llvm-project/llvm/lib/CodeGen/MachineVerifier.cpp

2236 lines
80 KiB
C++
Raw Normal View History

//===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Pass to verify generated machine code. The following is checked:
//
// Operand counts: All explicit operands must be present.
//
// Register classes: All physical and virtual register operands must be
// compatible with the register class required by the instruction descriptor.
//
// Register live intervals: Registers must be defined only once, and must be
// defined before use.
//
// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
// command-line option -verify-machineinstrs, or by defining the environment
// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
// the verifier errors.
//===----------------------------------------------------------------------===//
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <string>
#include <utility>
using namespace llvm;
namespace {
struct MachineVerifier {
MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
unsigned verify(MachineFunction &MF);
Pass *const PASS;
const char *Banner;
const MachineFunction *MF;
const TargetMachine *TM;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
const MachineRegisterInfo *MRI;
unsigned foundErrors;
// Avoid querying the MachineFunctionProperties for each operand.
bool isFunctionRegBankSelected;
bool isFunctionSelected;
using RegVector = SmallVector<unsigned, 16>;
using RegMaskVector = SmallVector<const uint32_t *, 4>;
using RegSet = DenseSet<unsigned>;
using RegMap = DenseMap<unsigned, const MachineInstr *>;
using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
const MachineInstr *FirstTerminator;
BlockSet FunctionBlocks;
BitVector regsReserved;
RegSet regsLive;
RegVector regsDefined, regsDead, regsKilled;
RegMaskVector regMasks;
SlotIndex lastIndex;
// Add Reg and any sub-registers to RV
void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
RV.push_back(Reg);
if (TargetRegisterInfo::isPhysicalRegister(Reg))
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
RV.push_back(*SubRegs);
}
struct BBInfo {
// Is this MBB reachable from the MF entry point?
bool reachable = false;
// Vregs that must be live in because they are used without being
// defined. Map value is the user.
RegMap vregsLiveIn;
// Regs killed in MBB. They may be defined again, and will then be in both
// regsKilled and regsLiveOut.
RegSet regsKilled;
// Regs defined in MBB and live out. Note that vregs passing through may
// be live out without being mentioned here.
RegSet regsLiveOut;
// Vregs that pass through MBB untouched. This set is disjoint from
// regsKilled and regsLiveOut.
RegSet vregsPassed;
// Vregs that must pass through MBB because they are needed by a successor
// block. This set is disjoint from regsLiveOut.
RegSet vregsRequired;
// Set versions of block's predecessor and successor lists.
BlockSet Preds, Succs;
BBInfo() = default;
// Add register to vregsPassed if it belongs there. Return true if
// anything changed.
bool addPassed(unsigned Reg) {
if (!TargetRegisterInfo::isVirtualRegister(Reg))
return false;
if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
return false;
return vregsPassed.insert(Reg).second;
}
// Same for a full set.
bool addPassed(const RegSet &RS) {
bool changed = false;
for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
if (addPassed(*I))
changed = true;
return changed;
}
// Add register to vregsRequired if it belongs there. Return true if
// anything changed.
bool addRequired(unsigned Reg) {
if (!TargetRegisterInfo::isVirtualRegister(Reg))
return false;
if (regsLiveOut.count(Reg))
return false;
return vregsRequired.insert(Reg).second;
}
// Same for a full set.
bool addRequired(const RegSet &RS) {
bool changed = false;
for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
if (addRequired(*I))
changed = true;
return changed;
}
// Same for a full map.
bool addRequired(const RegMap &RM) {
bool changed = false;
for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
if (addRequired(I->first))
changed = true;
return changed;
}
// Live-out registers are either in regsLiveOut or vregsPassed.
bool isLiveOut(unsigned Reg) const {
return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
}
};
// Extra register info per MBB.
DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
bool isReserved(unsigned Reg) {
return Reg < regsReserved.size() && regsReserved.test(Reg);
}
bool isAllocatable(unsigned Reg) const {
return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
!regsReserved.test(Reg);
}
// Analysis information if available
LiveVariables *LiveVars;
LiveIntervals *LiveInts;
LiveStacks *LiveStks;
SlotIndexes *Indexes;
void visitMachineFunctionBefore();
void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
void visitMachineBundleBefore(const MachineInstr *MI);
void visitMachineInstrBefore(const MachineInstr *MI);
void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
void visitMachineInstrAfter(const MachineInstr *MI);
void visitMachineBundleAfter(const MachineInstr *MI);
void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
void visitMachineFunctionAfter();
void report(const char *msg, const MachineFunction *MF);
void report(const char *msg, const MachineBasicBlock *MBB);
void report(const char *msg, const MachineInstr *MI);
void report(const char *msg, const MachineOperand *MO, unsigned MONum);
void report_context(const LiveInterval &LI) const;
void report_context(const LiveRange &LR, unsigned VRegUnit,
LaneBitmask LaneMask) const;
void report_context(const LiveRange::Segment &S) const;
void report_context(const VNInfo &VNI) const;
void report_context(SlotIndex Pos) const;
void report_context_liverange(const LiveRange &LR) const;
void report_context_lanemask(LaneBitmask LaneMask) const;
void report_context_vreg(unsigned VReg) const;
void report_context_vreg_regunit(unsigned VRegOrRegUnit) const;
void verifyInlineAsm(const MachineInstr *MI);
void checkLiveness(const MachineOperand *MO, unsigned MONum);
void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
SlotIndex UseIdx, const LiveRange &LR, unsigned Reg,
LaneBitmask LaneMask = LaneBitmask::getNone());
void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
SlotIndex DefIdx, const LiveRange &LR, unsigned Reg,
LaneBitmask LaneMask = LaneBitmask::getNone());
void markReachable(const MachineBasicBlock *MBB);
void calcRegsPassed();
void checkPHIOps(const MachineBasicBlock &MBB);
void calcRegsRequired();
void verifyLiveVariables();
void verifyLiveIntervals();
void verifyLiveInterval(const LiveInterval&);
void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
LaneBitmask);
void verifyLiveRangeSegment(const LiveRange&,
const LiveRange::const_iterator I, unsigned,
LaneBitmask);
void verifyLiveRange(const LiveRange&, unsigned,
LaneBitmask LaneMask = LaneBitmask::getNone());
void verifyStackFrame();
void verifySlotIndexes() const;
void verifyProperties(const MachineFunction &MF);
};
struct MachineVerifierPass : public MachineFunctionPass {
static char ID; // Pass ID, replacement for typeid
const std::string Banner;
MachineVerifierPass(std::string banner = std::string())
: MachineFunctionPass(ID), Banner(std::move(banner)) {
initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override {
unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
if (FoundErrors)
report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
return false;
}
};
} // end anonymous namespace
char MachineVerifierPass::ID = 0;
INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
"Verify generated machine code", false, false)
FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
return new MachineVerifierPass(Banner);
}
bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
const {
MachineFunction &MF = const_cast<MachineFunction&>(*this);
unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
if (AbortOnErrors && FoundErrors)
report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
return FoundErrors == 0;
}
void MachineVerifier::verifySlotIndexes() const {
if (Indexes == nullptr)
return;
// Ensure the IdxMBB list is sorted by slot indexes.
SlotIndex Last;
for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
E = Indexes->MBBIndexEnd(); I != E; ++I) {
assert(!Last.isValid() || I->first > Last);
Last = I->first;
}
}
void MachineVerifier::verifyProperties(const MachineFunction &MF) {
// If a pass has introduced virtual registers without clearing the
// NoVRegs property (or set it without allocating the vregs)
// then report an error.
