2005-04-25 11:59:26 +08:00
|
|
|
//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
|
2005-04-25 10:53:12 +08:00
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
2005-04-25 11:59:26 +08:00
|
|
|
// This file was developed by Reid Spencer and is distributed under the
|
|
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
2005-04-25 10:53:12 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements a variety of small optimizations for calls to specific
|
|
|
|
// well-known (e.g. runtime library) function calls. For example, a call to the
|
|
|
|
// function "exit(3)" that occurs within the main() function can be transformed
|
2005-04-25 11:59:26 +08:00
|
|
|
// into a simple "return 3" instruction. Any optimization that takes this form
|
|
|
|
// (replace call to library function with simpler code that provides same
|
|
|
|
// result) belongs in this file.
|
2005-04-25 10:53:12 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "llvm/Transforms/IPO.h"
|
|
|
|
#include "llvm/Module.h"
|
|
|
|
#include "llvm/Pass.h"
|
2005-04-26 05:11:48 +08:00
|
|
|
#include "llvm/DerivedTypes.h"
|
|
|
|
#include "llvm/Constants.h"
|
2005-04-25 10:53:12 +08:00
|
|
|
#include "llvm/Instructions.h"
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
2005-04-25 11:59:26 +08:00
|
|
|
#include "llvm/ADT/hash_map"
|
2005-04-26 05:11:48 +08:00
|
|
|
#include <iostream>
|
2005-04-25 10:53:12 +08:00
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
Statistic<> SimplifiedLibCalls("simplified-lib-calls",
|
|
|
|
"Number of well-known library calls simplified");
|
|
|
|
|
|
|
|
/// This class is the base class for a set of small but important
|
|
|
|
/// optimizations of calls to well-known functions, such as those in the c
|
|
|
|
/// library. This class provides the basic infrastructure for handling
|
|
|
|
/// runOnModule. Subclasses register themselves and provide two methods:
|
|
|
|
/// RecognizeCall and OptimizeCall. Whenever this class finds a function call,
|
|
|
|
/// it asks the subclasses to recognize the call. If it is recognized, then
|
|
|
|
/// the OptimizeCall method is called on that subclass instance. In this way
|
|
|
|
/// the subclasses implement the calling conditions on which they trigger and
|
|
|
|
/// the action to perform, making it easy to add new optimizations of this
|
|
|
|
/// form.
|
|
|
|
/// @brief A ModulePass for optimizing well-known function calls
|
|
|
|
struct SimplifyLibCalls : public ModulePass {
|
|
|
|
|
|
|
|
|
|
|
|
/// For this pass, process all of the function calls in the module, calling
|
|
|
|
/// RecognizeCall and OptimizeCall as appropriate.
|
|
|
|
virtual bool runOnModule(Module &M);
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
RegisterOpt<SimplifyLibCalls>
|
|
|
|
X("simplify-libcalls","Simplify well-known library calls");
|
|
|
|
|
|
|
|
struct CallOptimizer
|
|
|
|
{
|
|
|
|
/// @brief Constructor that registers the optimization
|
2005-04-25 11:59:26 +08:00
|
|
|
CallOptimizer(const char * fname );
|
2005-04-25 10:53:12 +08:00
|
|
|
|
|
|
|
virtual ~CallOptimizer();
|
|
|
|
|
2005-04-26 05:11:48 +08:00
|
|
|
/// The implementation of this function in subclasses should determine if
|
|
|
|
/// \p F is suitable for the optimization. This method is called by
|
|
|
|
/// runOnModule to short circuit visiting all the call sites of such a
|
|
|
|
/// function if that function is not suitable in the first place.
|
|
|
|
/// If the called function is suitabe, this method should return true;
|
|
|
|
/// false, otherwise. This function should also perform any lazy
|
|
|
|
/// initialization that the CallOptimizer needs to do, if its to return
|
|
|
|
/// true. This avoids doing initialization until the optimizer is actually
|
|
|
|
/// going to be called upon to do some optimization.
|
|
|
|
virtual bool ValidateCalledFunction(
|
|
|
|
const Function* F ///< The function that is the target of call sites
|
|
|
|
) const = 0;
|
|
|
|
|
2005-04-25 10:53:12 +08:00
|
|
|
/// The implementations of this function in subclasses is the heart of the
|
|
|
|
/// SimplifyLibCalls algorithm. Sublcasses of this class implement
|
|
|
|
/// OptimizeCall to determine if (a) the conditions are right for optimizing
|
|
|
|
/// the call and (b) to perform the optimization. If an action is taken
|
|
|
|
/// against ci, the subclass is responsible for returning true and ensuring
|
|
|
|
/// that ci is erased from its parent.
