llvm-project/llvm/lib/Transforms/Scalar/SCCP.cpp

2154 lines
76 KiB
C++
Raw Normal View History

//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements sparse conditional constant propagation and merging:
//
// Specifically, this:
// * Assumes values are constant unless proven otherwise
// * Assumes BasicBlocks are dead unless proven otherwise
// * Proves values to be constant, and replaces them with constants
// * Proves conditional branches to be unconditional
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueLattice.h"
#include "llvm/Analysis/ValueLatticeUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/PredicateInfo.h"
#include <cassert>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "sccp"
STATISTIC(NumInstRemoved, "Number of instructions removed");
STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
namespace {
/// LatticeVal class - This class represents the different lattice values that
/// an LLVM value may occupy. It is a simple class with value semantics.
///
class LatticeVal {
enum LatticeValueTy {
/// unknown - This LLVM Value has no known value yet.
unknown,
/// constant - This LLVM Value has a specific constant value.
constant,
/// forcedconstant - This LLVM Value was thought to be undef until
/// ResolvedUndefsIn. This is treated just like 'constant', but if merged
/// with another (different) constant, it goes to overdefined, instead of
/// asserting.
forcedconstant,
/// overdefined - This instruction is not known to be constant, and we know
/// it has a value.
overdefined
};
/// Val: This stores the current lattice value along with the Constant* for
/// the constant if this is a 'constant' or 'forcedconstant' value.
PointerIntPair<Constant *, 2, LatticeValueTy> Val;
LatticeValueTy getLatticeValue() const {
return Val.getInt();
}
public:
LatticeVal() : Val(nullptr, unknown) {}
bool isUnknown() const { return getLatticeValue() == unknown; }
bool isConstant() const {
return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
}
bool isOverdefined() const { return getLatticeValue() == overdefined; }
Constant *getConstant() const {
assert(isConstant() && "Cannot get the constant of a non-constant!");
return Val.getPointer();
}
/// markOverdefined - Return true if this is a change in status.
bool markOverdefined() {
if (isOverdefined())
return false;
Val.setInt(overdefined);
return true;
}
/// markConstant - Return true if this is a change in status.
bool markConstant(Constant *V) {
if (getLatticeValue() == constant) { // Constant but not forcedconstant.
assert(getConstant() == V && "Marking constant with different value");
return false;
}
if (isUnknown()) {
Val.setInt(constant);
assert(V && "Marking constant with NULL");
Val.setPointer(V);
} else {
assert(getLatticeValue() == forcedconstant &&
"Cannot move from overdefined to constant!");
// Stay at forcedconstant if the constant is the same.
if (V == getConstant()) return false;
// Otherwise, we go to overdefined. Assumptions made based on the
// forced value are possibly wrong. Assuming this is another constant
// could expose a contradiction.
Val.setInt(overdefined);
}
return true;
}
/// getConstantInt - If this is a constant with a ConstantInt value, return it
/// otherwise return null.
ConstantInt *getConstantInt() const {
if (isConstant())
return dyn_cast<ConstantInt>(getConstant());
return nullptr;
}
/// getBlockAddress - If this is a constant with a BlockAddress value, return
/// it, otherwise return null.
BlockAddress *getBlockAddress() const {
if (isConstant())
return dyn_cast<BlockAddress>(getConstant());
return nullptr;
}
void markForcedConstant(Constant *V) {
assert(isUnknown() && "Can't force a defined value!");
Val.setInt(forcedconstant);
Val.setPointer(V);
}
ValueLatticeElement toValueLattice() const {
if (isOverdefined())
return ValueLatticeElement::getOverdefined();
if (isConstant())
return ValueLatticeElement::get(getConstant());
return ValueLatticeElement();
}
};
//===----------------------------------------------------------------------===//
//
/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
/// Constant Propagation.
///
class SCCPSolver : public InstVisitor<SCCPSolver> {
const DataLayout &DL;
const TargetLibraryInfo *TLI;
SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
DenseMap<Value *, LatticeVal> ValueState; // The state each value is in.
// The state each parameter is in.
DenseMap<Value *, ValueLatticeElement> ParamState;
/// StructValueState - This maintains ValueState for values that have
/// StructType, for example for formal arguments, calls, insertelement, etc.
DenseMap<std::pair<Value *, unsigned>, LatticeVal> StructValueState;
/// GlobalValue - If we are tracking any values for the contents of a global
/// variable, we keep a mapping from the constant accessor to the element of
/// the global, to the currently known value. If the value becomes
/// overdefined, it's entry is simply removed from this map.
DenseMap<GlobalVariable *, LatticeVal> TrackedGlobals;
/// TrackedRetVals - If we are tracking arguments into and the return
/// value out of a function, it will have an entry in this map, indicating
/// what the known return value for the function is.
DenseMap<Function *, LatticeVal> TrackedRetVals;
/// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
/// that return multiple values.
DenseMap<std::pair<Function *, unsigned>, LatticeVal> TrackedMultipleRetVals;
/// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
/// represented here for efficient lookup.
SmallPtrSet<Function *, 16> MRVFunctionsTracked;
/// MustTailFunctions - Each function here is a callee of non-removable
/// musttail call site.
SmallPtrSet<Function *, 16> MustTailCallees;
/// TrackingIncomingArguments - This is the set of functions for whose
/// arguments we make optimistic assumptions about and try to prove as
/// constants.
SmallPtrSet<Function *, 16> TrackingIncomingArguments;
/// The reason for two worklists is that overdefined is the lowest state
/// on the lattice, and moving things to overdefined as fast as possible
/// makes SCCP converge much faster.
///
/// By having a separate worklist, we accomplish this because everything
/// possibly overdefined will become overdefined at the soonest possible
/// point.
SmallVector<Value *, 64> OverdefinedInstWorkList;
SmallVector<Value *, 64> InstWorkList;
// The BasicBlock work list
SmallVector<BasicBlock *, 64> BBWorkList;
/// KnownFeasibleEdges - Entries in this set are edges which have already had
/// PHI nodes retriggered.
using Edge = std::pair<BasicBlock *, BasicBlock *>;
DenseSet<Edge> KnownFeasibleEdges;
DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
public:
void addAnalysis(Function &F, AnalysisResultsForFn A) {
AnalysisResults.insert({&F, std::move(A)});
}
const PredicateBase *getPredicateInfoFor(Instruction *I) {
auto A = AnalysisResults.find(I->getParent()->getParent());
if (A == AnalysisResults.end())
return nullptr;
return A->second.PredInfo->getPredicateInfoFor(I);
}
DomTreeUpdater getDTU(Function &F) {
auto A = AnalysisResults.find(&F);
assert(A != AnalysisResults.end() && "Need analysis results for function.");
return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
}
SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli)
: DL(DL), TLI(tli) {}
/// MarkBlockExecutable - This method can be used by clients to mark all of
/// the blocks that are known to be intrinsically live in the processed unit.
