llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOI386.h

250 lines
9.4 KiB
C
Raw Normal View History

//===---- RuntimeDyldMachOI386.h ---- MachO/I386 specific code. ---*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOI386_H
#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOI386_H
#include "../RuntimeDyldMachO.h"
#include <string>
#define DEBUG_TYPE "dyld"
namespace llvm {
class RuntimeDyldMachOI386
: public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOI386> {
public:
typedef uint32_t TargetPtrT;
[MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through MCJIT. This patch decouples the two responsibilities of the RTDyldMemoryManager class, memory management and symbol resolution, into two new classes: RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver. The symbol resolution interface is modified slightly, from: uint64_t getSymbolAddress(const std::string &Name); to: RuntimeDyld::SymbolInfo findSymbol(const std::string &Name); The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld and others to reason about non-strong/non-exported symbols. The memory management interface removes the following method: void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &) {} as it is not related to memory management. (Note: Backwards compatibility *is* maintained for this method in MCJIT and OrcMCJITReplacement, see below). The RTDyldMemoryManager class remains in-tree for backwards compatibility. It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which just subclasses RuntimeDyld::MemoryManager and reintroduces the notifyObjectLoaded method for backwards compatibility). The EngineBuilder class retains the existing method: EngineBuilder& setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); and includes two new methods: EngineBuilder& setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); EngineBuilder& setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); Clients should use EITHER: A single call to setMCJITMemoryManager with an RTDyldMemoryManager. OR (exclusive) One call each to each of setMemoryManager and setSymbolResolver. This patch should be fully compatible with existing uses of RTDyldMemoryManager. If it is not it should be considered a bug, and the patch either fixed or reverted. If clients find the new API to be an improvement the goal will be to deprecate and eventually remove the RTDyldMemoryManager class in favor of the new classes. llvm-svn: 233509
2015-03-30 11:37:06 +08:00
RuntimeDyldMachOI386(RuntimeDyld::MemoryManager &MM,
JITSymbolResolver &Resolver)
[MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through MCJIT. This patch decouples the two responsibilities of the RTDyldMemoryManager class, memory management and symbol resolution, into two new classes: RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver. The symbol resolution interface is modified slightly, from: uint64_t getSymbolAddress(const std::string &Name); to: RuntimeDyld::SymbolInfo findSymbol(const std::string &Name); The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld and others to reason about non-strong/non-exported symbols. The memory management interface removes the following method: void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &) {} as it is not related to memory management. (Note: Backwards compatibility *is* maintained for this method in MCJIT and OrcMCJITReplacement, see below). The RTDyldMemoryManager class remains in-tree for backwards compatibility. It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which just subclasses RuntimeDyld::MemoryManager and reintroduces the notifyObjectLoaded method for backwards compatibility). The EngineBuilder class retains the existing method: EngineBuilder& setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); and includes two new methods: EngineBuilder& setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); EngineBuilder& setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); Clients should use EITHER: A single call to setMCJITMemoryManager with an RTDyldMemoryManager. OR (exclusive) One call each to each of setMemoryManager and setSymbolResolver. This patch should be fully compatible with existing uses of RTDyldMemoryManager. If it is not it should be considered a bug, and the patch either fixed or reverted. If clients find the new API to be an improvement the goal will be to deprecate and eventually remove the RTDyldMemoryManager class in favor of the new classes. llvm-svn: 233509
2015-03-30 11:37:06 +08:00
: RuntimeDyldMachOCRTPBase(MM, Resolver) {}
unsigned getMaxStubSize() override { return 0; }
unsigned getStubAlignment() override { return 1; }
Expected<relocation_iterator>
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
const ObjectFile &BaseObjT,
ObjSectionToIDMap &ObjSectionToID,
StubMap &Stubs) override {
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile &>(BaseObjT);
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RelI->getRawDataRefImpl());
uint32_t RelType = Obj.getAnyRelocationType(RelInfo);
if (Obj.isRelocationScattered(RelInfo)) {
if (RelType == MachO::GENERIC_RELOC_SECTDIFF ||
RelType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)
return processSECTDIFFRelocation(SectionID, RelI, Obj,
ObjSectionToID);
else if (RelType == MachO::GENERIC_RELOC_VANILLA)
return processScatteredVANILLA(SectionID, RelI, Obj, ObjSectionToID);
return make_error<RuntimeDyldError>(("Unhandled I386 scattered relocation "
"type: " + Twine(RelType)).str());
}
switch (RelType) {
UNIMPLEMENTED_RELOC(MachO::GENERIC_RELOC_PAIR);
UNIMPLEMENTED_RELOC(MachO::GENERIC_RELOC_PB_LA_PTR);
UNIMPLEMENTED_RELOC(MachO::GENERIC_RELOC_TLV);
default:
if (RelType > MachO::GENERIC_RELOC_TLV)
return make_error<RuntimeDyldError>(("MachO I386 relocation type " +
Twine(RelType) +
" is out of range").str());
break;
}
RelocationEntry RE(getRelocationEntry(SectionID, Obj, RelI));
RE.Addend = memcpyAddend(RE);
RelocationValueRef Value;
if (auto ValueOrErr = getRelocationValueRef(Obj, RelI, RE, ObjSectionToID))
Value = *ValueOrErr;
else
return ValueOrErr.takeError();
// Addends for external, PC-rel relocations on i386 point back to the zero
// offset. Calculate the final offset from the relocation target instead.
