llvm-project/llvm/lib/Transforms/AggressiveInstCombine/AggressiveInstCombine.cpp

353 lines
13 KiB
C++
Raw Normal View History

//===- AggressiveInstCombine.cpp ------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the aggressive expression pattern combiner classes.
// Currently, it handles expression patterns for:
// * Truncate instruction
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
#include "AggressiveInstCombineInternal.h"
#include "llvm-c/Initialization.h"
#include "llvm-c/Transforms/AggressiveInstCombine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "aggressive-instcombine"
namespace {
/// Contains expression pattern combiner logic.
/// This class provides both the logic to combine expression patterns and
/// combine them. It differs from InstCombiner class in that each pattern
/// combiner runs only once as opposed to InstCombine's multi-iteration,
/// which allows pattern combiner to have higher complexity than the O(1)
/// required by the instruction combiner.
class AggressiveInstCombinerLegacyPass : public FunctionPass {
public:
static char ID; // Pass identification, replacement for typeid
AggressiveInstCombinerLegacyPass() : FunctionPass(ID) {
initializeAggressiveInstCombinerLegacyPassPass(
*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// Run all expression pattern optimizations on the given /p F function.
///
/// \param F function to optimize.
/// \returns true if the IR is changed.
bool runOnFunction(Function &F) override;
};
} // namespace
[AggressiveInstCombine] convert rotate with guard branch into funnel shift (PR34924) Now, that we have funnel shift intrinsics, it should be safe to convert this form of rotate to it. In the worst case (a target that doesn't have rotate instructions), we will expand this into a branch-less sequence of ALU ops (neg/and/and/lshr/shl/or) in the backend, so it's still very likely to be a perf improvement over the original code. The motivating source code pattern for this is shown in: https://bugs.llvm.org/show_bug.cgi?id=34924 Background: I looked at several different options before deciding where to try this - instcombine, simplifycfg, CGP - because it doesn't fit cleanly anywhere AFAIK. The backend (CGP, SDAG, GlobalIsel?) is too late for what we're trying to accomplish. We want to have the IR converted before we reach things like vectorization because the reduced code can make a loop much simpler to transform. Technically, this could be included in instcombine, but it's a large pattern match that includes control-flow, so it just felt wrong to stuff into there (although I have a draft of that patch). Similarly, this could be part of simplifycfg, but all of this pattern matching is a stretch. So we're left with our relatively new dumping ground for homeless transforms: aggressive-instcombine. This only runs at -O3, but that seems like a reasonable limitation given that source code has many options to avoid this pattern (including the recently added clang intrinsics for rotates). I'm including a PhaseOrdering test because we require the teamwork of 3 passes (aggressive-instcombine, instcombine, simplifycfg) to get this into the minimal IR form that we want. That test shows a bug with the new pass manager that's independent of this change (but it will be masked if we canonicalize harder to funnel shift intrinsics in instcombine). Differential Revision: https://reviews.llvm.org/D55604 llvm-svn: 349396
2018-12-18 05:14:51 +08:00
/// Match a pattern for a bitwise rotate operation that partially guards
/// against undefined behavior by branching around the rotation when the shift
/// amount is 0.
static bool foldGuardedRotateToFunnelShift(Instruction &I) {
if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
return false;
// As with the one-use checks below, this is not strictly necessary, but we
// are being cautious to avoid potential perf regressions on targets that
// do not actually have a rotate instruction (where the funnel shift would be
// expanded back into math/shift/logic ops).
if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
return false;
// Match V to funnel shift left/right and capture the source operand and
// shift amount in X and Y.