///
/// This returns true if the block was not considered live before.
bool MarkBlockExecutable(BasicBlock *BB) {
if (!BBExecutable.insert(BB).second)
return false;
LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
BBWorkList.push_back(BB); // Add the block to the work list!
return true;
}
/// TrackValueOfGlobalVariable - Clients can use this method to
/// inform the SCCPSolver that it should track loads and stores to the
/// specified global variable if it can. This is only legal to call if
/// performing Interprocedural SCCP.
void TrackValueOfGlobalVariable(GlobalVariable *GV) {
// We only track the contents of scalar globals.
if (GV->getValueType()->isSingleValueType()) {
LatticeVal &IV = TrackedGlobals[GV];
if (!isa<UndefValue>(GV->getInitializer()))
IV.markConstant(GV->getInitializer());
}
}
/// AddTrackedFunction - If the SCCP solver is supposed to track calls into
/// and out of the specified function (which cannot have its address taken),
/// this method must be called.
void AddTrackedFunction(Function *F) {
// Add an entry, F -> undef.
if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
MRVFunctionsTracked.insert(F);
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
LatticeVal()));
} else
TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
}
/// AddMustTailCallee - If the SCCP solver finds that this function is called
/// from non-removable musttail call site.
void AddMustTailCallee(Function *F) {
MustTailCallees.insert(F);
}
/// Returns true if the given function is called from non-removable musttail
/// call site.
bool isMustTailCallee(Function *F) {
return MustTailCallees.count(F);
}
void AddArgumentTrackedFunction(Function *F) {
TrackingIncomingArguments.insert(F);
}
/// Returns true if the given function is in the solver's set of
/// argument-tracked functions.
bool isArgumentTrackedFunction(Function *F) {
return TrackingIncomingArguments.count(F);
}
/// Solve - Solve for constants and executable blocks.
void Solve();
/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
/// that branches on undef values cannot reach any of their successors.
/// However, this is not a safe assumption. After we solve dataflow, this
/// method should be use to handle this. If this returns true, the solver
/// should be rerun.
bool ResolvedUndefsIn(Function &F);
bool isBlockExecutable(BasicBlock *BB) const {
return BBExecutable.count(BB);
}
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
// block to the 'To' basic block is currently feasible.
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const {
std::vector<LatticeVal> StructValues;
auto *STy = dyn_cast<StructType>(V->getType());
assert(STy && "getStructLatticeValueFor() can be called only on structs");
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
auto I = StructValueState.find(std::make_pair(V, i));
assert(I != StructValueState.end() && "Value not in valuemap!");
StructValues.push_back(I->second);
}
return StructValues;
}
const LatticeVal &getLatticeValueFor(Value *V) const {
assert(!V->getType()->isStructTy() &&
"Should use getStructLatticeValueFor");
DenseMap<Value *, LatticeVal>::const_iterator I = ValueState.find(V);
assert(I != ValueState.end() &&
"V not found in ValueState nor Paramstate map!");
return I->second;
}
/// getTrackedRetVals - Get the inferred return value map.
const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
return TrackedRetVals;
}
/// getTrackedGlobals - Get and return the set of inferred initializers for
/// global variables.
const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
return TrackedGlobals;
}
/// getMRVFunctionsTracked - Get the set of functions which return multiple
/// values tracked by the pass.
const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
return MRVFunctionsTracked;
}
/// getMustTailCallees - Get the set of functions which are called
/// from non-removable musttail call sites.
const SmallPtrSet<Function *, 16> getMustTailCallees() {
return MustTailCallees;
}
/// markOverdefined - Mark the specified value overdefined. This
/// works with both scalars and structs.
void markOverdefined(Value *V) {
if (auto *STy = dyn_cast<StructType>(V->getType()))
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
markOverdefined(getStructValueState(V, i), V);
else
markOverdefined(ValueState[V], V);
}
// isStructLatticeConstant - Return true if all the lattice values
// corresponding to elements of the structure are not overdefined,
// false otherwise.
bool isStructLatticeConstant(Function *F, StructType *STy) {
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
assert(It != TrackedMultipleRetVals.end());
LatticeVal LV = It->second;
if (LV.isOverdefined())
return false;
}
return true;
}
private:
// pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined
void pushToWorkList(LatticeVal &IV, Value *V) {
if (IV.isOverdefined())
return OverdefinedInstWorkList.push_back(V);
InstWorkList.push_back(V);
}
// markConstant - Make a value be marked as "constant". If the value
// is not already a constant, add it to the instruction work list so that
// the users of the instruction are updated later.
bool markConstant(LatticeVal &IV, Value *V, Constant *C) {
if (!IV.markConstant(C)) return false;
LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
pushToWorkList(IV, V);
return true;
}
bool markConstant(Value *V, Constant *C) {
assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
return markConstant(ValueState[V], V, C);
}
void markForcedConstant(Value *V, Constant *C) {
assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
LatticeVal &IV = ValueState[V];
IV.markForcedConstant(C);
LLVM_DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
pushToWorkList(IV, V);
}
// markOverdefined - Make a value be marked as "overdefined". If the
// value is not already overdefined, add it to the overdefined instruction
// work list so that the users of the instruction are updated later.
bool markOverdefined(LatticeVal &IV, Value *V) {
if (!IV.markOverdefined()) return false;
LLVM_DEBUG(dbgs() << "markOverdefined: ";
if (auto *F = dyn_cast<Function>(V)) dbgs()
<< "Function '" << F->getName() << "'\n";
else dbgs() << *V << '\n');
// Only instructions go on the work list
pushToWorkList(IV, V);
return true;
}
bool mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
if (IV.isOverdefined() || MergeWithV.isUnknown())
return false; // Noop.
if (MergeWithV.isOverdefined())
return markOverdefined(IV, V);
if (IV.isUnknown())
return markConstant(IV, V, MergeWithV.getConstant());
if (IV.getConstant() != MergeWithV.getConstant())
return markOverdefined(IV, V);
return false;
}
bool mergeInValue(Value *V, LatticeVal MergeWithV) {
assert(!V->getType()->isStructTy() &&
"non-structs should use markConstant");
return mergeInValue(ValueState[V], V, MergeWithV);
}
/// getValueState - Return the LatticeVal object that corresponds to the
/// value. This function handles the case when the value hasn't been seen yet
/// by properly seeding constants etc.
LatticeVal &getValueState(Value *V) {
assert(!V->getType()->isStructTy() && "Should use getStructValueState");
std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
ValueState.insert(std::make_pair(V, LatticeVal()));
LatticeVal &LV = I.first->second;
if (!I.second)
return LV; // Common case, already in the map.
if (auto *C = dyn_cast<Constant>(V)) {
// Undef values remain unknown.
if (!isa<UndefValue>(V))
LV.markConstant(C); // Constants are constant
}
// All others are underdefined by default.
return LV;
}
ValueLatticeElement &getParamState(Value *V) {
assert(!V->getType()->isStructTy() && "Should use getStructValueState");
std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool>
PI = ParamState.insert(std::make_pair(V, ValueLatticeElement()));
ValueLatticeElement &LV = PI.first->second;
if (PI.second)
LV = getValueState(V).toValueLattice();
return LV;
}
/// getStructValueState - Return the LatticeVal object that corresponds to the
/// value/field pair. This function handles the case when the value hasn't
/// been seen yet by properly seeding constants etc.
LatticeVal &getStructValueState(Value *V, unsigned i) {
assert(V->getType()->isStructTy() && "Should use getValueState");
assert(i < cast<StructType>(V->getType())->getNumElements() &&
"Invalid element #");
std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
bool> I = StructValueState.insert(
std::make_pair(std::make_pair(V, i), LatticeVal()));
LatticeVal &LV = I.first->second;
if (!I.second)
return LV; // Common case, already in the map.
if (auto *C = dyn_cast<Constant>(V)) {
Constant *Elt = C->getAggregateElement(i);
2012-07-24 18:51:42 +08:00
if (!Elt)
LV.markOverdefined(); // Unknown sort of constant.
else if (isa<UndefValue>(Elt))
; // Undef values remain unknown.
else
LV.markConstant(Elt); // Constants are constant.
}
// All others are underdefined by default.
return LV;
}
/// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
/// work list if it is not already executable.
bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
return false; // This edge is already known to be executable!
if (!MarkBlockExecutable(Dest)) {
// If the destination is already executable, we just made an *edge*
2003-10-09 00:56:11 +08:00
// feasible that wasn't before. Revisit the PHI nodes in the block
// because they have potentially new operands.
LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
<< " -> " << Dest->getName() << '\n');
for (PHINode &PN : Dest->phis())
visitPHINode(PN);
}
return true;
}
// getFeasibleSuccessors - Return a vector of booleans to indicate which
// successors are reachable from a given terminator instruction.
void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
// OperandChangedState - This method is invoked on all of the users of an
// instruction that was just changed state somehow. Based on this
// information, we need to update the specified user of this instruction.
void OperandChangedState(Instruction *I) {
if (BBExecutable.count(I->getParent())) // Inst is executable?
visit(*I);
}
// Add U as additional user of V.
void addAdditionalUser(Value *V, User *U) {
auto Iter = AdditionalUsers.insert({V, {}});
Iter.first->second.insert(U);
}
// Mark I's users as changed, including AdditionalUsers.
void markUsersAsChanged(Value *I) {
for (User *U : I->users())
if (auto *UI = dyn_cast<Instruction>(U))
OperandChangedState(UI);
auto Iter = AdditionalUsers.find(I);
if (Iter != AdditionalUsers.end()) {
for (User *U : Iter->second)
if (auto *UI = dyn_cast<Instruction>(U))
OperandChangedState(UI);
}
}
private:
friend class InstVisitor<SCCPSolver>;
// visit implementations - Something changed in this instruction. Either an
// operand made a transition, or the instruction is newly executable. Change
// the value type of I to reflect these changes if appropriate.
void visitPHINode(PHINode &I);
// Terminators
void visitReturnInst(ReturnInst &I);
void visitTerminator(Instruction &TI);
void visitCastInst(CastInst &I);
void visitSelectInst(SelectInst &I);
void visitBinaryOperator(Instruction &I);
void visitCmpInst(CmpInst &I);
void visitExtractValueInst(ExtractValueInst &EVI);
void visitInsertValueInst(InsertValueInst &IVI);
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
void visitCatchSwitchInst(CatchSwitchInst &CPI) {
markOverdefined(&CPI);
visitTerminator(CPI);
}
// Instructions that cannot be folded away.
void visitStoreInst (StoreInst &I);
void visitLoadInst (LoadInst &I);
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitCallInst (CallInst &I) {
visitCallSite(&I);
}
void visitInvokeInst (InvokeInst &II) {
visitCallSite(&II);
visitTerminator(II);
}
void visitCallSite (CallSite CS);
void visitResumeInst (ResumeInst &I) { /*returns void*/ }
void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ }
void visitFenceInst (FenceInst &I) { /*returns void*/ }
void visitInstruction(Instruction &I) {
// All the instructions we don't do any special handling for just
// go to overdefined.
LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
markOverdefined(&I);
}
};
} // end anonymous namespace
// getFeasibleSuccessors - Return a vector of booleans to indicate which
// successors are reachable from a given terminator instruction.
void SCCPSolver::getFeasibleSuccessors(Instruction &TI,
SmallVectorImpl<bool> &Succs) {
Succs.resize(TI.getNumSuccessors());
if (auto *BI = dyn_cast<BranchInst>(&TI)) {
if (BI->isUnconditional()) {
Succs[0] = true;
return;
}
LatticeVal BCValue = getValueState(BI->getCondition());
ConstantInt *CI = BCValue.getConstantInt();
if (!CI) {
// Overdefined condition variables, and branches on unfoldable constant
// conditions, mean the branch could go either way.
if (!BCValue.isUnknown())
Succs[0] = Succs[1] = true;
return;
}
// Constant condition variables mean the branch can only go a single way.
Succs[CI->isZero()] = true;
return;
}
// Unwinding instructions successors are always executable.
if (TI.isExceptionalTerminator()) {
Succs.assign(TI.getNumSuccessors(), true);
return;
}
if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
SwitchInst refactoring. The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want. What was done: 1. Changed semantics of index inside the getCaseValue method: getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous. 2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned. 3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment. 4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst. 4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor. 4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor. Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang. llvm-svn: 149481
2012-02-01 15:49:51 +08:00
if (!SI->getNumCases()) {
Succs[0] = true;
return;
}
LatticeVal SCValue = getValueState(SI->getCondition());
ConstantInt *CI = SCValue.getConstantInt();
if (!CI) { // Overdefined or unknown condition?
// All destinations are executable!
if (!SCValue.isUnknown())
Succs.assign(TI.getNumSuccessors(), true);
return;
}
Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
return;
}
// In case of indirect branch and its address is a blockaddress, we mark
// the target as executable.
if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
// Casts are folded by visitCastInst.
LatticeVal IBRValue = getValueState(IBR->getAddress());
BlockAddress *Addr = IBRValue.getBlockAddress();
if (!Addr) { // Overdefined or unknown condition?
// All destinations are executable!
if (!IBRValue.isUnknown())
Succs.assign(TI.getNumSuccessors(), true);
return;
}
BasicBlock* T = Addr->getBasicBlock();
assert(Addr->getFunction() == T->getParent() &&
"Block address of a different function ?");
for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
// This is the target.
if (IBR->getDestination(i) == T) {
Succs[i] = true;
return;
}
}
// If we didn't find our destination in the IBR successor list, then we
// have undefined behavior. Its ok to assume no successor is executable.
return;
}
LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
llvm_unreachable("SCCP: Don't know how to handle this terminator!");
}
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
// block to the 'To' basic block is currently feasible.
bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
// Check if we've called markEdgeExecutable on the edge yet. (We could
// be more aggressive and try to consider edges which haven't been marked
// yet, but there isn't any need.)
return KnownFeasibleEdges.count(Edge(From, To));
}
// visit Implementations - Something changed in this instruction, either an
// operand made a transition, or the instruction is newly executable. Change
// the value type of I to reflect these changes if appropriate. This method
// makes sure to do the following actions:
//
// 1. If a phi node merges two constants in, and has conflicting value coming
// from different branches, or if the PHI node merges in an overdefined
// value, then the PHI node becomes overdefined.
// 2. If a phi node merges only constants in, and they all agree on value, the
// PHI node becomes a constant value equal to that.
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
// 6. If a conditional branch has a value that is constant, make the selected
// destination executable
// 7. If a conditional branch has a value that is overdefined, make all
// successors executable.
void SCCPSolver::visitPHINode(PHINode &PN) {
// If this PN returns a struct, just mark the result overdefined.
// TODO: We could do a lot better than this if code actually uses this.
if (PN.getType()->isStructTy())
return (void)markOverdefined(&PN);
if (getValueState(&PN).isOverdefined())
return; // Quick exit
// Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
// and slow us down a lot. Just mark them overdefined.
if (PN.getNumIncomingValues() > 64)
return (void)markOverdefined(&PN);
// Look at all of the executable operands of the PHI node. If any of them
// are overdefined, the PHI becomes overdefined as well. If they are all
// constant, and they agree with each other, the PHI becomes the identical
// constant. If they are constant and don't agree, the PHI is overdefined.
// If there are no executable operands, the PHI remains unknown.
Constant *OperandVal = nullptr;
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
LatticeVal IV = getValueState(PN.getIncomingValue(i));
if (IV.isUnknown()) continue; // Doesn't influence PHI node.
if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
continue;
if (IV.isOverdefined()) // PHI node becomes overdefined!
return (void)markOverdefined(&PN);
if (!OperandVal) { // Grab the first value.
OperandVal = IV.getConstant();
continue;
}
// There is already a reachable operand. If we conflict with it,
// then the PHI node becomes overdefined. If we agree with it, we
// can continue on.