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::NoVRegs) &&
MRI->getNumVirtRegs())
report("Function has NoVRegs property but there are VReg operands", &MF);
}
unsigned MachineVerifier::verify(MachineFunction &MF) {
foundErrors = 0;
this->MF = &MF;
TM = &MF.getTarget();
TII = MF.getSubtarget().getInstrInfo();
TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
isFunctionRegBankSelected = MF.getProperties().hasProperty(
MachineFunctionProperties::Property::RegBankSelected);
isFunctionSelected = MF.getProperties().hasProperty(
MachineFunctionProperties::Property::Selected);
LiveVars = nullptr;
LiveInts = nullptr;
LiveStks = nullptr;
Indexes = nullptr;
if (PASS) {
LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
// We don't want to verify LiveVariables if LiveIntervals is available.
if (!LiveInts)
LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
}
verifySlotIndexes();
verifyProperties(MF);
visitMachineFunctionBefore();
for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
MFI!=MFE; ++MFI) {
visitMachineBasicBlockBefore(&*MFI);
// Keep track of the current bundle header.
const MachineInstr *CurBundle = nullptr;
// Do we expect the next instruction to be part of the same bundle?
bool InBundle = false;
for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
if (MBBI->getParent() != &*MFI) {
report("Bad instruction parent pointer", &*MFI);
errs() << "Instruction: " << *MBBI;
continue;
}
// Check for consistent bundle flags.
if (InBundle && !MBBI->isBundledWithPred())
report("Missing BundledPred flag, "
"BundledSucc was set on predecessor",
&*MBBI);
if (!InBundle && MBBI->isBundledWithPred())
report("BundledPred flag is set, "
"but BundledSucc not set on predecessor",
&*MBBI);
// Is this a bundle header?
if (!MBBI->isInsideBundle()) {
if (CurBundle)
visitMachineBundleAfter(CurBundle);
CurBundle = &*MBBI;
visitMachineBundleBefore(CurBundle);
} else if (!CurBundle)
report("No bundle header", &*MBBI);
visitMachineInstrBefore(&*MBBI);
for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
const MachineInstr &MI = *MBBI;
const MachineOperand &Op = MI.getOperand(I);
if (Op.getParent() != &MI) {
2015-05-01 07:20:56 +08:00
// Make sure to use correct addOperand / RemoveOperand / ChangeTo
// functions when replacing operands of a MachineInstr.
report("Instruction has operand with wrong parent set", &MI);
}
visitMachineOperand(&Op, I);
}
visitMachineInstrAfter(&*MBBI);
// Was this the last bundled instruction?
InBundle = MBBI->isBundledWithSucc();
}
if (CurBundle)
visitMachineBundleAfter(CurBundle);
if (InBundle)
report("BundledSucc flag set on last instruction in block", &MFI->back());
visitMachineBasicBlockAfter(&*MFI);
}
visitMachineFunctionAfter();
// Clean up.
regsLive.clear();
regsDefined.clear();
regsDead.clear();
regsKilled.clear();
regMasks.clear();
MBBInfoMap.clear();
return foundErrors;
}
void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
assert(MF);
errs() << '\n';
if (!foundErrors++) {
if (Banner)
errs() << "# " << Banner << '\n';
if (LiveInts != nullptr)
LiveInts->print(errs());
else
MF->print(errs(), Indexes);
}
errs() << "*** Bad machine code: " << msg << " ***\n"
<< "- function: " << MF->getName() << "\n";
}
void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
assert(MBB);
report(msg, MBB->getParent());
errs() << "- basic block: " << printMBBReference(*MBB) << ' '
<< MBB->getName() << " (" << (const void *)MBB << ')';
if (Indexes)
errs() << " [" << Indexes->getMBBStartIdx(MBB)
<< ';' << Indexes->getMBBEndIdx(MBB) << ')';
errs() << '\n';
}
void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
assert(MI);
report(msg, MI->getParent());
errs() << "- instruction: ";
if (Indexes && Indexes->hasIndex(*MI))
errs() << Indexes->getInstructionIndex(*MI) << '\t';
MI->print(errs(), /*SkipOpers=*/true);
errs() << '\n';
}
void MachineVerifier::report(const char *msg,
const MachineOperand *MO, unsigned MONum) {
assert(MO);
report(msg, MO->getParent());
errs() << "- operand " << MONum << ": ";
MO->print(errs(), TRI);
errs() << "\n";
}
void MachineVerifier::report_context(SlotIndex Pos) const {
errs() << "- at: " << Pos << '\n';
}
void MachineVerifier::report_context(const LiveInterval &LI) const {
errs() << "- interval: " << LI << '\n';
}
void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
LaneBitmask LaneMask) const {
report_context_liverange(LR);
report_context_vreg_regunit(VRegUnit);
if (LaneMask.any())
report_context_lanemask(LaneMask);
}
void MachineVerifier::report_context(const LiveRange::Segment &S) const {
errs() << "- segment: " << S << '\n';
}
void MachineVerifier::report_context(const VNInfo &VNI) const {
errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n";
}
void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
errs() << "- liverange: " << LR << '\n';
}
void MachineVerifier::report_context_vreg(unsigned VReg) const {
errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
}
void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
report_context_vreg(VRegOrUnit);
} else {
errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n';
}
}
void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n';
}
void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
BBInfo &MInfo = MBBInfoMap[MBB];
if (!MInfo.reachable) {
MInfo.reachable = true;
for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
SuE = MBB->succ_end(); SuI != SuE; ++SuI)
markReachable(*SuI);
}
}
void MachineVerifier::visitMachineFunctionBefore() {
lastIndex = SlotIndex();
regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
: TRI->getReservedRegs(*MF);
if (!MF->empty())
markReachable(&MF->front());
// Build a set of the basic blocks in the function.
FunctionBlocks.clear();
for (const auto &MBB : *MF) {
FunctionBlocks.insert(&MBB);
BBInfo &MInfo = MBBInfoMap[&MBB];
MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
if (MInfo.Preds.size() != MBB.pred_size())
report("MBB has duplicate entries in its predecessor list.", &MBB);
MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
if (MInfo.Succs.size() != MBB.succ_size())
report("MBB has duplicate entries in its successor list.", &MBB);
}
// Check that the register use lists are sane.
MRI->verifyUseLists();
if (!MF->empty())
verifyStackFrame();
}
// Does iterator point to a and b as the first two elements?
static bool matchPair(MachineBasicBlock::const_succ_iterator i,
const MachineBasicBlock *a, const MachineBasicBlock *b) {
if (*i == a)
return *++i == b;
if (*i == b)
return *++i == a;
return false;
}
void
MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
FirstTerminator = nullptr;
if (!MF->getProperties().hasProperty(
MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
// If this block has allocatable physical registers live-in, check that
// it is an entry block or landing pad.
for (const auto &LI : MBB->liveins()) {
if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
MBB->getIterator() != MBB->getParent()->begin()) {
2017-02-16 06:19:06 +08:00
report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
}
}
}
// Count the number of landing pad successors.
SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
E = MBB->succ_end(); I != E; ++I) {
if ((*I)->isEHPad())
LandingPadSuccs.insert(*I);
if (!FunctionBlocks.count(*I))
report("MBB has successor that isn't part of the function.", MBB);
if (!MBBInfoMap[*I].Preds.count(MBB)) {
report("Inconsistent CFG", MBB);
errs() << "MBB is not in the predecessor list of the successor "
<< printMBBReference(*(*I)) << ".\n";
}
}
// Check the predecessor list.
for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
E = MBB->pred_end(); I != E; ++I) {
if (!FunctionBlocks.count(*I))
report("MBB has predecessor that isn't part of the function.", MBB);
if (!MBBInfoMap[*I].Succs.count(MBB)) {
report("Inconsistent CFG", MBB);
errs() << "MBB is not in the successor list of the predecessor "
<< printMBBReference(*(*I)) << ".\n";
}
}
const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
const BasicBlock *BB = MBB->getBasicBlock();
const Function *Fn = MF->getFunction();
if (LandingPadSuccs.size() > 1 &&
!(AsmInfo &&
AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
BB && isa<SwitchInst>(BB->getTerminator())) &&
!isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn())))
report("MBB has more than one landing pad successor", MBB);
// Call AnalyzeBranch. If it succeeds, there several more conditions to check.
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
Cond)) {
// Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
// check whether its answers match up with reality.
if (!TBB && !FBB) {
// Block falls through to its successor.
MachineFunction::const_iterator MBBI = MBB->getIterator();
++MBBI;
if (MBBI == MF->end()) {
// It's possible that the block legitimately ends with a noreturn
// call or an unreachable, in which case it won't actually fall
// out the bottom of the function.
} else if (MBB->succ_size() == LandingPadSuccs.size()) {
// It's possible that the block legitimately ends with a noreturn
// call or an unreachable, in which case it won't actuall fall
// out of the block.
} else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
report("MBB exits via unconditional fall-through but doesn't have "
"exactly one CFG successor!", MBB);
} else if (!MBB->isSuccessor(&*MBBI)) {
report("MBB exits via unconditional fall-through but its successor "
"differs from its CFG successor!", MBB);
}
if (!MBB->empty() && MBB->back().isBarrier() &&
!TII->isPredicated(MBB->back())) {
report("MBB exits via unconditional fall-through but ends with a "
"barrier instruction!", MBB);
}
if (!Cond.empty()) {
report("MBB exits via unconditional fall-through but has a condition!",
MBB);
}
} else if (TBB && !FBB && Cond.empty()) {
// Block unconditionally branches somewhere.