auto matchRotate = [](Value *V, Value *&X, Value *&Y) {
Value *L0, *L1, *R0, *R1;
unsigned Width = V->getType()->getScalarSizeInBits();
auto Sub = m_Sub(m_SpecificInt(Width), m_Value(R1));
// rotate_left(X, Y) == (X << Y) | (X >> (Width - Y))
auto RotL = m_OneUse(
m_c_Or(m_Shl(m_Value(L0), m_Value(L1)), m_LShr(m_Value(R0), Sub)));
[AggressiveInstCombine] convert rotate with guard branch into funnel shift (PR34924) Now, that we have funnel shift intrinsics, it should be safe to convert this form of rotate to it. In the worst case (a target that doesn't have rotate instructions), we will expand this into a branch-less sequence of ALU ops (neg/and/and/lshr/shl/or) in the backend, so it's still very likely to be a perf improvement over the original code. The motivating source code pattern for this is shown in: https://bugs.llvm.org/show_bug.cgi?id=34924 Background: I looked at several different options before deciding where to try this - instcombine, simplifycfg, CGP - because it doesn't fit cleanly anywhere AFAIK. The backend (CGP, SDAG, GlobalIsel?) is too late for what we're trying to accomplish. We want to have the IR converted before we reach things like vectorization because the reduced code can make a loop much simpler to transform. Technically, this could be included in instcombine, but it's a large pattern match that includes control-flow, so it just felt wrong to stuff into there (although I have a draft of that patch). Similarly, this could be part of simplifycfg, but all of this pattern matching is a stretch. So we're left with our relatively new dumping ground for homeless transforms: aggressive-instcombine. This only runs at -O3, but that seems like a reasonable limitation given that source code has many options to avoid this pattern (including the recently added clang intrinsics for rotates). I'm including a PhaseOrdering test because we require the teamwork of 3 passes (aggressive-instcombine, instcombine, simplifycfg) to get this into the minimal IR form that we want. That test shows a bug with the new pass manager that's independent of this change (but it will be masked if we canonicalize harder to funnel shift intrinsics in instcombine). Differential Revision: https://reviews.llvm.org/D55604 llvm-svn: 349396
2018-12-18 05:14:51 +08:00
if (RotL.match(V) && L0 == R0 && L1 == R1) {
X = L0;
Y = L1;
return Intrinsic::fshl;
}
// rotate_right(X, Y) == (X >> Y) | (X << (Width - Y))
auto RotR = m_OneUse(
m_c_Or(m_LShr(m_Value(L0), m_Value(L1)), m_Shl(m_Value(R0), Sub)));
[AggressiveInstCombine] convert rotate with guard branch into funnel shift (PR34924) Now, that we have funnel shift intrinsics, it should be safe to convert this form of rotate to it. In the worst case (a target that doesn't have rotate instructions), we will expand this into a branch-less sequence of ALU ops (neg/and/and/lshr/shl/or) in the backend, so it's still very likely to be a perf improvement over the original code. The motivating source code pattern for this is shown in: https://bugs.llvm.org/show_bug.cgi?id=34924 Background: I looked at several different options before deciding where to try this - instcombine, simplifycfg, CGP - because it doesn't fit cleanly anywhere AFAIK. The backend (CGP, SDAG, GlobalIsel?) is too late for what we're trying to accomplish. We want to have the IR converted before we reach things like vectorization because the reduced code can make a loop much simpler to transform. Technically, this could be included in instcombine, but it's a large pattern match that includes control-flow, so it just felt wrong to stuff into there (although I have a draft of that patch). Similarly, this could be part of simplifycfg, but all of this pattern matching is a stretch. So we're left with our relatively new dumping ground for homeless transforms: aggressive-instcombine. This only runs at -O3, but that seems like a reasonable limitation given that source code has many options to avoid this pattern (including the recently added clang intrinsics for rotates). I'm including a PhaseOrdering test because we require the teamwork of 3 passes (aggressive-instcombine, instcombine, simplifycfg) to get this into the minimal IR form that we want. That test shows a bug with the new pass manager that's independent of this change (but it will be masked if we canonicalize harder to funnel shift intrinsics in instcombine). Differential Revision: https://reviews.llvm.org/D55604 llvm-svn: 349396
2018-12-18 05:14:51 +08:00
if (RotR.match(V) && L0 == R0 && L1 == R1) {
X = L0;
Y = L1;
return Intrinsic::fshr;
}
return Intrinsic::not_intrinsic;
};
// One phi operand must be a rotate operation, and the other phi operand must
// be the source value of that rotate operation:
// phi [ rotate(RotSrc, RotAmt), RotBB ], [ RotSrc, GuardBB ]
PHINode &Phi = cast<PHINode>(I);
Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
Value *RotSrc, *RotAmt;
Intrinsic::ID IID = matchRotate(P0, RotSrc, RotAmt);
if (IID == Intrinsic::not_intrinsic || RotSrc != P1) {
IID = matchRotate(P1, RotSrc, RotAmt);
if (IID == Intrinsic::not_intrinsic || RotSrc != P0)
return false;
assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
"Pattern must match funnel shift left or right");
}
// The incoming block with our source operand must be the "guard" block.