// Check to see if there are two different constants merging, if so, the PHI
// node is overdefined.
if (IV.getConstant() != OperandVal)
return (void)markOverdefined(&PN);
}
// If we exited the loop, this means that the PHI node only has constant
// arguments that agree with each other(and OperandVal is the constant) or
// OperandVal is null because there are no defined incoming arguments. If
// this is the case, the PHI remains unknown.
if (OperandVal)
markConstant(&PN, OperandVal); // Acquire operand value
}
void SCCPSolver::visitReturnInst(ReturnInst &I) {
if (I.getNumOperands() == 0) return; // ret void
Function *F = I.getParent()->getParent();
Value *ResultOp = I.getOperand(0);
// If we are tracking the return value of this function, merge it in.
if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
DenseMap<Function*, LatticeVal>::iterator TFRVI =
TrackedRetVals.find(F);
if (TFRVI != TrackedRetVals.end()) {
mergeInValue(TFRVI->second, F, getValueState(ResultOp));
return;
}
}
// Handle functions that return multiple values.
if (!TrackedMultipleRetVals.empty()) {
if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
if (MRVFunctionsTracked.count(F))
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
getStructValueState(ResultOp, i));
}
}
void SCCPSolver::visitTerminator(Instruction &TI) {
SmallVector<bool, 16> SuccFeasible;
getFeasibleSuccessors(TI, SuccFeasible);
BasicBlock *BB = TI.getParent();
// Mark all feasible successors executable.
for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
if (SuccFeasible[i])
markEdgeExecutable(BB, TI.getSuccessor(i));
}
void SCCPSolver::visitCastInst(CastInst &I) {
LatticeVal OpSt = getValueState(I.getOperand(0));
if (OpSt.isOverdefined()) // Inherit overdefinedness of operand
markOverdefined(&I);
else if (OpSt.isConstant()) {
// Fold the constant as we build.
Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(),
I.getType(), DL);
if (isa<UndefValue>(C))
return;
// Propagate constant value
markConstant(&I, C);
}
}
void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
// If this returns a struct, mark all elements over defined, we don't track
// structs in structs.
if (EVI.getType()->isStructTy())
return (void)markOverdefined(&EVI);
// If this is extracting from more than one level of struct, we don't know.
if (EVI.getNumIndices() != 1)
return (void)markOverdefined(&EVI);
Value *AggVal = EVI.getAggregateOperand();
if (AggVal->getType()->isStructTy()) {
unsigned i = *EVI.idx_begin();
LatticeVal EltVal = getStructValueState(AggVal, i);
mergeInValue(getValueState(&EVI), &EVI, EltVal);
} else {
// Otherwise, must be extracting from an array.
return (void)markOverdefined(&EVI);
}
}
void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
auto *STy = dyn_cast<StructType>(IVI.getType());
if (!STy)
return (void)markOverdefined(&IVI);
// If this has more than one index, we can't handle it, drive all results to
// undef.
if (IVI.getNumIndices() != 1)
return (void)markOverdefined(&IVI);
Value *Aggr = IVI.getAggregateOperand();
unsigned Idx = *IVI.idx_begin();
// Compute the result based on what we're inserting.
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
// This passes through all values that aren't the inserted element.
if (i != Idx) {
LatticeVal EltVal = getStructValueState(Aggr, i);
mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
continue;
}
Value *Val = IVI.getInsertedValueOperand();
if (Val->getType()->isStructTy())
// We don't track structs in structs.
markOverdefined(getStructValueState(&IVI, i), &IVI);
else {
LatticeVal InVal = getValueState(Val);
mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
}
}
}
void SCCPSolver::visitSelectInst(SelectInst &I) {
// If this select returns a struct, just mark the result overdefined.
// TODO: We could do a lot better than this if code actually uses this.
if (I.getType()->isStructTy())
return (void)markOverdefined(&I);
LatticeVal CondValue = getValueState(I.getCondition());
if (CondValue.isUnknown())
return;
if (ConstantInt *CondCB = CondValue.getConstantInt()) {
Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
mergeInValue(&I, getValueState(OpVal));
return;
}
// Otherwise, the condition is overdefined or a constant we can't evaluate.
// See if we can produce something better than overdefined based on the T/F
// value.
LatticeVal TVal = getValueState(I.getTrueValue());
LatticeVal FVal = getValueState(I.getFalseValue());
// select ?, C, C -> C.
if (TVal.isConstant() && FVal.isConstant() &&
TVal.getConstant() == FVal.getConstant())
return (void)markConstant(&I, FVal.getConstant());
if (TVal.isUnknown()) // select ?, undef, X -> X.
return (void)mergeInValue(&I, FVal);
if (FVal.isUnknown()) // select ?, X, undef -> X.
return (void)mergeInValue(&I, TVal);
markOverdefined(&I);
}
// Handle Binary Operators.
void SCCPSolver::visitBinaryOperator(Instruction &I) {
LatticeVal V1State = getValueState(I.getOperand(0));
LatticeVal V2State = getValueState(I.getOperand(1));
LatticeVal &IV = ValueState[&I];
if (IV.isOverdefined()) return;
if (V1State.isConstant() && V2State.isConstant()) {
Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
V2State.getConstant());
// X op Y -> undef.
if (isa<UndefValue>(C))
return;
return (void)markConstant(IV, &I, C);
}
// If something is undef, wait for it to resolve.
if (!V1State.isOverdefined() && !V2State.isOverdefined())
return;
// Otherwise, one of our operands is overdefined. Try to produce something
// better than overdefined with some tricks.
// If this is 0 / Y, it doesn't matter that the second operand is
// overdefined, and we can replace it with zero.
if (I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv)
if (V1State.isConstant() && V1State.getConstant()->isNullValue())
return (void)markConstant(IV, &I, V1State.getConstant());
// If this is:
// -> AND/MUL with 0
// -> OR with -1
// it doesn't matter that the other operand is overdefined.
if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul ||
I.getOpcode() == Instruction::Or) {
LatticeVal *NonOverdefVal = nullptr;
if (!V1State.isOverdefined())
NonOverdefVal = &V1State;
else if (!V2State.isOverdefined())
NonOverdefVal = &V2State;
if (NonOverdefVal) {
if (NonOverdefVal->isUnknown())
return;
if (I.getOpcode() == Instruction::And ||
I.getOpcode() == Instruction::Mul) {
// X and 0 = 0
// X * 0 = 0
if (NonOverdefVal->getConstant()->isNullValue())
return (void)markConstant(IV, &I, NonOverdefVal->getConstant());
} else {
// X or -1 = -1
if (ConstantInt *CI = NonOverdefVal->getConstantInt())
if (CI->isMinusOne())
return (void)markConstant(IV, &I, NonOverdefVal->getConstant());
}
}
}
markOverdefined(&I);
}
// Handle ICmpInst instruction.
void SCCPSolver::visitCmpInst(CmpInst &I) {
// Do not cache this lookup, getValueState calls later in the function might
// invalidate the reference.
if (ValueState[&I].isOverdefined()) return;
Value *Op1 = I.getOperand(0);
Value *Op2 = I.getOperand(1);
// For parameters, use ParamState which includes constant range info if
// available.
auto V1Param = ParamState.find(Op1);
ValueLatticeElement V1State = (V1Param != ParamState.end())
? V1Param->second
: getValueState(Op1).toValueLattice();
auto V2Param = ParamState.find(Op2);
ValueLatticeElement V2State = V2Param != ParamState.end()
? V2Param->second
: getValueState(Op2).toValueLattice();
Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
if (C) {
if (isa<UndefValue>(C))
return;
LatticeVal CV;
CV.markConstant(C);
mergeInValue(&I, CV);
return;
}
// If operands are still unknown, wait for it to resolve.
if (!V1State.isOverdefined() && !V2State.isOverdefined() &&
!ValueState[&I].isConstant())
return;
markOverdefined(&I);
}
// Handle getelementptr instructions. If all operands are constants then we
// can turn this into a getelementptr ConstantExpr.
void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
if (ValueState[&I].isOverdefined()) return;
SmallVector<Constant*, 8> Operands;
Operands.reserve(I.getNumOperands());
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
LatticeVal State = getValueState(I.getOperand(i));
if (State.isUnknown())
return; // Operands are not resolved yet.
if (State.isOverdefined())
return (void)markOverdefined(&I);
assert(State.isConstant() && "Unknown state!");
Operands.push_back(State.getConstant());
}
Constant *Ptr = Operands[0];
auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
Constant *C =
ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
if (isa<UndefValue>(C))
return;
markConstant(&I, C);
}
void SCCPSolver::visitStoreInst(StoreInst &SI) {
// If this store is of a struct, ignore it.
if (SI.getOperand(0)->getType()->isStructTy())
return;
if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
return;
GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
// Get the value we are storing into the global, then merge it.
mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
if (I->second.isOverdefined())
TrackedGlobals.erase(I); // No need to keep tracking this!