// If the block has exactly one successor, that happens to be a
// landingpad, accept it as valid control flow.
if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
(MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
*MBB->succ_begin() != *LandingPadSuccs.begin())) {
report("MBB exits via unconditional branch but doesn't have "
"exactly one CFG successor!", MBB);
} else if (!MBB->isSuccessor(TBB)) {
report("MBB exits via unconditional branch but the CFG "
"successor doesn't match the actual successor!", MBB);
}
if (MBB->empty()) {
report("MBB exits via unconditional branch but doesn't contain "
"any instructions!", MBB);
} else if (!MBB->back().isBarrier()) {
report("MBB exits via unconditional branch but doesn't end with a "
"barrier instruction!", MBB);
} else if (!MBB->back().isTerminator()) {
report("MBB exits via unconditional branch but the branch isn't a "
"terminator instruction!", MBB);
}
} else if (TBB && !FBB && !Cond.empty()) {
// Block conditionally branches somewhere, otherwise falls through.
MachineFunction::const_iterator MBBI = MBB->getIterator();
++MBBI;
if (MBBI == MF->end()) {
report("MBB conditionally falls through out of function!", MBB);
} else if (MBB->succ_size() == 1) {
// A conditional branch with only one successor is weird, but allowed.
if (&*MBBI != TBB)
report("MBB exits via conditional branch/fall-through but only has "
"one CFG successor!", MBB);
else if (TBB != *MBB->succ_begin())
report("MBB exits via conditional branch/fall-through but the CFG "
"successor don't match the actual successor!", MBB);
} else if (MBB->succ_size() != 2) {
report("MBB exits via conditional branch/fall-through but doesn't have "
"exactly two CFG successors!", MBB);
} else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
report("MBB exits via conditional branch/fall-through but the CFG "
"successors don't match the actual successors!", MBB);
}
if (MBB->empty()) {
report("MBB exits via conditional branch/fall-through but doesn't "
"contain any instructions!", MBB);
} else if (MBB->back().isBarrier()) {
report("MBB exits via conditional branch/fall-through but ends with a "
"barrier instruction!", MBB);
} else if (!MBB->back().isTerminator()) {
report("MBB exits via conditional branch/fall-through but the branch "
"isn't a terminator instruction!", MBB);
}
} else if (TBB && FBB) {
// Block conditionally branches somewhere, otherwise branches
// somewhere else.
if (MBB->succ_size() == 1) {
// A conditional branch with only one successor is weird, but allowed.
if (FBB != TBB)
report("MBB exits via conditional branch/branch through but only has "
"one CFG successor!", MBB);
else if (TBB != *MBB->succ_begin())
report("MBB exits via conditional branch/branch through but the CFG "
"successor don't match the actual successor!", MBB);
} else if (MBB->succ_size() != 2) {
report("MBB exits via conditional branch/branch but doesn't have "
"exactly two CFG successors!", MBB);
} else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
report("MBB exits via conditional branch/branch but the CFG "
"successors don't match the actual successors!", MBB);
}
if (MBB->empty()) {
report("MBB exits via conditional branch/branch but doesn't "
"contain any instructions!", MBB);
} else if (!MBB->back().isBarrier()) {
report("MBB exits via conditional branch/branch but doesn't end with a "
"barrier instruction!", MBB);
} else if (!MBB->back().isTerminator()) {
report("MBB exits via conditional branch/branch but the branch "
"isn't a terminator instruction!", MBB);
}
if (Cond.empty()) {
report("MBB exits via conditinal branch/branch but there's no "
"condition!", MBB);
}
} else {
report("AnalyzeBranch returned invalid data!", MBB);
}
}
regsLive.clear();
if (MRI->tracksLiveness()) {
for (const auto &LI : MBB->liveins()) {
if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
report("MBB live-in list contains non-physical register", MBB);
continue;
}
for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
regsLive.insert(*SubRegs);
}
}
const MachineFrameInfo &MFI = MF->getFrameInfo();
BitVector PR = MFI.getPristineRegs(*MF);
for (unsigned I : PR.set_bits()) {
for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
regsLive.insert(*SubRegs);
}
regsKilled.clear();
regsDefined.clear();
if (Indexes)
lastIndex = Indexes->getMBBStartIdx(MBB);
}
// This function gets called for all bundle headers, including normal
// stand-alone unbundled instructions.
void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
if (Indexes && Indexes->hasIndex(*MI)) {
SlotIndex idx = Indexes->getInstructionIndex(*MI);
if (!(idx > lastIndex)) {
report("Instruction index out of order", MI);
errs() << "Last instruction was at " << lastIndex << '\n';
}
lastIndex = idx;
}
// Ensure non-terminators don't follow terminators.
// Ignore predicated terminators formed by if conversion.
// FIXME: If conversion shouldn't need to violate this rule.
if (MI->isTerminator() && !TII->isPredicated(*MI)) {
if (!FirstTerminator)
FirstTerminator = MI;
} else if (FirstTerminator) {
report("Non-terminator instruction after the first terminator", MI);
errs() << "First terminator was:\t" << *FirstTerminator;
}
}
// The operands on an INLINEASM instruction must follow a template.
// Verify that the flag operands make sense.
void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
// The first two operands on INLINEASM are the asm string and global flags.
if (MI->getNumOperands() < 2) {
report("Too few operands on inline asm", MI);
return;
}
if (!MI->getOperand(0).isSymbol())
report("Asm string must be an external symbol", MI);
if (!MI->getOperand(1).isImm())
report("Asm flags must be an immediate", MI);
// Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
// Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
// and Extra_IsConvergent = 32.
if (!isUInt<6>(MI->getOperand(1).getImm()))
report("Unknown asm flags", &MI->getOperand(1), 1);
static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
unsigned OpNo = InlineAsm::MIOp_FirstOperand;
unsigned NumOps;
for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
const MachineOperand &MO = MI->getOperand(OpNo);
// There may be implicit ops after the fixed operands.
if (!MO.isImm())
break;
NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
}
if (OpNo > MI->getNumOperands())
report("Missing operands in last group", MI);
// An optional MDNode follows the groups.
if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
++OpNo;
// All trailing operands must be implicit registers.
for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
const MachineOperand &MO = MI->getOperand(OpNo);
if (!MO.isReg() || !MO.isImplicit())
report("Expected implicit register after groups", &MO, OpNo);
}
}
void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
const MCInstrDesc &MCID = MI->getDesc();
if (MI->getNumOperands() < MCID.getNumOperands()) {
report("Too few operands", MI);
errs() << MCID.getNumOperands() << " operands expected, but "
<< MI->getNumOperands() << " given.\n";
}
if (MI->isPHI() && MF->getProperties().hasProperty(
MachineFunctionProperties::Property::NoPHIs))
report("Found PHI instruction with NoPHIs property set", MI);
// Check the tied operands.
if (MI->isInlineAsm())
verifyInlineAsm(MI);
// Check the MachineMemOperands for basic consistency.
for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
E = MI->memoperands_end(); I != E; ++I) {
if ((*I)->isLoad() && !MI->mayLoad())
report("Missing mayLoad flag", MI);
if ((*I)->isStore() && !MI->mayStore())
report("Missing mayStore flag", MI);
}
// Debug values must not have a slot index.
// Other instructions must have one, unless they are inside a bundle.
if (LiveInts) {
bool mapped = !LiveInts->isNotInMIMap(*MI);
if (MI->isDebugValue()) {
if (mapped)
report("Debug instruction has a slot index", MI);
} else if (MI->isInsideBundle()) {
if (mapped)
report("Instruction inside bundle has a slot index", MI);
} else {
if (!mapped)
report("Missing slot index", MI);
}
}
// Check types.
if (isPreISelGenericOpcode(MCID.getOpcode())) {
if (isFunctionSelected)
report("Unexpected generic instruction in a Selected function", MI);
// Generic instructions specify equality constraints between some
// of their operands. Make sure these are consistent.