// That must contain a cmp+branch to avoid the rotate when the shift amount
// is equal to 0. The other incoming block is the block with the rotate.
BasicBlock *GuardBB = Phi.getIncomingBlock(RotSrc == P1);
BasicBlock *RotBB = Phi.getIncomingBlock(RotSrc != P1);
Instruction *TermI = GuardBB->getTerminator();
BasicBlock *TrueBB, *FalseBB;
ICmpInst::Predicate Pred;
if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(RotAmt), m_ZeroInt()), TrueBB,
FalseBB)))
[AggressiveInstCombine] convert rotate with guard branch into funnel shift (PR34924) Now, that we have funnel shift intrinsics, it should be safe to convert this form of rotate to it. In the worst case (a target that doesn't have rotate instructions), we will expand this into a branch-less sequence of ALU ops (neg/and/and/lshr/shl/or) in the backend, so it's still very likely to be a perf improvement over the original code. The motivating source code pattern for this is shown in: https://bugs.llvm.org/show_bug.cgi?id=34924 Background: I looked at several different options before deciding where to try this - instcombine, simplifycfg, CGP - because it doesn't fit cleanly anywhere AFAIK. The backend (CGP, SDAG, GlobalIsel?) is too late for what we're trying to accomplish. We want to have the IR converted before we reach things like vectorization because the reduced code can make a loop much simpler to transform. Technically, this could be included in instcombine, but it's a large pattern match that includes control-flow, so it just felt wrong to stuff into there (although I have a draft of that patch). Similarly, this could be part of simplifycfg, but all of this pattern matching is a stretch. So we're left with our relatively new dumping ground for homeless transforms: aggressive-instcombine. This only runs at -O3, but that seems like a reasonable limitation given that source code has many options to avoid this pattern (including the recently added clang intrinsics for rotates). I'm including a PhaseOrdering test because we require the teamwork of 3 passes (aggressive-instcombine, instcombine, simplifycfg) to get this into the minimal IR form that we want. That test shows a bug with the new pass manager that's independent of this change (but it will be masked if we canonicalize harder to funnel shift intrinsics in instcombine). Differential Revision: https://reviews.llvm.org/D55604 llvm-svn: 349396
2018-12-18 05:14:51 +08:00
return false;
BasicBlock *PhiBB = Phi.getParent();
if (Pred != CmpInst::ICMP_EQ || TrueBB != PhiBB || FalseBB != RotBB)
return false;
// We matched a variation of this IR pattern:
// GuardBB:
// %cmp = icmp eq i32 %RotAmt, 0
// br i1 %cmp, label %PhiBB, label %RotBB
// RotBB:
// %sub = sub i32 32, %RotAmt
// %shr = lshr i32 %X, %sub
// %shl = shl i32 %X, %RotAmt
// %rot = or i32 %shr, %shl
// br label %PhiBB
// PhiBB:
// %cond = phi i32 [ %rot, %RotBB ], [ %X, %GuardBB ]
// -->
// llvm.fshl.i32(i32 %X, i32 %RotAmt)
IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
Phi.replaceAllUsesWith(Builder.CreateCall(F, {RotSrc, RotSrc, RotAmt}));
return true;
}
/// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
/// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
/// of 'and' ops, then we also need to capture the fact that we saw an
/// "and X, 1", so that's an extra return value for that case.