}
// Handle load instructions. If the operand is a constant pointer to a constant
// global, we can replace the load with the loaded constant value!
void SCCPSolver::visitLoadInst(LoadInst &I) {
// If this load is of a struct, just mark the result overdefined.
if (I.getType()->isStructTy())
return (void)markOverdefined(&I);
LatticeVal PtrVal = getValueState(I.getOperand(0));
if (PtrVal.isUnknown()) return; // The pointer is not resolved yet!
LatticeVal &IV = ValueState[&I];
if (IV.isOverdefined()) return;
if (!PtrVal.isConstant() || I.isVolatile())
return (void)markOverdefined(IV, &I);
Constant *Ptr = PtrVal.getConstant();
// load null is undefined.
if (isa<ConstantPointerNull>(Ptr)) {
if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
return (void)markOverdefined(IV, &I);
else
return;
}
// Transform load (constant global) into the value loaded.
if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
if (!TrackedGlobals.empty()) {
// If we are tracking this global, merge in the known value for it.
DenseMap<GlobalVariable*, LatticeVal>::iterator It =
TrackedGlobals.find(GV);
if (It != TrackedGlobals.end()) {
mergeInValue(IV, &I, It->second);
return;
}
}
}
// Transform load from a constant into a constant if possible.
if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
if (isa<UndefValue>(C))
return;
return (void)markConstant(IV, &I, C);
}
// Otherwise we cannot say for certain what value this load will produce.
// Bail out.
markOverdefined(IV, &I);
}
void SCCPSolver::visitCallSite(CallSite CS) {
Function *F = CS.getCalledFunction();
Instruction *I = CS.getInstruction();
if (auto *II = dyn_cast<IntrinsicInst>(I)) {
if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
if (ValueState[I].isOverdefined())
return;
auto *PI = getPredicateInfoFor(I);
if (!PI)
return;
Value *CopyOf = I->getOperand(0);
auto *PBranch = dyn_cast<PredicateBranch>(PI);
if (!PBranch) {
mergeInValue(ValueState[I], I, getValueState(CopyOf));
return;
}
Value *Cond = PBranch->Condition;
// Everything below relies on the condition being a comparison.
auto *Cmp = dyn_cast<CmpInst>(Cond);
if (!Cmp) {
mergeInValue(ValueState[I], I, getValueState(CopyOf));
return;
}
Value *CmpOp0 = Cmp->getOperand(0);
Value *CmpOp1 = Cmp->getOperand(1);
if (CopyOf != CmpOp0 && CopyOf != CmpOp1) {
mergeInValue(ValueState[I], I, getValueState(CopyOf));
return;
}
if (CmpOp0 != CopyOf)
std::swap(CmpOp0, CmpOp1);
LatticeVal OriginalVal = getValueState(CopyOf);
LatticeVal EqVal = getValueState(CmpOp1);
LatticeVal &IV = ValueState[I];
if (PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_EQ) {
addAdditionalUser(CmpOp1, I);
if (OriginalVal.isConstant())
mergeInValue(IV, I, OriginalVal);
else
mergeInValue(IV, I, EqVal);
return;
}
if (!PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_NE) {
addAdditionalUser(CmpOp1, I);
if (OriginalVal.isConstant())
mergeInValue(IV, I, OriginalVal);
else
mergeInValue(IV, I, EqVal);
return;
}
return (void)mergeInValue(IV, I, getValueState(CopyOf));
}
}
// The common case is that we aren't tracking the callee, either because we
// are not doing interprocedural analysis or the callee is indirect, or is
// external. Handle these cases first.
if (!F || F->isDeclaration()) {
CallOverdefined:
// Void return and not tracking callee, just bail.
if (I->getType()->isVoidTy()) return;
// Otherwise, if we have a single return value case, and if the function is
// a declaration, maybe we can constant fold it.
if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
canConstantFoldCallTo(CS, F)) {
SmallVector<Constant*, 8> Operands;
for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
AI != E; ++AI) {
if (AI->get()->getType()->isStructTy())
return markOverdefined(I); // Can't handle struct args.
LatticeVal State = getValueState(*AI);
if (State.isUnknown())
return; // Operands are not resolved yet.
if (State.isOverdefined())
return (void)markOverdefined(I);
assert(State.isConstant() && "Unknown state!");
Operands.push_back(State.getConstant());
}
if (getValueState(I).isOverdefined())
return;
// If we can constant fold this, mark the result of the call as a
// constant.
if (Constant *C = ConstantFoldCall(CS, F, Operands, TLI)) {
// call -> undef.
if (isa<UndefValue>(C))
return;
return (void)markConstant(I, C);
}
}
// Otherwise, we don't know anything about this call, mark it overdefined.
return (void)markOverdefined(I);
}
// If this is a local function that doesn't have its address taken, mark its
// entry block executable and merge in the actual arguments to the call into
// the formal arguments of the function.
if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
MarkBlockExecutable(&F->front());
// Propagate information from this call site into the callee.
CallSite::arg_iterator CAI = CS.arg_begin();
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
AI != E; ++AI, ++CAI) {
// If this argument is byval, and if the function is not readonly, there
// will be an implicit copy formed of the input aggregate.
if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
markOverdefined(&*AI);
continue;
}
if (auto *STy = dyn_cast<StructType>(AI->getType())) {
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
LatticeVal CallArg = getStructValueState(*CAI, i);
mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg);
}
} else {
// Most other parts of the Solver still only use the simpler value
// lattice, so we propagate changes for parameters to both lattices.
LatticeVal ConcreteArgument = getValueState(*CAI);
bool ParamChanged =
getParamState(&*AI).mergeIn(ConcreteArgument.toValueLattice(), DL);
bool ValueChanged = mergeInValue(&*AI, ConcreteArgument);
// Add argument to work list, if the state of a parameter changes but
// ValueState does not change (because it is already overdefined there),
// We have to take changes in ParamState into account, as it is used
// when evaluating Cmp instructions.
if (!ValueChanged && ParamChanged)
pushToWorkList(ValueState[&*AI], &*AI);
}
}
}
// If this is a single/zero retval case, see if we're tracking the function.
if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
if (!MRVFunctionsTracked.count(F))
goto CallOverdefined; // Not tracking this callee.
// If we are tracking this callee, propagate the result of the function
// into this call site.
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
mergeInValue(getStructValueState(I, i), I,
TrackedMultipleRetVals[std::make_pair(F, i)]);
} else {
DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
if (TFRVI == TrackedRetVals.end())
goto CallOverdefined; // Not tracking this callee.
// If so, propagate the return value of the callee into this call result.
mergeInValue(I, TFRVI->second);
}
}
void SCCPSolver::Solve() {
// Process the work lists until they are empty!
while (!BBWorkList.empty() || !InstWorkList.empty() ||
!OverdefinedInstWorkList.empty()) {
// Process the overdefined instruction's work list first, which drives other
// things to overdefined more quickly.
while (!OverdefinedInstWorkList.empty()) {
Value *I = OverdefinedInstWorkList.pop_back_val();
LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
// "I" got into the work list because it either made the transition from
// bottom to constant, or to overdefined.