SmallVector<LLT, 4> Types;
for (unsigned i = 0; i < MCID.getNumOperands(); ++i) {
if (!MCID.OpInfo[i].isGenericType())
continue;
size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex();
Types.resize(std::max(TypeIdx + 1, Types.size()));
LLT OpTy = MRI->getType(MI->getOperand(i).getReg());
if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy)
report("type mismatch in generic instruction", MI);
Types[TypeIdx] = OpTy;
}
}
// Generic opcodes must not have physical register operands.
if (isPreISelGenericOpcode(MCID.getOpcode())) {
for (auto &Op : MI->operands()) {
if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg()))
report("Generic instruction cannot have physical register", MI);
}
}
StringRef ErrorInfo;
if (!TII->verifyInstruction(*MI, ErrorInfo))
report(ErrorInfo.data(), MI);
// Verify properties of various specific instruction types
switch(MI->getOpcode()) {
default:
break;
case TargetOpcode::G_LOAD:
case TargetOpcode::G_STORE:
// Generic loads and stores must have a single MachineMemOperand
// describing that access.
if (!MI->hasOneMemOperand())
report("Generic instruction accessing memory must have one mem operand",
MI);
break;
case TargetOpcode::G_PHI: {
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
if (!DstTy.isValid() ||
!std::all_of(MI->operands_begin() + 1, MI->operands_end(),
[this, &DstTy](const MachineOperand &MO) {
if (!MO.isReg())
return true;
LLT Ty = MRI->getType(MO.getReg());
if (!Ty.isValid() || (Ty != DstTy))
return false;
return true;
}))
report("Generic Instruction G_PHI has operands with incompatible/missing "
"types",
MI);
break;
}
case TargetOpcode::STATEPOINT:
if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
!MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
!MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
report("meta operands to STATEPOINT not constant!", MI);
break;
auto VerifyStackMapConstant = [&](unsigned Offset) {
if (!MI->getOperand(Offset).isImm() ||
MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
!MI->getOperand(Offset + 1).isImm())
report("stack map constant to STATEPOINT not well formed!", MI);
};
const unsigned VarStart = StatepointOpers(MI).getVarIdx();
VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
// TODO: verify we have properly encoded deopt arguments
};
}
void
MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
const MachineInstr *MI = MO->getParent();
const MCInstrDesc &MCID = MI->getDesc();
unsigned NumDefs = MCID.getNumDefs();
if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
// The first MCID.NumDefs operands must be explicit register defines
if (MONum < NumDefs) {
const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
if (!MO->isReg())
report("Explicit definition must be a register", MO, MONum);
else if (!MO->isDef() && !MCOI.isOptionalDef())
report("Explicit definition marked as use", MO, MONum);
else if (MO->isImplicit())
report("Explicit definition marked as implicit", MO, MONum);
} else if (MONum < MCID.getNumOperands()) {
const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
// Don't check if it's the last operand in a variadic instruction. See,
// e.g., LDM_RET in the arm back end.
if (MO->isReg() &&
!(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
if (MO->isDef() && !MCOI.isOptionalDef())
2013-10-05 00:53:00 +08:00
report("Explicit operand marked as def", MO, MONum);
if (MO->isImplicit())
report("Explicit operand marked as implicit", MO, MONum);
}
int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
if (TiedTo != -1) {
if (!MO->isReg())
report("Tied use must be a register", MO, MONum);
else if (!MO->isTied())
report("Operand should be tied", MO, MONum);
else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
report("Tied def doesn't match MCInstrDesc", MO, MONum);
else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
const MachineOperand &MOTied = MI->getOperand(TiedTo);
if (!MOTied.isReg())
report("Tied counterpart must be a register", &MOTied, TiedTo);
else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
MO->getReg() != MOTied.getReg())
report("Tied physical registers must match.", &MOTied, TiedTo);
}
} else if (MO->isReg() && MO->isTied())
report("Explicit operand should not be tied", MO, MONum);
} else {
// ARM adds %reg0 operands to indicate predicates. We'll allow that.
if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
report("Extra explicit operand on non-variadic instruction", MO, MONum);
}
switch (MO->getType()) {
case MachineOperand::MO_Register: {
const unsigned Reg = MO->getReg();
if (!Reg)
return;
if (MRI->tracksLiveness() && !MI->isDebugValue())
checkLiveness(MO, MONum);
// Verify the consistency of tied operands.
if (MO->isTied()) {
unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
if (!OtherMO.isReg())
report("Must be tied to a register", MO, MONum);
if (!OtherMO.isTied())
report("Missing tie flags on tied operand", MO, MONum);
if (MI->findTiedOperandIdx(OtherIdx) != MONum)
report("Inconsistent tie links", MO, MONum);
if (MONum < MCID.getNumDefs()) {
if (OtherIdx < MCID.getNumOperands()) {
if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
report("Explicit def tied to explicit use without tie constraint",
MO, MONum);
} else {
if (!OtherMO.isImplicit())
report("Explicit def should be tied to implicit use", MO, MONum);
}
}
}
// Verify two-address constraints after leaving SSA form.
unsigned DefIdx;
if (!MRI->isSSA() && MO->isUse() &&
MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
Reg != MI->getOperand(DefIdx).getReg())
report("Two-address instruction operands must be identical", MO, MONum);
// Check register classes.
unsigned SubIdx = MO->getSubReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (SubIdx) {
report("Illegal subregister index for physical register", MO, MONum);
return;
}
if (MONum < MCID.getNumOperands()) {
if (const TargetRegisterClass *DRC =
TII->getRegClass(MCID, MONum, TRI, *MF)) {
if (!DRC->contains(Reg)) {
report("Illegal physical register for instruction", MO, MONum);
errs() << printReg(Reg, TRI) << " is not a "
<< TRI->getRegClassName(DRC) << " register.\n";
}
}
}
} else {
// Virtual register.
const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
if (!RC) {
// This is a generic virtual register.
// If we're post-Select, we can't have gvregs anymore.
if (isFunctionSelected) {
report("Generic virtual register invalid in a Selected function",
MO, MONum);
return;
}
// The gvreg must have a type and it must not have a SubIdx.
LLT Ty = MRI->getType(Reg);
if (!Ty.isValid()) {
report("Generic virtual register must have a valid type", MO,
MONum);
return;
}
const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
// If we're post-RegBankSelect, the gvreg must have a bank.
if (!RegBank && isFunctionRegBankSelected) {
report("Generic virtual register must have a bank in a "
"RegBankSelected function",
MO, MONum);
return;
}
// Make sure the register fits into its register bank if any.
if (RegBank && Ty.isValid() &&
RegBank->getSize() < Ty.getSizeInBits()) {
report("Register bank is too small for virtual register", MO,
MONum);
errs() << "Register bank " << RegBank->getName() << " too small("
<< RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
<< "-bits\n";
return;
}
if (SubIdx) {
report("Generic virtual register does not subregister index", MO,
MONum);
return;
}
// If this is a target specific instruction and this operand
// has register class constraint, the virtual register must
// comply to it.
if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
MONum < MCID.getNumOperands() &&
TII->getRegClass(MCID, MONum, TRI, *MF)) {
report("Virtual register does not match instruction constraint", MO,
MONum);
errs() << "Expect register class "
<< TRI->getRegClassName(
TII->getRegClass(MCID, MONum, TRI, *MF))
<< " but got nothing\n";
return;
}
break;
}
if (SubIdx) {
const TargetRegisterClass *SRC =
TRI->getSubClassWithSubReg(RC, SubIdx);
if (!SRC) {
report("Invalid subregister index for virtual register", MO, MONum);
errs() << "Register class " << TRI->getRegClassName(RC)
<< " does not support subreg index " << SubIdx << "\n";
return;
}
if (RC != SRC) {
report("Invalid register class for subregister index", MO, MONum);
errs() << "Register class " << TRI->getRegClassName(RC)
<< " does not fully support subreg index " << SubIdx << "\n";
return;
}
}
if (MONum < MCID.getNumOperands()) {
if (const TargetRegisterClass *DRC =
TII->getRegClass(MCID, MONum, TRI, *MF)) {
if (SubIdx) {
const TargetRegisterClass *SuperRC =
TRI->getLargestLegalSuperClass(RC, *MF);
if (!SuperRC) {
report("No largest legal super class exists.", MO, MONum);
return;
}
DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
if (!DRC) {
report("No matching super-reg register class.", MO, MONum);
return;
}
}
if (!RC->hasSuperClassEq(DRC)) {
report("Illegal virtual register for instruction", MO, MONum);
errs() << "Expected a " << TRI->getRegClassName(DRC)
<< " register, but got a " << TRI->getRegClassName(RC)
<< " register\n";
}
}
}
}
break;
}
case MachineOperand::MO_RegisterMask:
regMasks.push_back(MO->getRegMask());
break;
case MachineOperand::MO_MachineBasicBlock:
if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
report("PHI operand is not in the CFG", MO, MONum);
break;
case MachineOperand::MO_FrameIndex:
if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
LiveInts && !LiveInts->isNotInMIMap(*MI)) {
int FI = MO->getIndex();
LiveInterval &LI = LiveStks->getInterval(FI);
SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
bool stores = MI->mayStore();
bool loads = MI->mayLoad();
// For a memory-to-memory move, we need to check if the frame
// index is used for storing or loading, by inspecting the
// memory operands.
