousInMips16Mode = true;
setHelperClassesMips16();
2013-04-10 03:46:01 +08:00
return;
} else if (ChangeToNoMips16) {
if (!PreviousInMips16Mode)
return;
OverrideMode = NoMips16Override;
PreviousInMips16Mode = false;
setHelperClassesMipsSE();
2013-04-10 03:46:01 +08:00
return;
} else {
if (OverrideMode == NoOverride)
return;
OverrideMode = NoOverride;
DEBUG(dbgs() << "back to default" << "\n");
if (inMips16Mode() && !PreviousInMips16Mode) {
setHelperClassesMips16();
2013-04-10 03:46:01 +08:00
PreviousInMips16Mode = true;
} else if (!inMips16Mode() && PreviousInMips16Mode) {
setHelperClassesMipsSE();
2013-04-10 03:46:01 +08:00
PreviousInMips16Mode = false;
}
return;
}
}
void MipsSubtarget::setHelperClassesMips16() {
InstrInfoSE.swap(InstrInfo);
FrameLoweringSE.swap(FrameLowering);
TLInfoSE.swap(TLInfo);
if (!InstrInfo16) {
InstrInfo.reset(MipsInstrInfo::create(*TM));
FrameLowering.reset(MipsFrameLowering::create(*TM, *this));
TLInfo.reset(MipsTargetLowering::create(*TM));
} else {
InstrInfo16.swap(InstrInfo);
FrameLowering16.swap(FrameLowering);
TLInfo16.swap(TLInfo);
}
assert(TLInfo && "null target lowering 16");
assert(InstrInfo && "null instr info 16");
assert(FrameLowering && "null frame lowering 16");
}
void MipsSubtarget::setHelperClassesMipsSE() {
InstrInfo16.swap(InstrInfo);
FrameLowering16.swap(FrameLowering);
TLInfo16.swap(TLInfo);
if (!InstrInfoSE) {
InstrInfo.reset(MipsInstrInfo::create(*TM));
FrameLowering.reset(MipsFrameLowering::create(*TM, *this));
TLInfo.reset(MipsTargetLowering::create(*TM));
} else {
InstrInfoSE.swap(InstrInfo);
FrameLoweringSE.swap(FrameLowering);
TLInfoSE.swap(TLInfo);
}
assert(TLInfo && "null target lowering in SE");
assert(InstrInfo && "null instr info SE");
assert(FrameLowering && "null frame lowering SE");
}
bool MipsSubtarget::mipsSEUsesSoftFloat() const {
return TM->Options.UseSoftFloat && !InMips16HardFloat;
}
bool MipsSubtarget::useConstantIslands() {
DEBUG(dbgs() << "use constant islands " << Mips16ConstantIslands << "\n");
return Mips16ConstantIslands;
}