//
// Anything on this worklist that is overdefined need not be visited
// since all of its users will have already been marked as overdefined
// Update all of the users of this instruction's value.
//
markUsersAsChanged(I);
}
// Process the instruction work list.
while (!InstWorkList.empty()) {
Value *I = InstWorkList.pop_back_val();
LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
// "I" got into the work list because it made the transition from undef to
// constant.
//
// Anything on this worklist that is overdefined need not be visited
// since all of its users will have already been marked as overdefined.
// Update all of the users of this instruction's value.
//
if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
markUsersAsChanged(I);
}
// Process the basic block work list.
while (!BBWorkList.empty()) {
BasicBlock *BB = BBWorkList.back();
BBWorkList.pop_back();
LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
// Notify all instructions in this basic block that they are newly
// executable.
visit(BB);
}
}
}
/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
/// that branches on undef values cannot reach any of their successors.
/// However, this is not a safe assumption. After we solve dataflow, this
/// method should be use to handle this. If this returns true, the solver
/// should be rerun.
///
/// This method handles this by finding an unresolved branch and marking it one
/// of the edges from the block as being feasible, even though the condition
/// doesn't say it would otherwise be. This allows SCCP to find the rest of the
/// CFG and only slightly pessimizes the analysis results (by marking one,
/// potentially infeasible, edge feasible). This cannot usefully modify the
/// constraints on the condition of the branch, as that would impact other users
/// of the value.
///
/// This scan also checks for values that use undefs, whose results are actually
/// defined. For example, 'zext i8 undef to i32' should produce all zeros
/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
/// even if X isn't defined.
bool SCCPSolver::ResolvedUndefsIn(Function &F) {
for (BasicBlock &BB : F) {
if (!BBExecutable.count(&BB))
continue;
for (Instruction &I : BB) {
// Look for instructions which produce undef values.
if (I.getType()->isVoidTy()) continue;
if (auto *STy = dyn_cast<StructType>(I.getType())) {
// Only a few things that can be structs matter for undef.
// Tracked calls must never be marked overdefined in ResolvedUndefsIn.
if (CallSite CS = CallSite(&I))
if (Function *F = CS.getCalledFunction())
if (MRVFunctionsTracked.count(F))
continue;
// extractvalue and insertvalue don't need to be marked; they are
// tracked as precisely as their operands.
if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
continue;
// Send the results of everything else to overdefined. We could be
// more precise than this but it isn't worth bothering.
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
LatticeVal &LV = getStructValueState(&I, i);
if (LV.isUnknown())
markOverdefined(LV, &I);
}
continue;
}
LatticeVal &LV = getValueState(&I);
if (!LV.isUnknown()) continue;
// extractvalue is safe; check here because the argument is a struct.
if (isa<ExtractValueInst>(I))
continue;
// Compute the operand LatticeVals, for convenience below.
// Anything taking a struct is conservatively assumed to require
// overdefined markings.
if (I.getOperand(0)->getType()->isStructTy()) {
markOverdefined(&I);
return true;
}
LatticeVal Op0LV = getValueState(I.getOperand(0));
LatticeVal Op1LV;
if (I.getNumOperands() == 2) {
if (I.getOperand(1)->getType()->isStructTy()) {
markOverdefined(&I);
return true;
}
Op1LV = getValueState(I.getOperand(1));
}
// If this is an instructions whose result is defined even if the input is
// not fully defined, propagate the information.
Type *ITy = I.getType();
switch (I.getOpcode()) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast:
break; // Any undef -> undef
case Instruction::FSub:
case Instruction::FAdd:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
// Floating-point binary operation: be conservative.
if (Op0LV.isUnknown() && Op1LV.isUnknown())
markForcedConstant(&I, Constant::getNullValue(ITy));
else
markOverdefined(&I);
return true;
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
// undef -> 0; some outputs are impossible
markForcedConstant(&I, Constant::getNullValue(ITy));
return true;
case Instruction::Mul:
case Instruction::And:
// Both operands undef -> undef
if (Op0LV.isUnknown() && Op1LV.isUnknown())
break;
// undef * X -> 0. X could be zero.
// undef & X -> 0. X could be zero.
markForcedConstant(&I, Constant::getNullValue(ITy));
return true;
case Instruction::Or:
// Both operands undef -> undef
if (Op0LV.isUnknown() && Op1LV.isUnknown())
break;
// undef | X -> -1. X could be -1.
markForcedConstant(&I, Constant::getAllOnesValue(ITy));
return true;
case Instruction::Xor:
// undef ^ undef -> 0; strictly speaking, this is not strictly
// necessary, but we try to be nice to people who expect this
// behavior in simple cases
if (Op0LV.isUnknown() && Op1LV.isUnknown()) {
markForcedConstant(&I, Constant::getNullValue(ITy));
return true;
}
// undef ^ X -> undef
break;
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::SRem:
case Instruction::URem:
// X / undef -> undef. No change.
// X % undef -> undef. No change.
if (Op1LV.isUnknown()) break;
// X / 0 -> undef. No change.
// X % 0 -> undef. No change.
if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue())
break;
// undef / X -> 0. X could be maxint.
// undef % X -> 0. X could be 1.
markForcedConstant(&I, Constant::getNullValue(ITy));
return true;
case Instruction::AShr:
// X >>a undef -> undef.
if (Op1LV.isUnknown()) break;
// Shifting by the bitwidth or more is undefined.
if (Op1LV.isConstant()) {
if (auto *ShiftAmt = Op1LV.getConstantInt())
if (ShiftAmt->getLimitedValue() >=
ShiftAmt->getType()->getScalarSizeInBits())
break;
}
// undef >>a X -> 0
markForcedConstant(&I, Constant::getNullValue(ITy));
return true;
case Instruction::LShr:
case Instruction::Shl:
// X << undef -> undef.
// X >> undef -> undef.
if (Op1LV.isUnknown()) break;
// Shifting by the bitwidth or more is undefined.
if (Op1LV.isConstant()) {
if (auto *ShiftAmt = Op1LV.getConstantInt())
if (ShiftAmt->getLimitedValue() >=
ShiftAmt->getType()->getScalarSizeInBits())
break;
}
// undef << X -> 0
// undef >> X -> 0
markForcedConstant(&I, Constant::getNullValue(ITy));
return true;
case Instruction::Select:
Op1LV = getValueState(I.getOperand(1));
// undef ? X : Y -> X or Y. There could be commonality between X/Y.
if (Op0LV.isUnknown()) {
if (!Op1LV.isConstant()) // Pick the constant one if there is any.
Op1LV = getValueState(I.getOperand(2));
} else if (Op1LV.isUnknown()) {
// c ? undef : undef -> undef. No change.
Op1LV = getValueState(I.getOperand(2));
if (Op1LV.isUnknown())
break;
// Otherwise, c ? undef : x -> x.
} else {
// Leave Op1LV as Operand(1)'s LatticeValue.
}
if (Op1LV.isConstant())
markForcedConstant(&I, Op1LV.getConstant());
else
markOverdefined(&I);
return true;
case Instruction::Load:
// A load here means one of two things: a load of undef from a global,
// a load from an unknown pointer. Either way, having it return undef
// is okay.
break;
case Instruction::ICmp:
// X == undef -> undef. Other comparisons get more complicated.
Op0LV = getValueState(I.getOperand(0));
Op1LV = getValueState(I.getOperand(1));
if ((Op0LV.isUnknown() || Op1LV.isUnknown()) &&
cast<ICmpInst>(&I)->isEquality())
break;
markOverdefined(&I);
return true;
case Instruction::Call:
case Instruction::Invoke:
// There are two reasons a call can have an undef result
// 1. It could be tracked.
// 2. It could be constant-foldable.