// This allows us to use the same logic for both external and internal
// relocations in resolveI386RelocationRef.
// bool IsExtern = Obj.getPlainRelocationExternal(RelInfo);
// if (IsExtern && RE.IsPCRel) {
// uint64_t RelocAddr = 0;
// RelI->getAddress(RelocAddr);
// Value.Addend += RelocAddr + 4;
// }
if (RE.IsPCRel)
Remove getRelocationAddress. Originally added in r139314. Back then it didn't actually get the address, it got whatever value the relocation used: address or offset. The values in different object formats are: * MachO: Always an offset. * COFF: Always an address, but when talking about the virtual address of sections it says: "for simplicity, compilers should set this to zero". * ELF: An offset for .o files and and address for .so files. In the case of the .so, the relocation in not linked to any section (sh_info is 0). We can't really compute an offset. Some API mappings would be: * Use getAddress for everything. It would be quite cumbersome. To compute the address elf has to follow sh_info, which can be corrupted and therefore the method has to return an ErrorOr. The address of the section is also the same for every relocation in a section, so we shouldn't have to check the error and fetch the value for every relocation. * Use a getValue and make it up to the user to know what it is getting. * Use a getOffset and: * Assert for dynamic ELF objects. That is a very peculiar case and it is probably fair to ask any tool that wants to support it to use ELF.h. The only tool we have that reads those (llvm-readobj) already does that. The only other use case I can think of is a dynamic linker. * Check that COFF .obj files have sections with zero virtual address spaces. If it turns out that some assembler/compiler produces these, we can change COFFObjectFile::getRelocationOffset to subtract it. Given COFF format, this can be done without the need for ErrorOr. The getRelocationAddress method was never implemented for COFF. It also had exactly one use in a very peculiar case: a shortcut for adding the section value to a pcrel reloc on MachO. Given that, I don't expect that there is any use out there of the C API. If that is not the case, let me know and I will add it back with the implementation inlined and do a proper deprecation. llvm-svn: 241450
2015-07-06 22:55:37 +08:00
makeValueAddendPCRel(Value, RelI, 1 << RE.Size);
RE.Addend = Value.Offset;
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
addRelocationForSection(RE, Value.SectionID);
return ++RelI;
}
void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override {
LLVM_DEBUG(dumpRelocationToResolve(RE, Value));
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t *LocalAddress = Section.getAddressWithOffset(RE.Offset);
if (RE.IsPCRel) {
uint64_t FinalAddress = Section.getLoadAddressWithOffset(RE.Offset);
Value -= FinalAddress + 4; // see MachOX86_64::resolveRelocation.
}
switch (RE.RelType) {
case MachO::GENERIC_RELOC_VANILLA:
writeBytesUnaligned(Value + RE.Addend, LocalAddress, 1 << RE.Size);
break;
case MachO::GENERIC_RELOC_SECTDIFF:
case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
uint64_t SectionABase = Sections[RE.Sections.SectionA].getLoadAddress();
uint64_t SectionBBase = Sections[RE.Sections.SectionB].getLoadAddress();
assert((Value == SectionABase || Value == SectionBBase) &&
"Unexpected SECTDIFF relocation value.");
Value = SectionABase - SectionBBase + RE.Addend;
writeBytesUnaligned(Value, LocalAddress, 1 << RE.Size);
break;
}
default:
llvm_unreachable("Invalid relocation type!");
}
}
Error finalizeSection(const ObjectFile &Obj, unsigned SectionID,
const SectionRef &Section) {
StringRef Name;
Section.getName(Name);
if (Name == "__jump_table")
return populateJumpTable(cast<MachOObjectFile>(Obj), Section, SectionID);
else if (Name == "__pointers")
return populateIndirectSymbolPointersSection(cast<MachOObjectFile>(Obj),
Section, SectionID);
return Error::success();
}
private:
Expected<relocation_iterator>
processSECTDIFFRelocation(unsigned SectionID, relocation_iterator RelI,
const ObjectFile &BaseObjT,
ObjSectionToIDMap &ObjSectionToID) {
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile&>(BaseObjT);
MachO::any_relocation_info RE =
Obj.getRelocation(RelI->getRawDataRefImpl());
SectionEntry &Section = Sections[SectionID];
uint32_t RelocType = Obj.getAnyRelocationType(RE);
bool IsPCRel = Obj.getAnyRelocationPCRel(RE);
unsigned Size = Obj.getAnyRelocationLength(RE);
uint64_t Offset = RelI->getOffset();
uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
unsigned NumBytes = 1 << Size;
uint64_t Addend = readBytesUnaligned(LocalAddress, NumBytes);
++RelI;
MachO::any_relocation_info RE2 =
Obj.getRelocation(RelI->getRawDataRefImpl());
uint32_t AddrA = Obj.getScatteredRelocationValue(RE);
section_iterator SAI = getSectionByAddress(Obj, AddrA);
assert(SAI != Obj.section_end() && "Can't find section for address A");
uint64_t SectionABase = SAI->getAddress();
uint64_t SectionAOffset = AddrA - SectionABase;
SectionRef SectionA = *SAI;
bool IsCode = SectionA.isText();
uint32_t SectionAID = ~0U;
if (auto SectionAIDOrErr =
findOrEmitSection(Obj, SectionA, IsCode, ObjSectionToID))
SectionAID = *SectionAIDOrErr;
else
return SectionAIDOrErr.takeError();
uint32_t AddrB = Obj.getScatteredRelocationValue(RE2);
section_iterator SBI = getSectionByAddress(Obj, AddrB);
assert(SBI != Obj.section_end() && "Can't find section for address B");
uint64_t SectionBBase = SBI->getAddress();
uint64_t SectionBOffset = AddrB - SectionBBase;
SectionRef SectionB = *SBI;
uint32_t SectionBID = ~0U;
if (auto SectionBIDOrErr =
findOrEmitSection(Obj, SectionB, IsCode, ObjSectionToID))
SectionBID = *SectionBIDOrErr;
else
return SectionBIDOrErr.takeError();
// Compute the addend 'C' from the original expression 'A - B + C'.