|
|
|
|
/// @param ci the call instruction under consideration
|
|
|
|
/// @param f the function that ci calls.
|
|
|
|
/// @brief Optimize a call, if possible.
|
2005-04-26 05:11:48 +08:00
|
|
|
virtual bool OptimizeCall(
|
|
|
|
CallInst* ci ///< The call instruction that should be optimized.
|
|
|
|
) const = 0;
|
2005-04-25 11:59:26 +08:00
|
|
|
|
2005-04-26 05:11:48 +08:00
|
|
|
const char * getFunctionName() const { return func_name; }
|
2005-04-25 11:59:26 +08:00
|
|
|
private:
|
2005-04-26 05:11:48 +08:00
|
|
|
const char* func_name;
|
2005-04-25 10:53:12 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
/// @brief The list of optimizations deriving from CallOptimizer
|
2005-04-26 05:11:48 +08:00
|
|
|
|
2005-04-25 11:59:26 +08:00
|
|
|
hash_map<std::string,CallOptimizer*> optlist;
|
2005-04-25 10:53:12 +08:00
|
|
|
|
2005-04-25 11:59:26 +08:00
|
|
|
CallOptimizer::CallOptimizer(const char* fname)
|
|
|
|
: func_name(fname)
|
2005-04-25 10:53:12 +08:00
|
|
|
{
|
|
|
|
// Register this call optimizer
|
2005-04-25 11:59:26 +08:00
|
|
|
optlist[func_name] = this;
|
2005-04-25 10:53:12 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Make sure we get our virtual table in this file.
|
2005-04-26 05:20:38 +08:00
|
|
|
CallOptimizer::~CallOptimizer() { }
|
2005-04-25 10:53:12 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
ModulePass *llvm::createSimplifyLibCallsPass()
|
|
|
|
{
|
|
|
|
return new SimplifyLibCalls();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool SimplifyLibCalls::runOnModule(Module &M)
|
|
|
|
{
|
2005-04-26 05:11:48 +08:00
|
|
|
bool result = false;
|
|
|
|
|
|
|
|
// The call optimizations can be recursive. That is, the optimization might
|
|
|
|
// generate a call to another function which can also be optimized. This way
|
|
|
|
// we make the CallOptimizer instances very specific to the case they handle.
|
|
|
|
// It also means we need to keep running over the function calls in the module
|
|
|
|
// until we don't get any more optimizations possible.
|
|
|
|
bool found_optimization = false;
|
|
|
|
do
|
2005-04-25 10:53:12 +08:00
|
|
|
{
|
2005-04-26 05:11:48 +08:00
|
|
|
found_optimization = false;
|
|
|
|
for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
|
2005-04-25 10:53:12 +08:00
|
|
|
{
|
2005-04-26 05:11:48 +08:00
|
|
|
// All the "well-known" functions are external and have external linkage
|
|
|
|
// because they live in a runtime library somewhere and were (probably)
|
|
|
|
// not compiled by LLVM. So, we only act on external functions that have
|
|
|
|
// external linkage and non-empty uses.
|
|
|
|
if (FI->isExternal() && FI->hasExternalLinkage() && !FI->use_empty())
|
2005-04-25 10:53:12 +08:00
|
|
|
{
|
2005-04-26 05:11:48 +08:00
|
|
|
// Get the optimization class that pertains to this function
|
|
|
|
if (CallOptimizer* CO = optlist[FI->getName().c_str()] )
|
2005-04-25 10:53:12 +08:00
|
|
|
{
|
2005-04-26 05:11:48 +08:00
|
|
|
// Make sure the called function is suitable for the optimization
|
|
|
|
if (CO->ValidateCalledFunction(FI))
|
2005-04-25 10:53:12 +08:00
|
|
|
{
|
2005-04-26 05:11:48 +08:00
|
|
|
// Loop over each of the uses of the function
|
|
|
|
for (Value::use_iterator UI = FI->use_begin(), UE = FI->use_end();
|
|
|
|
UI != UE ; )
|
2005-04-25 10:53:12 +08:00
|
|
|
{
|
2005-04-26 05:11:48 +08:00
|
|
|
// If the use of the function is a call instruction
|
|
|
|
if (CallInst* CI = dyn_cast<CallInst>(*UI++))
|
|
|
|
{
|
|
|
|
// Do the optimization on the CallOptimizer.