// Because of the way we solve return values, tracked calls must
// never be marked overdefined in ResolvedUndefsIn.
if (Function *F = CallSite(&I).getCalledFunction())
if (TrackedRetVals.count(F))
break;
// If the call is constant-foldable, we mark it overdefined because
// we do not know what return values are valid.
markOverdefined(&I);
return true;
default:
// If we don't know what should happen here, conservatively mark it
// overdefined.
markOverdefined(&I);
return true;
}
}
// Check to see if we have a branch or switch on an undefined value. If so
// we force the branch to go one way or the other to make the successor
// values live. It doesn't really matter which way we force it.
Instruction *TI = BB.getTerminator();
if (auto *BI = dyn_cast<BranchInst>(TI)) {
if (!BI->isConditional()) continue;
if (!getValueState(BI->getCondition()).isUnknown())
continue;
// If the input to SCCP is actually branch on undef, fix the undef to
// false.
if (isa<UndefValue>(BI->getCondition())) {
BI->setCondition(ConstantInt::getFalse(BI->getContext()));
markEdgeExecutable(&BB, TI->getSuccessor(1));
return true;
}
// Otherwise, it is a branch on a symbolic value which is currently
// considered to be undef. Make sure some edge is executable, so a
// branch on "undef" always flows somewhere.
// FIXME: Distinguish between dead code and an LLVM "undef" value.
BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
if (markEdgeExecutable(&BB, DefaultSuccessor))
return true;
continue;
}
if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
// Indirect branch with no successor ?. Its ok to assume it branches
// to no target.
if (IBR->getNumSuccessors() < 1)
continue;
if (!getValueState(IBR->getAddress()).isUnknown())
continue;
// If the input to SCCP is actually branch on undef, fix the undef to
// the first successor of the indirect branch.
if (isa<UndefValue>(IBR->getAddress())) {
IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
markEdgeExecutable(&BB, IBR->getSuccessor(0));
return true;
}
// Otherwise, it is a branch on a symbolic value which is currently
// considered to be undef. Make sure some edge is executable, so a
// branch on "undef" always flows somewhere.
// FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
// we can assume the branch has undefined behavior instead.
BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
if (markEdgeExecutable(&BB, DefaultSuccessor))
return true;
continue;
}
if (auto *SI = dyn_cast<SwitchInst>(TI)) {
if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown())
continue;
// If the input to SCCP is actually switch on undef, fix the undef to
// the first constant.
if (isa<UndefValue>(SI->getCondition())) {
SI->setCondition(SI->case_begin()->getCaseValue());
markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
return true;
}
// Otherwise, it is a branch on a symbolic value which is currently
// considered to be undef. Make sure some edge is executable, so a
// branch on "undef" always flows somewhere.
// FIXME: Distinguish between dead code and an LLVM "undef" value.
BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
if (markEdgeExecutable(&BB, DefaultSuccessor))
return true;
continue;
}
}
return false;
}
static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
Constant *Const = nullptr;
if (V->getType()->isStructTy()) {
std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V);
if (llvm::any_of(IVs,
[](const LatticeVal &LV) { return LV.isOverdefined(); }))
return false;
std::vector<Constant *> ConstVals;
auto *ST = dyn_cast<StructType>(V->getType());
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
LatticeVal V = IVs[i];
ConstVals.push_back(V.isConstant()
? V.getConstant()
: UndefValue::get(ST->getElementType(i)));
}
Const = ConstantStruct::get(ST, ConstVals);
} else {
const LatticeVal &IV = Solver.getLatticeValueFor(V);
if (IV.isOverdefined())
return false;
Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType());
}
assert(Const && "Constant is nullptr here!");
// Replacing `musttail` instructions with constant breaks `musttail` invariant
// unless the call itself can be removed
CallInst *CI = dyn_cast<CallInst>(V);
if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) {
CallSite CS(CI);
Function *F = CS.getCalledFunction();
// Don't zap returns of the callee
if (F)
Solver.AddMustTailCallee(F);
LLVM_DEBUG(dbgs() << " Can\'t treat the result of musttail call : " << *CI
<< " as a constant\n");
return false;
}
LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
// Replaces all of the uses of a variable with uses of the constant.
V->replaceAllUsesWith(Const);
return true;
}
// runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
// and return true if the function was modified.
static bool runSCCP(Function &F, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
SCCPSolver Solver(DL, TLI);
// Mark the first block of the function as being executable.
Solver.MarkBlockExecutable(&F.front());
// Mark all arguments to the function as being overdefined.
for (Argument &AI : F.args())
Solver.markOverdefined(&AI);
// Solve for constants.
bool ResolvedUndefs = true;
while (ResolvedUndefs) {
Solver.Solve();
LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
ResolvedUndefs = Solver.ResolvedUndefsIn(F);
}
bool MadeChanges = false;
// If we decided that there are basic blocks that are dead in this function,
// delete their contents now. Note that we cannot actually delete the blocks,
// as we cannot modify the CFG of the function.
2007-03-04 12:50:21 +08:00
for (BasicBlock &BB : F) {
if (!Solver.isBlockExecutable(&BB)) {
LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB);
++NumDeadBlocks;
NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB);
MadeChanges = true;
continue;
}
// Iterate over all of the instructions in a function, replacing them with
// constants if we have found them to be of constant values.
for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
Instruction *Inst = &*BI++;
if (Inst->getType()->isVoidTy() || Inst->isTerminator())
continue;
if (tryToReplaceWithConstant(Solver, Inst)) {
if (isInstructionTriviallyDead(Inst))
Inst->eraseFromParent();
// Hey, we just changed something!
MadeChanges = true;
++NumInstRemoved;
}
}
}
return MadeChanges;
}
PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
const DataLayout &DL = F.getParent()->getDataLayout();
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
if (!runSCCP(F, DL, &TLI))
return PreservedAnalyses::all();
auto PA = PreservedAnalyses();
PA.preserve<GlobalsAA>();
PA.preserveSet<CFGAnalyses>();
return PA;
}
namespace {
//===--------------------------------------------------------------------===//
//
/// SCCP Class - This class uses the SCCPSolver to implement a per-function
/// Sparse Conditional Constant Propagator.
///
class SCCPLegacyPass : public FunctionPass {
public:
// Pass identification, replacement for typeid
static char ID;
SCCPLegacyPass() : FunctionPass(ID) {
initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.setPreservesCFG();
}
// runOnFunction - Run the Sparse Conditional Constant Propagation
// algorithm, and return true if the function was modified.
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
const DataLayout &DL = F.getParent()->getDataLayout();
const TargetLibraryInfo *TLI =
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
return runSCCP(F, DL, TLI);
}
};
} // end anonymous namespace
char SCCPLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
"Sparse Conditional Constant Propagation", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
"Sparse Conditional Constant Propagation", false, false)
// createSCCPPass - This is the public interface to this file.
FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
static void findReturnsToZap(Function &F,
SmallVector<ReturnInst *, 8> &ReturnsToZap,
SCCPSolver &Solver) {
// We can only do this if we know that nothing else can call the function.
if (!Solver.isArgumentTrackedFunction(&F))
return;
// There is a non-removable musttail call site of this function. Zapping
// returns is not allowed.
if (Solver.isMustTailCallee(&F)) {
LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName()
<< " due to present musttail call of it\n");
return;
}
for (BasicBlock &BB : F) {
if (CallInst *CI = BB.getTerminatingMustTailCall()) {
LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
<< "musttail call : " << *CI << "\n");
(void)CI;
return;
}
if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
if (!isa<UndefValue>(RI->getOperand(0)))
ReturnsToZap.push_back(RI);
}
}
// Update the condition for terminators that are branching on indeterminate
// values, forcing them to use a specific edge.
static void forceIndeterminateEdge(Instruction* I, SCCPSolver &Solver) {
BasicBlock *Dest = nullptr;
Constant *C = nullptr;
if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
if (!isa<ConstantInt>(SI->getCondition())) {
// Indeterminate switch; use first case value.