Addend -= AddrA - AddrB;
LLVM_DEBUG(dbgs() << "Found SECTDIFF: AddrA: " << AddrA
<< ", AddrB: " << AddrB << ", Addend: " << Addend
<< ", SectionA ID: " << SectionAID << ", SectionAOffset: "
<< SectionAOffset << ", SectionB ID: " << SectionBID
<< ", SectionBOffset: " << SectionBOffset << "\n");
RelocationEntry R(SectionID, Offset, RelocType, Addend, SectionAID,
SectionAOffset, SectionBID, SectionBOffset,
IsPCRel, Size);
addRelocationForSection(R, SectionAID);
return ++RelI;
}
// Populate stubs in __jump_table section.
Error populateJumpTable(const MachOObjectFile &Obj,
const SectionRef &JTSection,
unsigned JTSectionID) {
MachO::dysymtab_command DySymTabCmd = Obj.getDysymtabLoadCommand();
MachO::section Sec32 = Obj.getSection(JTSection.getRawDataRefImpl());
uint32_t JTSectionSize = Sec32.size;
unsigned FirstIndirectSymbol = Sec32.reserved1;
unsigned JTEntrySize = Sec32.reserved2;
unsigned NumJTEntries = JTSectionSize / JTEntrySize;
uint8_t *JTSectionAddr = getSectionAddress(JTSectionID);
unsigned JTEntryOffset = 0;
if (JTSectionSize % JTEntrySize != 0)
return make_error<RuntimeDyldError>("Jump-table section does not contain "
"a whole number of stubs?");
for (unsigned i = 0; i < NumJTEntries; ++i) {
unsigned SymbolIndex =
Obj.getIndirectSymbolTableEntry(DySymTabCmd, FirstIndirectSymbol + i);
symbol_iterator SI = Obj.getSymbolByIndex(SymbolIndex);
Thread Expected<...> up from libObject’s getName() for symbols to allow llvm-objdump to produce a good error message. Produce another specific error message for a malformed Mach-O file when a symbol’s string index is past the end of the string table. The existing test case in test/Object/macho-invalid.test for macho-invalid-symbol-name-past-eof now reports the error with the message indicating that a symbol at a specific index has a bad sting index and that bad string index value. Again converting interfaces to Expected<> from ErrorOr<> does involve touching a number of places. Where the existing code reported the error with a string message or an error code it was converted to do the same. There is some code for this that could be factored into a routine but I would like to leave that for the code owners post-commit to do as they want for handling an llvm::Error. An example of how this could be done is shown in the diff in lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h which had a Check() routine already for std::error_code so I added one like it for llvm::Error . Also there some were bugs in the existing code that did not deal with the old ErrorOr<> return values.  So now with Expected<> since they must be checked and the error handled, I added a TODO and a comment: “// TODO: Actually report errors helpfully” and a call something like consumeError(NameOrErr.takeError()) so the buggy code will not crash since needed to deal with the Error. Note there fixes needed to lld that goes along with this that I will commit right after this. So expect lld not to built after this commit and before the next one. llvm-svn: 266919
2016-04-21 05:24:34 +08:00
Expected<StringRef> IndirectSymbolName = SI->getName();
if (!IndirectSymbolName)
return IndirectSymbolName.takeError();
uint8_t *JTEntryAddr = JTSectionAddr + JTEntryOffset;
createStubFunction(JTEntryAddr);
RelocationEntry RE(JTSectionID, JTEntryOffset + 1,
MachO::GENERIC_RELOC_VANILLA, 0, true, 2);
addRelocationForSymbol(RE, *IndirectSymbolName);
JTEntryOffset += JTEntrySize;
}
return Error::success();
}
};
}
#undef DEBUG_TYPE
#endif