|
|
|
|
if (CO->OptimizeCall(CI))
|
|
|
|
{
|
|
|
|
++SimplifiedLibCalls;
|
|
|
|
found_optimization = result = true;
|
|
|
|
}
|
|
|
|
}
|
2005-04-25 10:53:12 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2005-04-26 05:11:48 +08:00
|
|
|
} while (found_optimization);
|
|
|
|
return result;
|
2005-04-25 10:53:12 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
/// This CallOptimizer will find instances of a call to "exit" that occurs
|
|
|
|
/// within the "main" function and change it to a simple "ret" instruction with
|
|
|
|
/// the same value as passed to the exit function. It assumes that the
|
|
|
|
/// instructions after the call to exit(3) can be deleted since they are
|
|
|
|
/// unreachable anyway.
|
|
|
|
/// @brief Replace calls to exit in main with a simple return
|
|
|
|
struct ExitInMainOptimization : public CallOptimizer
|
|
|
|
{
|
2005-04-25 11:59:26 +08:00
|
|
|
ExitInMainOptimization() : CallOptimizer("exit") {}
|
|
|
|
virtual ~ExitInMainOptimization() {}
|
2005-04-26 05:11:48 +08:00
|
|
|
|
|
|
|
// Make sure the called function looks like exit (int argument, int return
|
|
|
|
// type, external linkage, not varargs).
|
|
|
|
virtual bool ValidateCalledFunction(const Function* f) const
|
|
|
|
{
|
|
|
|
if (f->getReturnType()->getTypeID() == Type::VoidTyID && !f->isVarArg())
|
|
|
|
if (f->arg_size() == 1)
|
|
|
|
if (f->arg_begin()->getType()->isInteger())
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2005-04-25 11:59:26 +08:00
|
|
|
virtual bool OptimizeCall(CallInst* ci) const
|
|
|
|
{
|
2005-04-26 05:11:48 +08:00
|
|
|
// To be careful, we check that the call to exit is coming from "main", that
|
|
|
|
// main has external linkage, and the return type of main and the argument
|
|
|
|
// to exit have the same type.
|
|
|
|
Function *from = ci->getParent()->getParent();
|
|
|
|
if (from->hasExternalLinkage())
|
|
|
|
if (from->getReturnType() == ci->getOperand(1)->getType())
|
|
|
|
if (from->getName() == "main")
|
|
|
|
{
|
|
|
|
// Okay, time to actually do the optimization. First, get the basic
|
|
|
|
// block of the call instruction
|
|
|
|
BasicBlock* bb = ci->getParent();
|
2005-04-25 11:59:26 +08:00
|
|
|
|
2005-04-26 05:11:48 +08:00
|
|
|
// Create a return instruction that we'll replace the call with.
|
|
|
|
// Note that the argument of the return is the argument of the call
|
|
|
|
// instruction.
|
|
|
|
ReturnInst* ri = new ReturnInst(ci->getOperand(1), ci);
|
2005-04-25 11:59:26 +08:00
|
|
|
|
2005-04-26 05:11:48 +08:00
|
|
|
// Split the block at the call instruction which places it in a new
|
|
|
|
// basic block.
|
|
|
|
bb->splitBasicBlock(BasicBlock::iterator(ci));
|
2005-04-25 11:59:26 +08:00
|
|
|
|
2005-04-26 05:11:48 +08:00
|
|
|
// The block split caused a branch instruction to be inserted into
|
|
|
|
// the end of the original block, right after the return instruction
|
|
|
|
// that we put there. That's not a valid block, so delete the branch
|
|
|
|
// instruction.
|
|
|
|
bb->back().eraseFromParent();
|
2005-04-25 11:59:26 +08:00
|
|
|
|
2005-04-26 05:11:48 +08:00
|
|
|
// Now we can finally get rid of the call instruction which now lives
|
|
|
|
// in the new basic block.