Dest = SI->case_begin()->getCaseSuccessor();
C = SI->case_begin()->getCaseValue();
}
} else if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
if (!isa<ConstantInt>(BI->getCondition())) {
// Indeterminate branch; use false.
Dest = BI->getSuccessor(1);
C = ConstantInt::getFalse(BI->getContext());
}
} else if (IndirectBrInst *IBR = dyn_cast<IndirectBrInst>(I)) {
if (!isa<BlockAddress>(IBR->getAddress()->stripPointerCasts())) {
// Indeterminate indirectbr; use successor 0.
Dest = IBR->getSuccessor(0);
C = BlockAddress::get(IBR->getSuccessor(0));
}
} else {
llvm_unreachable("Unexpected terminator instruction");
}
if (C) {
assert(Solver.isEdgeFeasible(I->getParent(), Dest) &&
"Didn't find feasible edge?");
(void)Dest;
I->setOperand(0, C);
}
}
bool llvm::runIPSCCP(
Module &M, const DataLayout &DL, const TargetLibraryInfo *TLI,
function_ref<AnalysisResultsForFn(Function &)> getAnalysis) {
SCCPSolver Solver(DL, TLI);
// Loop over all functions, marking arguments to those with their addresses
// taken or that are external as overdefined.
for (Function &F : M) {
if (F.isDeclaration())
continue;
Solver.addAnalysis(F, getAnalysis(F));
// Determine if we can track the function's return values. If so, add the
// function to the solver's set of return-tracked functions.
if (canTrackReturnsInterprocedurally(&F))
Solver.AddTrackedFunction(&F);
// Determine if we can track the function's arguments. If so, add the
// function to the solver's set of argument-tracked functions.
if (canTrackArgumentsInterprocedurally(&F)) {
Solver.AddArgumentTrackedFunction(&F);
continue;
}
// Assume the function is called.
Solver.MarkBlockExecutable(&F.front());
// Assume nothing about the incoming arguments.
for (Argument &AI : F.args())
Solver.markOverdefined(&AI);
}
// Determine if we can track any of the module's global variables. If so, add
// the global variables we can track to the solver's set of tracked global
// variables.
for (GlobalVariable &G : M.globals()) {
G.removeDeadConstantUsers();
if (canTrackGlobalVariableInterprocedurally(&G))
Solver.TrackValueOfGlobalVariable(&G);
}
// Solve for constants.
bool ResolvedUndefs = true;
Solver.Solve();
while (ResolvedUndefs) {
LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
ResolvedUndefs = false;
for (Function &F : M)
if (Solver.ResolvedUndefsIn(F)) {
// We run Solve() after we resolved an undef in a function, because
// we might deduce a fact that eliminates an undef in another function.
Solver.Solve();
ResolvedUndefs = true;
}
}
bool MadeChanges = false;
// Iterate over all of the instructions in the module, replacing them with
// constants if we have found them to be of constant values.
for (Function &F : M) {
if (F.isDeclaration())
continue;
SmallVector<BasicBlock *, 512> BlocksToErase;
if (Solver.isBlockExecutable(&F.front()))
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;
++AI) {
if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) {
++IPNumArgsElimed;
continue;
}
}
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
if (!Solver.isBlockExecutable(&*BB)) {
LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
++NumDeadBlocks;
MadeChanges = true;
if (&*BB != &F.front())
BlocksToErase.push_back(&*BB);
continue;
}
for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
Instruction *Inst = &*BI++;
if (Inst->getType()->isVoidTy())
continue;
if (tryToReplaceWithConstant(Solver, Inst)) {
if (Inst->isSafeToRemove())
Inst->eraseFromParent();
// Hey, we just changed something!
MadeChanges = true;
++IPNumInstRemoved;
}
}
}
DomTreeUpdater DTU = Solver.getDTU(F);
// Change dead blocks to unreachable. We do it after replacing constants
// in all executable blocks, because changeToUnreachable may remove PHI
// nodes in executable blocks we found values for. The function's entry
// block is not part of BlocksToErase, so we have to handle it separately.
for (BasicBlock *BB : BlocksToErase) {
NumInstRemoved +=
changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false,
/*PreserveLCSSA=*/false, &DTU);
}
if (!Solver.isBlockExecutable(&F.front()))
NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(),
/*UseLLVMTrap=*/false,
/*PreserveLCSSA=*/false, &DTU);
// Now that all instructions in the function are constant folded,
// use ConstantFoldTerminator to get rid of in-edges, record DT updates and
// delete dead BBs.
for (BasicBlock *DeadBB : BlocksToErase) {
// If there are any PHI nodes in this successor, drop entries for BB now.
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
2014-03-09 11:16:01 +08:00
for (Value::user_iterator UI = DeadBB->user_begin(),
UE = DeadBB->user_end();
UI != UE;) {
// Grab the user and then increment the iterator early, as the user
// will be deleted. Step past all adjacent uses from the same user.
auto *I = dyn_cast<Instruction>(*UI);
do { ++UI; } while (UI != UE && *UI == I);
// Ignore blockaddress users; BasicBlock's dtor will handle them.
if (!I) continue;
// If we have forced an edge for an indeterminate value, then force the
// terminator to fold to that edge.
forceIndeterminateEdge(I, Solver);
bool Folded = ConstantFoldTerminator(I->getParent(),
/*DeleteDeadConditions=*/false,
/*TLI=*/nullptr, &DTU);
assert(Folded &&
"Expect TermInst on constantint or blockaddress to be folded");
(void) Folded;
}
// Mark dead BB for deletion.
DTU.deleteBB(DeadBB);
}
for (BasicBlock &BB : F) {
for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
Instruction *Inst = &*BI++;
if (Solver.getPredicateInfoFor(Inst)) {
if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
Value *Op = II->getOperand(0);
Inst->replaceAllUsesWith(Op);
Inst->eraseFromParent();
}
}
}
}
}
}
// If we inferred constant or undef return values for a function, we replaced
// all call uses with the inferred value. This means we don't need to bother
// actually returning anything from the function. Replace all return
// instructions with return undef.
//
// Do this in two stages: first identify the functions we should process, then
// actually zap their returns. This is important because we can only do this
// if the address of the function isn't taken. In cases where a return is the
// last use of a function, the order of processing functions would affect
// whether other functions are optimizable.
SmallVector<ReturnInst*, 8> ReturnsToZap;
const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
for (const auto &I : RV) {
Function *F = I.first;
if (I.second.isOverdefined() || F->getReturnType()->isVoidTy())
continue;
findReturnsToZap(*F, ReturnsToZap, Solver);
}
for (const auto &F : Solver.getMRVFunctionsTracked()) {
assert(F->getReturnType()->isStructTy() &&
"The return type should be a struct");
StructType *STy = cast<StructType>(F->getReturnType());
if (Solver.isStructLatticeConstant(F, STy))
findReturnsToZap(*F, ReturnsToZap, Solver);
}
// Zap all returns which we've identified as zap to change.
for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
Function *F = ReturnsToZap[i]->getParent()->getParent();
ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
}
// If we inferred constant or undef values for globals variables, we can
// delete the global and any stores that remain to it.
const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
E = TG.end(); I != E; ++I) {
GlobalVariable *GV = I->first;
assert(!I->second.isOverdefined() &&
"Overdefined values should have been taken out of the map!");
LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
<< "' is constant!\n");
while (!GV->use_empty()) {
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
2014-03-09 11:16:01 +08:00
StoreInst *SI = cast<StoreInst>(GV->user_back());
SI->eraseFromParent();
}
M.getGlobalList().erase(GV);
++IPNumGlobalConst;
}
return MadeChanges;
}