if (stores && loads) {
for (auto *MMO : MI->memoperands()) {
const PseudoSourceValue *PSV = MMO->getPseudoValue();
if (PSV == nullptr) continue;
const FixedStackPseudoSourceValue *Value =
dyn_cast<FixedStackPseudoSourceValue>(PSV);
if (Value == nullptr) continue;
if (Value->getFrameIndex() != FI) continue;
if (MMO->isStore())
loads = false;
else
stores = false;
break;
}
if (loads == stores)
report("Missing fixed stack memoperand.", MI);
}
if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
report("Instruction loads from dead spill slot", MO, MONum);
errs() << "Live stack: " << LI << '\n';
}
if (stores && !LI.liveAt(Idx.getRegSlot())) {
report("Instruction stores to dead spill slot", MO, MONum);
errs() << "Live stack: " << LI << '\n';
}
}
break;
default:
break;
}
}
void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
LaneBitmask LaneMask) {
LiveQueryResult LRQ = LR.Query(UseIdx);
// Check if we have a segment at the use, note however that we only need one
// live subregister range, the others may be dead.
if (!LRQ.valueIn() && LaneMask.none()) {
report("No live segment at use", MO, MONum);
report_context_liverange(LR);
report_context_vreg_regunit(VRegOrUnit);
report_context(UseIdx);
}
if (MO->isKill() && !LRQ.isKill()) {
report("Live range continues after kill flag", MO, MONum);
report_context_liverange(LR);
report_context_vreg_regunit(VRegOrUnit);
if (LaneMask.any())
report_context_lanemask(LaneMask);
report_context(UseIdx);
}
}
void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
LaneBitmask LaneMask) {
if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
assert(VNI && "NULL valno is not allowed");
if (VNI->def != DefIdx) {
report("Inconsistent valno->def", MO, MONum);
report_context_liverange(LR);
report_context_vreg_regunit(VRegOrUnit);
if (LaneMask.any())
report_context_lanemask(LaneMask);
report_context(*VNI);
report_context(DefIdx);
}
} else {
report("No live segment at def", MO, MONum);
report_context_liverange(LR);
report_context_vreg_regunit(VRegOrUnit);
if (LaneMask.any())
report_context_lanemask(LaneMask);
report_context(DefIdx);
}
// Check that, if the dead def flag is present, LiveInts agree.
if (MO->isDead()) {
LiveQueryResult LRQ = LR.Query(DefIdx);
if (!LRQ.isDeadDef()) {
// In case of physregs we can have a non-dead definition on another
// operand.
bool otherDef = false;
if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
const MachineInstr &MI = *MO->getParent();
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || !MO.isDef() || MO.isDead())
continue;
unsigned Reg = MO.getReg();
for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
if (*Units == VRegOrUnit) {
otherDef = true;
break;
}
}
}
}
if (!otherDef) {
report("Live range continues after dead def flag", MO, MONum);
report_context_liverange(LR);
report_context_vreg_regunit(VRegOrUnit);
if (LaneMask.any())
report_context_lanemask(LaneMask);
}
}
}
}
void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
const MachineInstr *MI = MO->getParent();
const unsigned Reg = MO->getReg();
// Both use and def operands can read a register.
if (MO->readsReg()) {
if (MO->isKill())
addRegWithSubRegs(regsKilled, Reg);
// Check that LiveVars knows this kill.
if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
MO->isKill()) {
LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
if (!is_contained(VI.Kills, MI))
report("Kill missing from LiveVariables", MO, MONum);
}
// Check LiveInts liveness and kill.
if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
// Check the cached regunit intervals.
if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
LiveIntervalAnalysis: Fix alias regunit reserved definition A register in CodeGen can be marked as reserved: In that case we consider the register always live and do not use (or rather ignore) kill/dead/undef operand flags. LiveIntervalAnalysis however tracks liveness per register unit (not per register). We already needed adjustments for this in r292871 to deal with super/sub registers. However I did not look at aliased register there. Looking at ARM: FPSCR (regunits FPSCR, FPSCR~FPSCR_NZCV) aliases with FPSCR_NZCV (regunits FPSCR_NZCV, FPSCR~FPSCR_NZCV) hence they share a register unit (FPSCR~FPSCR_NZCV) that represents the aliased parts of the registers. This shared register unit was previously considered non-reserved, however given that we uses of the reserved FPSCR potentially violate some rules (like uses without defs) we should make FPSCR~FPSCR_NZCV reserved too and stop tracking liveness for it. This patch: - Defines a register unit as reserved when: At least for one root register, the root register and all its super registers are reserved. - Adjust LiveIntervals::computeRegUnitRange() for new reserved definition. - Add MachineRegisterInfo::isReservedRegUnit() to have a canonical way of testing. - Stop computing LiveRanges for reserved register units in HMEditor even with UpdateFlags enabled. - Skip verification of uses of reserved reg units in the machine verifier (this usually didn't happen because there would be no cached liverange but there is no guarantee for that and I would run into this case before the HMEditor tweak, so may as well fix the verifier too). Note that this should only affect ARMs FPSCR/FPSCR_NZCV registers today; aliased registers are rarely used, the only other cases are hexagons P0-P3/P3_0 and C8/USR pairs which are not mixing reserved/non-reserved registers in an alias. Differential Revision: https://reviews.llvm.org/D37356 llvm-svn: 312348
2017-09-02 02:36:26 +08:00
if (MRI->isReservedRegUnit(*Units))
continue;
if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
}
}
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
if (LiveInts->hasInterval(Reg)) {
// This is a virtual register interval.
const LiveInterval &LI = LiveInts->getInterval(Reg);
checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
if (LI.hasSubRanges() && !MO->isDef()) {
unsigned SubRegIdx = MO->getSubReg();
LaneBitmask MOMask = SubRegIdx != 0
? TRI->getSubRegIndexLaneMask(SubRegIdx)
: MRI->getMaxLaneMaskForVReg(Reg);
LaneBitmask LiveInMask;
for (const LiveInterval::SubRange &SR : LI.subranges()) {
if ((MOMask & SR.LaneMask).none())
continue;
checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
LiveQueryResult LRQ = SR.Query(UseIdx);
if (LRQ.valueIn())
LiveInMask |= SR.LaneMask;
}
// At least parts of the register has to be live at the use.
if ((LiveInMask & MOMask).none()) {
report("No live subrange at use", MO, MONum);
report_context(LI);
report_context(UseIdx);
}
}
} else {
report("Virtual register has no live interval", MO, MONum);
}
}
}
// Use of a dead register.
if (!regsLive.count(Reg)) {
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
// Reserved registers may be used even when 'dead'.
bool Bad = !isReserved(Reg);
// We are fine if just any subregister has a defined value.
if (Bad) {
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
++SubRegs) {
if (regsLive.count(*SubRegs)) {
Bad = false;
break;
}
}
}
// If there is an additional implicit-use of a super register we stop
// here. By definition we are fine if the super register is not
// (completely) dead, if the complete super register is dead we will
// get a report for its operand.
if (Bad) {
for (const MachineOperand &MOP : MI->uses()) {
if (!MOP.isReg())
continue;
if (!MOP.isImplicit())
continue;
for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
++SubRegs) {
if (*SubRegs == Reg) {
Bad = false;
break;
}
}
}
}
if (Bad)
report("Using an undefined physical register", MO, MONum);
} else if (MRI->def_empty(Reg)) {
report("Reading virtual register without a def", MO, MONum);
} else {
BBInfo &MInfo = MBBInfoMap[MI->getParent()];
// We don't know which virtual registers are live in, so only complain
// if vreg was killed in this MBB. Otherwise keep track of vregs that
// must be live in. PHI instructions are handled separately.
if (MInfo.regsKilled.count(Reg))
report("Using a killed virtual register", MO, MONum);
else if (!MI->isPHI())
MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
}
}
}
if (MO->isDef()) {
// Register defined.