struct MaskOps {
Value *Root;
APInt Mask;
bool MatchAndChain;
bool FoundAnd1;
MaskOps(unsigned BitWidth, bool MatchAnds)
: Root(nullptr), Mask(APInt::getNullValue(BitWidth)),
MatchAndChain(MatchAnds), FoundAnd1(false) {}
};
/// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
/// chain of 'and' or 'or' instructions looking for shift ops of a common source
/// value. Examples:
/// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
/// returns { X, 0x129 }
/// and (and (X >> 1), 1), (X >> 4)
/// returns { X, 0x12 }
static bool matchAndOrChain(Value *V, MaskOps &MOps) {
Value *Op0, *Op1;
if (MOps.MatchAndChain) {
// Recurse through a chain of 'and' operands. This requires an extra check
// vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
// in the chain to know that all of the high bits are cleared.
if (match(V, m_And(m_Value(Op0), m_One()))) {
MOps.FoundAnd1 = true;
return matchAndOrChain(Op0, MOps);
}
if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
} else {
// Recurse through a chain of 'or' operands.
if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
}
// We need a shift-right or a bare value representing a compare of bit 0 of
// the original source operand.
Value *Candidate;
uint64_t BitIndex = 0;
if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex))))
Candidate = V;
// Initialize result source operand.
if (!MOps.Root)
MOps.Root = Candidate;
// The shift constant is out-of-range? This code hasn't been simplified.
if (BitIndex >= MOps.Mask.getBitWidth())
return false;
// Fill in the mask bit derived from the shift constant.
MOps.Mask.setBit(BitIndex);
return MOps.Root == Candidate;
}
/// Match patterns that correspond to "any-bits-set" and "all-bits-set".
/// These will include a chain of 'or' or 'and'-shifted bits from a
/// common source value:
/// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0
/// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
/// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
/// that differ only with a final 'not' of the result. We expect that final
/// 'not' to be folded with the compare that we create here (invert predicate).
static bool foldAnyOrAllBitsSet(Instruction &I) {
// The 'any-bits-set' ('or' chain) pattern is simpler to match because the
// final "and X, 1" instruction must be the final op in the sequence.
bool MatchAllBitsSet;
if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
MatchAllBitsSet = true;
else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
MatchAllBitsSet = false;
else
return false;
MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
if (MatchAllBitsSet) {
if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
return false;
} else {
if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
return false;
}
// The pattern was found. Create a masked compare that replaces all of the
// shift and logic ops.
IRBuilder<> Builder(&I);
Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
Value *And = Builder.CreateAnd(MOps.Root, Mask);
Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
: Builder.CreateIsNotNull(And);
Value *Zext = Builder.CreateZExt(Cmp, I.getType());
I.replaceAllUsesWith(Zext);
return true;
}
/// This is the entry point for folds that could be implemented in regular
/// InstCombine, but they are separated because they are not expected to
/// occur frequently and/or have more than a constant-length pattern match.
static bool foldUnusualPatterns(Function &F, DominatorTree &DT) {
bool MadeChange = false;
for (BasicBlock &BB : F) {
// Ignore unreachable basic blocks.
if (!DT.isReachableFromEntry(&BB))
continue;
// Do not delete instructions under here and invalidate the iterator.
// Walk the block backwards for efficiency. We're matching a chain of
// use->defs, so we're more likely to succeed by starting from the bottom.
// Also, we want to avoid matching partial patterns.
// TODO: It would be more efficient if we removed dead instructions
// iteratively in this loop rather than waiting until the end.
