llvm-project/lldb/source/Symbol/UnwindTable.cpp

129 lines
3.7 KiB
C++
Raw Normal View History

//===-- UnwindTable.cpp -----------------------------------------*- C++ -*-===//
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Symbol/UnwindTable.h"
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
#include <stdio.h>
#include "lldb/Core/Module.h"
#include "lldb/Core/Section.h"
#include "lldb/Symbol/ObjectFile.h"
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
#include "lldb/Symbol/FuncUnwinders.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Symbol/DWARFCallFrameInfo.h"
#include "lldb/Target/UnwindAssembly.h"
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
// There is one UnwindTable object per ObjectFile.
// It contains a list of Unwind objects -- one per function, populated lazily -- for the ObjectFile.
// Each Unwind object has multiple UnwindPlans for different scenarios.
using namespace lldb;
using namespace lldb_private;
UnwindTable::UnwindTable (ObjectFile& objfile) :
m_object_file (objfile),
m_unwinds (),
m_initialized (false),
m_assembly_profiler (NULL),
m_eh_frame (NULL)
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
{
}
// We can't do some of this initialization when the ObjectFile is running its ctor; delay doing it
// until needed for something.
void
UnwindTable::Initialize ()
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
{
if (m_initialized)
return;
SectionList* sl = m_object_file.GetSectionList ();
if (sl)
{
SectionSP sect = sl->FindSectionByType (eSectionTypeEHFrame, true);
if (sect.get())
{
m_eh_frame = new DWARFCallFrameInfo(m_object_file, sect, eRegisterKindGCC, true);
}
}
ArchSpec arch;
if (m_object_file.GetArchitecture (arch))
{
m_assembly_profiler = UnwindAssembly::FindPlugin (arch);
m_initialized = true;
}
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
}
UnwindTable::~UnwindTable ()
{
if (m_eh_frame)
delete m_eh_frame;
}
FuncUnwindersSP
UnwindTable::GetFuncUnwindersContainingAddress (const Address& addr, SymbolContext &sc)
{
FuncUnwindersSP no_unwind_found;
Initialize();
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
// There is an UnwindTable per object file, so we can safely use file handles
addr_t file_addr = addr.GetFileAddress();
iterator end = m_unwinds.end ();
iterator insert_pos = end;
if (!m_unwinds.empty())
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
{
insert_pos = m_unwinds.lower_bound (file_addr);
iterator pos = insert_pos;
if ((pos == m_unwinds.end ()) || (pos != m_unwinds.begin() && pos->second->GetFunctionStartAddress() != addr))
--pos;
if (pos->second->ContainsAddress (addr))
return pos->second;
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
}
AddressRange range;
if (!sc.GetAddressRange(eSymbolContextFunction | eSymbolContextSymbol, 0, false, range) || !range.GetBaseAddress().IsValid())
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
{
// Does the eh_frame unwind info has a function bounds for this addr?
if (m_eh_frame == NULL || !m_eh_frame->GetAddressRange (addr, range))
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
{
return no_unwind_found;
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
}
}
FuncUnwindersSP func_unwinder_sp(new FuncUnwinders(*this, m_assembly_profiler, range));
m_unwinds.insert (insert_pos, std::make_pair(range.GetBaseAddress().GetFileAddress(), func_unwinder_sp));
// StreamFile s(stdout);
// Dump (s);
return func_unwinder_sp;
}
void
UnwindTable::Dump (Stream &s)
{
s.Printf("UnwindTable for %s/%s:\n", m_object_file.GetFileSpec().GetDirectory().GetCString(), m_object_file.GetFileSpec().GetFilename().GetCString());
const_iterator begin = m_unwinds.begin();
const_iterator end = m_unwinds.end();
for (const_iterator pos = begin; pos != end; ++pos)
{
s.Printf ("[%u] 0x%16.16llx\n", (unsigned)std::distance (begin, pos), pos->first);
}
s.EOL();
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
}
DWARFCallFrameInfo *
UnwindTable::GetEHFrameInfo ()
{
Initialize();
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
return m_eh_frame;
}