|
|
|
|
ci->eraseFromParent();
|
|
|
|
|
|
|
|
// Optimization succeeded, return true.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
// We didn't pass the criteria for this optimization so return false
|
|
|
|
return false;
|
2005-04-25 11:59:26 +08:00
|
|
|
}
|
|
|
|
} ExitInMainOptimizer;
|
|
|
|
|
2005-04-26 05:11:48 +08:00
|
|
|
/// This CallOptimizer will simplify a call to the strcat library function. The
|
|
|
|
/// simplification is possible only if the string being concatenated is a
|
|
|
|
/// constant array or a constant expression that results in a constant array. In
|
|
|
|
/// this case, if the array is small, we can generate a series of inline store
|
|
|
|
/// instructions to effect the concatenation without calling strcat.
|
|
|
|
/// @brief Simplify the strcat library function.
|
2005-04-25 11:59:26 +08:00
|
|
|
struct StrCatOptimization : public CallOptimizer
|
2005-04-25 10:53:12 +08:00
|
|
|
{
|
2005-04-25 11:59:26 +08:00
|
|
|
StrCatOptimization() : CallOptimizer("strcat") {}
|
|
|
|
virtual ~StrCatOptimization() {}
|
2005-04-26 05:11:48 +08:00
|
|
|
|
|
|
|
/// @brief Make sure that the "strcat" function has the right prototype
|
|
|
|
virtual bool ValidateCalledFunction(const Function* f) const
|
|
|
|
{
|
|
|
|
if (f->getReturnType() == PointerType::get(Type::SByteTy))
|
|
|
|
if (f->arg_size() == 2)
|
|
|
|
{
|
|
|
|
Function::const_arg_iterator AI = f->arg_begin();
|
|
|
|
if (AI++->getType() == PointerType::get(Type::SByteTy))
|
|
|
|
if (AI->getType() == PointerType::get(Type::SByteTy))
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Perform the optimization if the length of the string concatenated
|
|
|
|
/// is reasonably short and it is a constant array.
|
2005-04-25 11:59:26 +08:00
|
|
|
virtual bool OptimizeCall(CallInst* ci) const
|
|
|
|
{
|
2005-04-26 05:11:48 +08:00
|
|
|
// If the thing being appended is not a GEP instruction
|
|
|
|
GetElementPtrInst* GEP = dyn_cast<GetElementPtrInst>(ci->getOperand(2));
|
|
|
|
if (!GEP)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Double check that we're dealing with a pointer to sbyte here
|
|
|
|
if (GEP->getType() != PointerType::get(Type::SByteTy))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// We can only optimize if the appended string is a constant
|
|
|
|
Constant* C = dyn_cast<Constant>(GEP->getPointerOperand());
|
|
|
|
if (!C)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Check the various kinds of constants that are applicable
|
|
|
|
GlobalVariable* GV = dyn_cast<GlobalVariable>(C);
|
|
|
|
if (!GV)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Only GVars that have initializers will do
|
|
|
|
if (GV->hasInitializer())
|
|
|
|
{
|
|
|
|
Constant* INTLZR = GV->getInitializer();
|
|
|
|
// And only if that initializer is ConstantArray
|
|
|
|
if (ConstantArray* A = dyn_cast<ConstantArray>(INTLZR))
|
|
|
|
{
|
|
|
|
assert(A->isString() && "This ought to be a string");
|
|
|
|
|
|
|
|
// Get the value of the string and determine its length. If the length
|
|
|
|
// is zero, we can just substitute the destination pointer for the
|
|
|
|
// call.
|
|
|
|
std::string str = A->getAsString().c_str();
|
|
|
|
if (str.length() == 0)
|
|
|
|
{
|
|
|
|
ci->replaceAllUsesWith(ci->getOperand(1));
|
|
|
|
ci->eraseFromParent();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise, lets just turn this into a memcpy call which will be
|
|
|
|
// optimized out on the next pass.
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// Extract some information
|
|
|
|
Module* M = ci->getParent()->getParent()->getParent();
|
|
|
|
// We need to find the end of the string of the first operand to the
|
|
|
|
// strcat call instruction. That's where the memory is to be moved
|
|
|
|
// to. So, generate code that does that
|
|
|
|
std::vector<const Type*> args;
|
|
|
|
args.push_back(PointerType::get(Type::SByteTy));
|
|
|
|
FunctionType* strlen_type =
|
|
|
|
FunctionType::get(Type::IntTy, args, false);
|
|
|
|
Function* strlen = M->getOrInsertFunction("strlen",strlen_type);
|
|
|
|
CallInst* strlen_inst =
|
|
|
|
new CallInst(strlen,ci->getOperand(1),"",ci);
|
|
|
|
|
|
|
|
// Now that we have the string length, we must add it to the pointer
|
|
|
|
// to get the memcpy destination.