[AggressiveInstCombine] convert rotate with guard branch into funnel shift (PR34924) Now, that we have funnel shift intrinsics, it should be safe to convert this form of rotate to it. In the worst case (a target that doesn't have rotate instructions), we will expand this into a branch-less sequence of ALU ops (neg/and/and/lshr/shl/or) in the backend, so it's still very likely to be a perf improvement over the original code. The motivating source code pattern for this is shown in: https://bugs.llvm.org/show_bug.cgi?id=34924 Background: I looked at several different options before deciding where to try this - instcombine, simplifycfg, CGP - because it doesn't fit cleanly anywhere AFAIK. The backend (CGP, SDAG, GlobalIsel?) is too late for what we're trying to accomplish. We want to have the IR converted before we reach things like vectorization because the reduced code can make a loop much simpler to transform. Technically, this could be included in instcombine, but it's a large pattern match that includes control-flow, so it just felt wrong to stuff into there (although I have a draft of that patch). Similarly, this could be part of simplifycfg, but all of this pattern matching is a stretch. So we're left with our relatively new dumping ground for homeless transforms: aggressive-instcombine. This only runs at -O3, but that seems like a reasonable limitation given that source code has many options to avoid this pattern (including the recently added clang intrinsics for rotates). I'm including a PhaseOrdering test because we require the teamwork of 3 passes (aggressive-instcombine, instcombine, simplifycfg) to get this into the minimal IR form that we want. That test shows a bug with the new pass manager that's independent of this change (but it will be masked if we canonicalize harder to funnel shift intrinsics in instcombine). Differential Revision: https://reviews.llvm.org/D55604 llvm-svn: 349396
2018-12-18 05:14:51 +08:00
for (Instruction &I : make_range(BB.rbegin(), BB.rend())) {
MadeChange |= foldAnyOrAllBitsSet(I);
[AggressiveInstCombine] convert rotate with guard branch into funnel shift (PR34924) Now, that we have funnel shift intrinsics, it should be safe to convert this form of rotate to it. In the worst case (a target that doesn't have rotate instructions), we will expand this into a branch-less sequence of ALU ops (neg/and/and/lshr/shl/or) in the backend, so it's still very likely to be a perf improvement over the original code. The motivating source code pattern for this is shown in: https://bugs.llvm.org/show_bug.cgi?id=34924 Background: I looked at several different options before deciding where to try this - instcombine, simplifycfg, CGP - because it doesn't fit cleanly anywhere AFAIK. The backend (CGP, SDAG, GlobalIsel?) is too late for what we're trying to accomplish. We want to have the IR converted before we reach things like vectorization because the reduced code can make a loop much simpler to transform. Technically, this could be included in instcombine, but it's a large pattern match that includes control-flow, so it just felt wrong to stuff into there (although I have a draft of that patch). Similarly, this could be part of simplifycfg, but all of this pattern matching is a stretch. So we're left with our relatively new dumping ground for homeless transforms: aggressive-instcombine. This only runs at -O3, but that seems like a reasonable limitation given that source code has many options to avoid this pattern (including the recently added clang intrinsics for rotates). I'm including a PhaseOrdering test because we require the teamwork of 3 passes (aggressive-instcombine, instcombine, simplifycfg) to get this into the minimal IR form that we want. That test shows a bug with the new pass manager that's independent of this change (but it will be masked if we canonicalize harder to funnel shift intrinsics in instcombine). Differential Revision: https://reviews.llvm.org/D55604 llvm-svn: 349396
2018-12-18 05:14:51 +08:00
MadeChange |= foldGuardedRotateToFunnelShift(I);
}
}
// We're done with transforms, so remove dead instructions.
if (MadeChange)
for (BasicBlock &BB : F)
SimplifyInstructionsInBlock(&BB);
return MadeChange;
}
/// This is the entry point for all transforms. Pass manager differences are
/// handled in the callers of this function.
static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) {
bool MadeChange = false;
const DataLayout &DL = F.getParent()->getDataLayout();
TruncInstCombine TIC(TLI, DL, DT);
MadeChange |= TIC.run(F);
MadeChange |= foldUnusualPatterns(F, DT);
return MadeChange;
}
void AggressiveInstCombinerLegacyPass::getAnalysisUsage(
AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addPreserved<BasicAAWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
}
bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) {
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return runImpl(F, TLI, DT);
}
PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
if (!runImpl(F, TLI, DT)) {
// No changes, all analyses are preserved.
return PreservedAnalyses::all();
}
// Mark all the analyses that instcombine updates as preserved.
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
PA.preserve<AAManager>();
PA.preserve<GlobalsAA>();
return PA;
}
char AggressiveInstCombinerLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass,
"aggressive-instcombine",
"Combine pattern based expressions", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine",
"Combine pattern based expressions", false, false)
// Initialization Routines
void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) {
initializeAggressiveInstCombinerLegacyPassPass(Registry);
}
void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) {
initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R));
}
FunctionPass *llvm::createAggressiveInstCombinerPass() {
return new AggressiveInstCombinerLegacyPass();
}
void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) {
unwrap(PM)->add(createAggressiveInstCombinerPass());
}