// TODO: verify that earlyclobber ops are not used.
if (MO->isDead())
addRegWithSubRegs(regsDead, Reg);
else
addRegWithSubRegs(regsDefined, Reg);
// Verify SSA form.
if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
std::next(MRI->def_begin(Reg)) != MRI->def_end())
report("Multiple virtual register defs in SSA form", MO, MONum);
// Check LiveInts for a live segment, but only for virtual registers.
if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
if (LiveInts->hasInterval(Reg)) {
const LiveInterval &LI = LiveInts->getInterval(Reg);
checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
if (LI.hasSubRanges()) {
unsigned SubRegIdx = MO->getSubReg();
LaneBitmask MOMask = SubRegIdx != 0
? TRI->getSubRegIndexLaneMask(SubRegIdx)
: MRI->getMaxLaneMaskForVReg(Reg);
for (const LiveInterval::SubRange &SR : LI.subranges()) {
if ((SR.LaneMask & MOMask).none())
continue;
checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
}
}
} else {
report("Virtual register has no Live interval", MO, MONum);
}
}
}
}
}
void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
// This function gets called after visiting all instructions in a bundle. The
// argument points to the bundle header.
// Normal stand-alone instructions are also considered 'bundles', and this
// function is called for all of them.
void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
BBInfo &MInfo = MBBInfoMap[MI->getParent()];
set_union(MInfo.regsKilled, regsKilled);
set_subtract(regsLive, regsKilled); regsKilled.clear();
// Kill any masked registers.
while (!regMasks.empty()) {
const uint32_t *Mask = regMasks.pop_back_val();
for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
if (TargetRegisterInfo::isPhysicalRegister(*I) &&
MachineOperand::clobbersPhysReg(Mask, *I))
regsDead.push_back(*I);
}
set_subtract(regsLive, regsDead); regsDead.clear();
set_union(regsLive, regsDefined); regsDefined.clear();
}
void
MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
MBBInfoMap[MBB].regsLiveOut = regsLive;
regsLive.clear();
if (Indexes) {
SlotIndex stop = Indexes->getMBBEndIdx(MBB);
if (!(stop > lastIndex)) {
report("Block ends before last instruction index", MBB);
errs() << "Block ends at " << stop
<< " last instruction was at " << lastIndex << '\n';
}
lastIndex = stop;
}
}
// Calculate the largest possible vregsPassed sets. These are the registers that
// can pass through an MBB live, but may not be live every time. It is assumed
// that all vregsPassed sets are empty before the call.
void MachineVerifier::calcRegsPassed() {
// First push live-out regs to successors' vregsPassed. Remember the MBBs that
// have any vregsPassed.
SmallPtrSet<const MachineBasicBlock*, 8> todo;
for (const auto &MBB : *MF) {
BBInfo &MInfo = MBBInfoMap[&MBB];
if (!MInfo.reachable)
continue;
for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
BBInfo &SInfo = MBBInfoMap[*SuI];
if (SInfo.addPassed(MInfo.regsLiveOut))
todo.insert(*SuI);
}
}
// Iteratively push vregsPassed to successors. This will converge to the same
// final state regardless of DenseSet iteration order.
while (!todo.empty()) {
const MachineBasicBlock *MBB = *todo.begin();
todo.erase(MBB);
BBInfo &MInfo = MBBInfoMap[MBB];
for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
if (*SuI == MBB)
continue;
BBInfo &SInfo = MBBInfoMap[*SuI];
if (SInfo.addPassed(MInfo.vregsPassed))
todo.insert(*SuI);
}
}
}
// Calculate the set of virtual registers that must be passed through each basic
// block in order to satisfy the requirements of successor blocks. This is very
// similar to calcRegsPassed, only backwards.
void MachineVerifier::calcRegsRequired() {
// First push live-in regs to predecessors' vregsRequired.
SmallPtrSet<const MachineBasicBlock*, 8> todo;
for (const auto &MBB : *MF) {
BBInfo &MInfo = MBBInfoMap[&MBB];
for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
BBInfo &PInfo = MBBInfoMap[*PrI];
if (PInfo.addRequired(MInfo.vregsLiveIn))
todo.insert(*PrI);
}
}
// Iteratively push vregsRequired to predecessors. This will converge to the
// same final state regardless of DenseSet iteration order.
while (!todo.empty()) {
const MachineBasicBlock *MBB = *todo.begin();
todo.erase(MBB);
BBInfo &MInfo = MBBInfoMap[MBB];
for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
if (*PrI == MBB)
continue;
BBInfo &SInfo = MBBInfoMap[*PrI];
if (SInfo.addRequired(MInfo.vregsRequired))
todo.insert(*PrI);
}
}
}
// Check PHI instructions at the beginning of MBB. It is assumed that
// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
BBInfo &MInfo = MBBInfoMap[&MBB];
SmallPtrSet<const MachineBasicBlock*, 8> seen;
for (const MachineInstr &Phi : MBB) {
if (!Phi.isPHI())
break;
seen.clear();
const MachineOperand &MODef = Phi.getOperand(0);
if (!MODef.isReg() || !MODef.isDef()) {
report("Expected first PHI operand to be a register def", &MODef, 0);
continue;
}
if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
MODef.isEarlyClobber() || MODef.isDebug())
report("Unexpected flag on PHI operand", &MODef, 0);
unsigned DefReg = MODef.getReg();
if (!TargetRegisterInfo::isVirtualRegister(DefReg))
report("Expected first PHI operand to be a virtual register", &MODef, 0);
for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
const MachineOperand &MO0 = Phi.getOperand(I);
if (!MO0.isReg()) {
report("Expected PHI operand to be a register", &MO0, I);
continue;
}
if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
MO0.isDebug() || MO0.isTied())
report("Unexpected flag on PHI operand", &MO0, I);
const MachineOperand &MO1 = Phi.getOperand(I + 1);
if (!MO1.isMBB()) {
report("Expected PHI operand to be a basic block", &MO1, I + 1);
continue;
}
const MachineBasicBlock &Pre = *MO1.getMBB();
if (!Pre.isSuccessor(&MBB)) {
report("PHI input is not a predecessor block", &MO1, I + 1);
continue;
}
if (MInfo.reachable) {
seen.insert(&Pre);
BBInfo &PrInfo = MBBInfoMap[&Pre];
if (PrInfo.reachable && !PrInfo.isLiveOut(MO0.getReg()))
report("PHI operand is not live-out from predecessor", &MO0, I);
}
}
// Did we see all predecessors?
if (MInfo.reachable) {
for (MachineBasicBlock *Pred : MBB.predecessors()) {
if (!seen.count(Pred)) {
report("Missing PHI operand", &Phi);
errs() << printMBBReference(*Pred)
<< " is a predecessor according to the CFG.\n";
}
}
}
}
}
void MachineVerifier::visitMachineFunctionAfter() {
calcRegsPassed();
for (const MachineBasicBlock &MBB : *MF)
checkPHIOps(MBB);
// Now check liveness info if available
calcRegsRequired();
// Check for killed virtual registers that should be live out.
for (const auto &MBB : *MF) {
BBInfo &MInfo = MBBInfoMap[&MBB];
for (RegSet::iterator
I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
++I)
if (MInfo.regsKilled.count(*I)) {
report("Virtual register killed in block, but needed live out.", &MBB);
errs() << "Virtual register " << printReg(*I)
<< " is used after the block.\n";
}
}
if (!MF->empty()) {
BBInfo &MInfo = MBBInfoMap[&MF->front()];
for (RegSet::iterator
I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
++I) {
report("Virtual register defs don't dominate all uses.", MF);
report_context_vreg(*I);
}
}
if (LiveVars)
verifyLiveVariables();
if (LiveInts)
verifyLiveIntervals();
}
void MachineVerifier::verifyLiveVariables() {
assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
for (const auto &MBB : *MF) {
BBInfo &MInfo = MBBInfoMap[&MBB];
// Our vregsRequired should be identical to LiveVariables' AliveBlocks
if (MInfo.vregsRequired.count(Reg)) {
if (!VI.AliveBlocks.test(MBB.getNumber())) {
report("LiveVariables: Block missing from AliveBlocks", &MBB);
errs() << "Virtual register " << printReg(Reg)
<< " must be live through the block.\n";
}
} else {
if (VI.AliveBlocks.test(MBB.getNumber())) {
report("LiveVariables: Block should not be in AliveBlocks", &MBB);
errs() << "Virtual register " << printReg(Reg)
<< " is not needed live through the block.\n";
}
}
}
}
}
void MachineVerifier::verifyLiveIntervals() {
assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
// Spilling and splitting may leave unused registers around. Skip them.