|
|
|
|
std::vector<Value*> idx;
|
|
|
|
idx.push_back(strlen_inst);
|
|
|
|
GetElementPtrInst* gep =
|
|
|
|
new GetElementPtrInst(ci->getOperand(1),idx,"",ci);
|
|
|
|
|
|
|
|
// Generate the memcpy call
|
|
|
|
args.clear();
|
|
|
|
args.push_back(PointerType::get(Type::SByteTy));
|
|
|
|
args.push_back(PointerType::get(Type::SByteTy));
|
|
|
|
args.push_back(Type::IntTy);
|
|
|
|
FunctionType* memcpy_type = FunctionType::get(
|
|
|
|
PointerType::get(Type::SByteTy), args, false);
|
|
|
|
Function* memcpy = M->getOrInsertFunction("memcpy",memcpy_type);
|
|
|
|
std::vector<Value*> vals;
|
|
|
|
vals.push_back(gep);
|
|
|
|
vals.push_back(ci->getOperand(2));
|
|
|
|
vals.push_back(ConstantSInt::get(Type::IntTy,str.length()+1));
|
|
|
|
CallInst* memcpy_inst = new CallInst(memcpy, vals, "", ci);
|
|
|
|
|
|
|
|
// Finally, cast the result of the memcpy to the correct type which is
|
|
|
|
// the result of the strcat.
|
|
|
|
CastInst* cast_inst =
|
|
|
|
new CastInst(memcpy_inst, PointerType::get(Type::SByteTy),
|
|
|
|
ci->getName(),ci);
|
|
|
|
|
|
|
|
// And perform the stubstitution for the strcat call.
|
|
|
|
ci->replaceAllUsesWith(cast_inst);
|
|
|
|
ci->eraseFromParent();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (ConstantAggregateZero* CAZ =
|
|
|
|
dyn_cast<ConstantAggregateZero>(INTLZR))
|
|
|
|
{
|
|
|
|
// We know this is the zero length string case so we can just avoid
|
|
|
|
// the strcat altogether.
|
|
|
|
ci->replaceAllUsesWith(ci->getOperand(1));
|
|
|
|
ci->eraseFromParent();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
else if (ConstantExpr* E = dyn_cast<ConstantExpr>(INTLZR))
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// We didn't pass the criteria for this optimization so return false.
|
2005-04-25 10:53:12 +08:00
|
|
|
return false;
|
2005-04-25 11:59:26 +08:00
|
|
|
}
|
|
|
|
} StrCatOptimizer;
|
2005-04-25 10:53:12 +08:00
|
|
|
|
2005-04-26 05:11:48 +08:00
|
|
|
/// This CallOptimizer will simplify a call to the memcpy library function by
|
|
|
|
/// expanding it out to a small set of stores if the copy source is a constant
|
|
|
|
/// array.
|
|
|
|
/// @brief Simplify the memcpy library function.
|
|
|
|
struct MemCpyOptimization : public CallOptimizer
|
|
|
|
{
|
|
|
|
MemCpyOptimization() : CallOptimizer("memcpy") {}
|
|
|
|
virtual ~MemCpyOptimization() {}
|
|
|
|
|
|
|
|
/// @brief Make sure that the "memcpy" function has the right prototype
|
|
|
|
virtual bool ValidateCalledFunction(const Function* f) const
|
|
|
|
{
|
|
|
|
if (f->getReturnType() == PointerType::get(Type::SByteTy))
|
|
|
|
if (f->arg_size() == 2)
|
|
|
|
{
|
|
|
|
Function::const_arg_iterator AI = f->arg_begin();
|
|
|
|
if (AI++->getType() == PointerType::get(Type::SByteTy))
|
|
|
|
if (AI->getType() == PointerType::get(Type::SByteTy))
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Perform the optimization if the length of the string concatenated
|
|
|
|
/// is reasonably short and it is a constant array.
|
|
|
|
virtual bool OptimizeCall(CallInst* ci) const
|
|
|
|
{
|
|
|
|
// We didn't pass the criteria for this optimization so return false.
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
} MemCpyOptimizer;
|
2005-04-25 10:53:12 +08:00
|
|
|
}
|