if (MRI->reg_nodbg_empty(Reg))
continue;
if (!LiveInts->hasInterval(Reg)) {
report("Missing live interval for virtual register", MF);
errs() << printReg(Reg, TRI) << " still has defs or uses\n";
continue;
}
const LiveInterval &LI = LiveInts->getInterval(Reg);
assert(Reg == LI.reg && "Invalid reg to interval mapping");
verifyLiveInterval(LI);
}
// Verify all the cached regunit intervals.
for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
verifyLiveRange(*LR, i);
}
void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
const VNInfo *VNI, unsigned Reg,
LaneBitmask LaneMask) {
if (VNI->isUnused())
return;
const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
if (!DefVNI) {
report("Value not live at VNInfo def and not marked unused", MF);
report_context(LR, Reg, LaneMask);
report_context(*VNI);
return;
}
if (DefVNI != VNI) {
report("Live segment at def has different VNInfo", MF);
report_context(LR, Reg, LaneMask);
report_context(*VNI);
return;
}
const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
if (!MBB) {
report("Invalid VNInfo definition index", MF);
report_context(LR, Reg, LaneMask);
report_context(*VNI);
return;
}
if (VNI->isPHIDef()) {
if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
report("PHIDef VNInfo is not defined at MBB start", MBB);
report_context(LR, Reg, LaneMask);
report_context(*VNI);
}
return;
}
// Non-PHI def.
const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
if (!MI) {
report("No instruction at VNInfo def index", MBB);
report_context(LR, Reg, LaneMask);
report_context(*VNI);
return;
}
if (Reg != 0) {
bool hasDef = false;
bool isEarlyClobber = false;
for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
if (!MOI->isReg() || !MOI->isDef())
continue;
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
if (MOI->getReg() != Reg)
continue;
} else {
if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
!TRI->hasRegUnit(MOI->getReg(), Reg))
continue;
}
if (LaneMask.any() &&
(TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
continue;
hasDef = true;
if (MOI->isEarlyClobber())
isEarlyClobber = true;
}
if (!hasDef) {
report("Defining instruction does not modify register", MI);
report_context(LR, Reg, LaneMask);
report_context(*VNI);
}
// Early clobber defs begin at USE slots, but other defs must begin at
// DEF slots.
if (isEarlyClobber) {
if (!VNI->def.isEarlyClobber()) {
report("Early clobber def must be at an early-clobber slot", MBB);
report_context(LR, Reg, LaneMask);
report_context(*VNI);
}
} else if (!VNI->def.isRegister()) {
report("Non-PHI, non-early clobber def must be at a register slot", MBB);
report_context(LR, Reg, LaneMask);
report_context(*VNI);
}
}
}
void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
const LiveRange::const_iterator I,
unsigned Reg, LaneBitmask LaneMask)
{
const LiveRange::Segment &S = *I;
const VNInfo *VNI = S.valno;
assert(VNI && "Live segment has no valno");
if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
report("Foreign valno in live segment", MF);
report_context(LR, Reg, LaneMask);
report_context(S);
report_context(*VNI);
}
if (VNI->isUnused()) {
report("Live segment valno is marked unused", MF);
report_context(LR, Reg, LaneMask);
report_context(S);
}
const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
if (!MBB) {
report("Bad start of live segment, no basic block", MF);
report_context(LR, Reg, LaneMask);
report_context(S);
return;
}
SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
if (S.start != MBBStartIdx && S.start != VNI->def) {
report("Live segment must begin at MBB entry or valno def", MBB);
report_context(LR, Reg, LaneMask);
report_context(S);
}
const MachineBasicBlock *EndMBB =
LiveInts->getMBBFromIndex(S.end.getPrevSlot());
if (!EndMBB) {
report("Bad end of live segment, no basic block", MF);
report_context(LR, Reg, LaneMask);
report_context(S);
return;
}
// No more checks for live-out segments.
if (S.end == LiveInts->getMBBEndIdx(EndMBB))
return;
// RegUnit intervals are allowed dead phis.
if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
S.start == VNI->def && S.end == VNI->def.getDeadSlot())
return;
// The live segment is ending inside EndMBB
const MachineInstr *MI =
LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
if (!MI) {
report("Live segment doesn't end at a valid instruction", EndMBB);
report_context(LR, Reg, LaneMask);
report_context(S);
return;
}
// The block slot must refer to a basic block boundary.
if (S.end.isBlock()) {
report("Live segment ends at B slot of an instruction", EndMBB);
report_context(LR, Reg, LaneMask);
report_context(S);
}
if (S.end.isDead()) {
// Segment ends on the dead slot.
// That means there must be a dead def.
if (!SlotIndex::isSameInstr(S.start, S.end)) {
report("Live segment ending at dead slot spans instructions", EndMBB);
report_context(LR, Reg, LaneMask);
report_context(S);
}
}
// A live segment can only end at an early-clobber slot if it is being
// redefined by an early-clobber def.
if (S.end.isEarlyClobber()) {
if (I+1 == LR.end() || (I+1)->start != S.end) {
report("Live segment ending at early clobber slot must be "
"redefined by an EC def in the same instruction", EndMBB);
report_context(LR, Reg, LaneMask);
report_context(S);
}
}
// The following checks only apply to virtual registers. Physreg liveness
// is too weird to check.
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
// A live segment can end with either a redefinition, a kill flag on a
// use, or a dead flag on a def.
bool hasRead = false;
bool hasSubRegDef = false;
bool hasDeadDef = false;
for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
if (!MOI->isReg() || MOI->getReg() != Reg)
continue;
unsigned Sub = MOI->getSubReg();
LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
: LaneBitmask::getAll();
if (MOI->isDef()) {
if (Sub != 0) {
hasSubRegDef = true;
// An operand %0:sub0<def> reads %0:sub1..n. Invert the lane
// mask for subregister defs. Read-undef defs will be handled by
// readsReg below.
SLM = ~SLM;
}
if (MOI->isDead())
hasDeadDef = true;
}
if (LaneMask.any() && (LaneMask & SLM).none())
continue;
if (MOI->readsReg())
hasRead = true;
}
if (S.end.isDead()) {
// Make sure that the corresponding machine operand for a "dead" live
// range has the dead flag. We cannot perform this check for subregister
// liveranges as partially dead values are allowed.
if (LaneMask.none() && !hasDeadDef) {
report("Instruction ending live segment on dead slot has no dead flag",
MI);
report_context(LR, Reg, LaneMask);
report_context(S);
}
} else {
if (!hasRead) {
// When tracking subregister liveness, the main range must start new
// values on partial register writes, even if there is no read.
if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
!hasSubRegDef) {
report("Instruction ending live segment doesn't read the register",
MI);
report_context(LR, Reg, LaneMask);
report_context(S);
}
}
}
}
// Now check all the basic blocks in this live segment.
MachineFunction::const_iterator MFI = MBB->getIterator();
// Is this live segment the beginning of a non-PHIDef VN?
if (S.start == VNI->def && !VNI->isPHIDef()) {
// Not live-in to any blocks.
if (MBB == EndMBB)
return;
// Skip this block.
++MFI;
}
while (true) {
assert(LiveInts->isLiveInToMBB(LR, &*MFI));
// We don't know how to track physregs into a landing pad.
if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
MFI->isEHPad()) {
if (&*MFI == EndMBB)
break;
++MFI;
continue;
}
// Is VNI a PHI-def in the current block?
bool IsPHI = VNI->isPHIDef() &&
VNI->def == LiveInts->getMBBStartIdx(&*MFI);
// Check that VNI is live-out of all predecessors.
for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
PE = MFI->pred_end(); PI != PE; ++PI) {
SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
// All predecessors must have a live-out value. However for a phi
// instruction with subregister intervals
// only one of the subregisters (not necessarily the current one) needs to
// be defined.
if (!PVNI && (LaneMask.none() || !IsPHI) ) {
report("Register not marked live out of predecessor", *PI);
report_context(LR, Reg, LaneMask);
report_context(*VNI);
errs() << " live into " << printMBBReference(*MFI) << '@'
<< LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
<< PEnd << '\n';
continue;
}
// Only PHI-defs can take different predecessor values.
if (!IsPHI && PVNI != VNI) {
report("Different value live out of predecessor", *PI);
report_context(LR, Reg, LaneMask);
errs() << "Valno #" << PVNI->id << " live out of "
<< printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
<< VNI->id << " live into " << printMBBReference(*MFI) << '@'
<< LiveInts->getMBBStartIdx(&*MFI) << '\n';
}
}
if (&*MFI == EndMBB)
break;
++MFI;
}
}
void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
LaneBitmask LaneMask) {
for (const VNInfo *VNI : LR.valnos)
verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
verifyLiveRangeSegment(LR, I, Reg, LaneMask);
}
void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
unsigned Reg = LI.reg;
assert(TargetRegisterInfo::isVirtualRegister(Reg));
verifyLiveRange(LI, Reg);
LaneBitmask Mask;
LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
for (const LiveInterval::SubRange &SR : LI.subranges()) {
if ((Mask & SR.LaneMask).any()) {
report("Lane masks of sub ranges overlap in live interval", MF);
report_context(LI);
}
if ((SR.LaneMask & ~MaxMask).any()) {
report("Subrange lanemask is invalid", MF);
report_context(LI);
}
if (SR.empty()) {
report("Subrange must not be empty", MF);
report_context(SR, LI.reg, SR.LaneMask);
}
Mask |= SR.LaneMask;
verifyLiveRange(SR, LI.reg, SR.LaneMask);
if (!LI.covers(SR)) {
report("A Subrange is not covered by the main range", MF);
report_context(LI);
}
}
// Check the LI only has one connected component.
ConnectedVNInfoEqClasses ConEQ(*LiveInts);
unsigned NumComp = ConEQ.Classify(LI);
if (NumComp > 1) {
report("Multiple connected components in live interval", MF);
report_context(LI);
for (unsigned comp = 0; comp != NumComp; ++comp) {
errs() << comp << ": valnos";
for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
E = LI.vni_end(); I!=E; ++I)
if (comp == ConEQ.getEqClass(*I))
errs() << ' ' << (*I)->id;
errs() << '\n';
}
}
}
namespace {
// FrameSetup and FrameDestroy can have zero adjustment, so using a single
// integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
// value is zero.
// We use a bool plus an integer to capture the stack state.
struct StackStateOfBB {
StackStateOfBB() = default;
StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
ExitIsSetup(ExitSetup) {}
// Can be negative, which means we are setting up a frame.
int EntryValue = 0;
int ExitValue = 0;
bool EntryIsSetup = false;
bool ExitIsSetup = false;
};
} // end anonymous namespace
/// Make sure on every path through the CFG, a FrameSetup <n> is always followed
/// by a FrameDestroy <n>, stack adjustments are identical on all
/// CFG edges to a merge point, and frame is destroyed at end of a return block.
void MachineVerifier::verifyStackFrame() {
unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
return;
SmallVector<StackStateOfBB, 8> SPState;
SPState.resize(MF->getNumBlockIDs());
df_iterator_default_set<const MachineBasicBlock*> Reachable;
// Visit the MBBs in DFS order.
for (df_ext_iterator<const MachineFunction *,
df_iterator_default_set<const MachineBasicBlock *>>
DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
DFI != DFE; ++DFI) {
const MachineBasicBlock *MBB = *DFI;
StackStateOfBB BBState;
// Check the exit state of the DFS stack predecessor.
if (DFI.getPathLength() >= 2) {
const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
assert(Reachable.count(StackPred) &&
"DFS stack predecessor is already visited.\n");
BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
BBState.ExitValue = BBState.EntryValue;
BBState.ExitIsSetup = BBState.EntryIsSetup;
}
// Update stack state by checking contents of MBB.
for (const auto &I : *MBB) {
if (I.getOpcode() == FrameSetupOpcode) {
if (BBState.ExitIsSetup)
report("FrameSetup is after another FrameSetup", &I);
Add extra operand to CALLSEQ_START to keep frame part set up previously Using arguments with attribute inalloca creates problems for verification of machine representation. This attribute instructs the backend that the argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size stored in CALLSEQ_START in this case does not count the size of this argument. However CALLSEQ_END still keeps total frame size, as caller can be responsible for cleanup of entire frame. So CALLSEQ_START and CALLSEQ_END keep different frame size and the difference is treated by MachineVerifier as stack error. Currently there is no way to distinguish this case from actual errors. This patch adds additional argument to CALLSEQ_START and its target-specific counterparts to keep size of stack that is set up prior to the call frame sequence. This argument allows MachineVerifier to calculate actual frame size associated with frame setup instruction and correctly process the case of inalloca arguments. The changes made by the patch are: - Frame setup instructions get the second mandatory argument. It affects all targets that use frame pseudo instructions and touched many files although the changes are uniform. - Access to frame properties are implemented using special instructions rather than calls getOperand(N).getImm(). For X86 and ARM such replacement was made previously. - Changes that reflect appearance of additional argument of frame setup instruction. These involve proper instruction initialization and methods that access instruction arguments. - MachineVerifier retrieves frame size using method, which reports sum of frame parts initialized inside frame instruction pair and outside it. The patch implements approach proposed by Quentin Colombet in https://bugs.llvm.org/show_bug.cgi?id=27481#c1. It fixes 9 tests failed with machine verifier enabled and listed in PR27481. Differential Revision: https://reviews.llvm.org/D32394 llvm-svn: 302527
2017-05-09 21:35:13 +08:00
BBState.ExitValue -= TII->getFrameTotalSize(I);
BBState.ExitIsSetup = true;
}
if (I.getOpcode() == FrameDestroyOpcode) {
Add extra operand to CALLSEQ_START to keep frame part set up previously Using arguments with attribute inalloca creates problems for verification of machine representation. This attribute instructs the backend that the argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size stored in CALLSEQ_START in this case does not count the size of this argument. However CALLSEQ_END still keeps total frame size, as caller can be responsible for cleanup of entire frame. So CALLSEQ_START and CALLSEQ_END keep different frame size and the difference is treated by MachineVerifier as stack error. Currently there is no way to distinguish this case from actual errors. This patch adds additional argument to CALLSEQ_START and its target-specific counterparts to keep size of stack that is set up prior to the call frame sequence. This argument allows MachineVerifier to calculate actual frame size associated with frame setup instruction and correctly process the case of inalloca arguments. The changes made by the patch are: - Frame setup instructions get the second mandatory argument. It affects all targets that use frame pseudo instructions and touched many files although the changes are uniform. - Access to frame properties are implemented using special instructions rather than calls getOperand(N).getImm(). For X86 and ARM such replacement was made previously. - Changes that reflect appearance of additional argument of frame setup instruction. These involve proper instruction initialization and methods that access instruction arguments. - MachineVerifier retrieves frame size using method, which reports sum of frame parts initialized inside frame instruction pair and outside it. The patch implements approach proposed by Quentin Colombet in https://bugs.llvm.org/show_bug.cgi?id=27481#c1. It fixes 9 tests failed with machine verifier enabled and listed in PR27481. Differential Revision: https://reviews.llvm.org/D32394 llvm-svn: 302527
2017-05-09 21:35:13 +08:00
int Size = TII->getFrameTotalSize(I);
if (!BBState.ExitIsSetup)
report("FrameDestroy is not after a FrameSetup", &I);
int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
BBState.ExitValue;
if (BBState.ExitIsSetup && AbsSPAdj != Size) {
report("FrameDestroy <n> is after FrameSetup <m>", &I);
errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
<< AbsSPAdj << ">.\n";
}
BBState.ExitValue += Size;
BBState.ExitIsSetup = false;
}
}
SPState[MBB->getNumber()] = BBState;
// Make sure the exit state of any predecessor is consistent with the entry
// state.
for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
E = MBB->pred_end(); I != E; ++I) {
if (Reachable.count(*I) &&
(SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
report("The exit stack state of a predecessor is inconsistent.", MBB);
errs() << "Predecessor " << printMBBReference(*(*I))
<< " has exit state (" << SPState[(*I)->getNumber()].ExitValue
<< ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
<< printMBBReference(*MBB) << " has entry state ("
<< BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
}
}
// Make sure the entry state of any successor is consistent with the exit
// state.
for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
E = MBB->succ_end(); I != E; ++I) {
if (Reachable.count(*I) &&
(SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
report("The entry stack state of a successor is inconsistent.", MBB);
errs() << "Successor " << printMBBReference(*(*I))
<< " has entry state (" << SPState[(*I)->getNumber()].EntryValue
<< ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
<< printMBBReference(*MBB) << " has exit state ("
<< BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
}
}
// Make sure a basic block with return ends with zero stack adjustment.
if (!MBB->empty() && MBB->back().isReturn()) {
if (BBState.ExitIsSetup)
report("A return block ends with a FrameSetup.", MBB);
if (BBState.ExitValue)
report("A return block ends with a nonzero stack adjustment.", MBB);
}
}
}