llvm-project/llvm/lib/ProfileData/ProfileSummaryBuilder.cpp

116 lines
4.0 KiB
C++
Raw Normal View History

//=-- ProfilesummaryBuilder.cpp - Profile summary computation ---------------=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for computing profile summary data.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/Casting.h"
using namespace llvm;
// A set of cutoff values. Each value, when divided by ProfileSummary::Scale
// (which is 1000000) is a desired percentile of total counts.
static const uint32_t DefaultCutoffsData[] = {
10000, /* 1% */
100000, /* 10% */
200000, 300000, 400000, 500000, 600000, 500000, 600000, 700000,
800000, 900000, 950000, 990000, 999000, 999900, 999990, 999999};
const ArrayRef<uint32_t> ProfileSummaryBuilder::DefaultCutoffs =
DefaultCutoffsData;
void InstrProfSummaryBuilder::addRecord(const InstrProfRecord &R) {
// The first counter is not necessarily an entry count for IR
// instrumentation profiles.
// Eventually MaxFunctionCount will become obsolete and this can be
// removed.
addEntryCount(R.Counts[0]);
for (size_t I = 1, E = R.Counts.size(); I < E; ++I)
addInternalCount(R.Counts[I]);
}
// To compute the detailed summary, we consider each line containing samples as
// equivalent to a block with a count in the instrumented profile.
void SampleProfileSummaryBuilder::addRecord(
const sampleprof::FunctionSamples &FS) {
NumFunctions++;
if (FS.getHeadSamples() > MaxFunctionCount)
MaxFunctionCount = FS.getHeadSamples();
for (const auto &I : FS.getBodySamples())
addCount(I.second.getSamples());
}
// The argument to this method is a vector of cutoff percentages and the return
// value is a vector of (Cutoff, MinCount, NumCounts) triplets.
void ProfileSummaryBuilder::computeDetailedSummary() {
if (DetailedSummaryCutoffs.empty())
return;
std::sort(DetailedSummaryCutoffs.begin(), DetailedSummaryCutoffs.end());
2016-10-01 05:05:55 +08:00
auto Iter = CountFrequencies.begin();
const auto End = CountFrequencies.end();
uint32_t CountsSeen = 0;
uint64_t CurrSum = 0, Count = 0;
2016-10-01 05:05:55 +08:00
for (const uint32_t Cutoff : DetailedSummaryCutoffs) {
assert(Cutoff <= 999999);
APInt Temp(128, TotalCount);
APInt N(128, Cutoff);
APInt D(128, ProfileSummary::Scale);
Temp *= N;
Temp = Temp.sdiv(D);
uint64_t DesiredCount = Temp.getZExtValue();
assert(DesiredCount <= TotalCount);
while (CurrSum < DesiredCount && Iter != End) {
Count = Iter->first;
uint32_t Freq = Iter->second;
CurrSum += (Count * Freq);
CountsSeen += Freq;
Iter++;
}
assert(CurrSum >= DesiredCount);
ProfileSummaryEntry PSE = {Cutoff, Count, CountsSeen};
DetailedSummary.push_back(PSE);
}
}
std::unique_ptr<ProfileSummary> SampleProfileSummaryBuilder::getSummary() {
computeDetailedSummary();
return llvm::make_unique<ProfileSummary>(
ProfileSummary::PSK_Sample, DetailedSummary, TotalCount, MaxCount, 0,
MaxFunctionCount, NumCounts, NumFunctions);
}
std::unique_ptr<ProfileSummary> InstrProfSummaryBuilder::getSummary() {
computeDetailedSummary();
return llvm::make_unique<ProfileSummary>(
ProfileSummary::PSK_Instr, DetailedSummary, TotalCount, MaxCount,
MaxInternalBlockCount, MaxFunctionCount, NumCounts, NumFunctions);
}
void InstrProfSummaryBuilder::addEntryCount(uint64_t Count) {
addCount(Count);
NumFunctions++;
if (Count > MaxFunctionCount)
MaxFunctionCount = Count;
}
void InstrProfSummaryBuilder::addInternalCount(uint64_t Count) {
addCount(Count);
if (Count > MaxInternalBlockCount)
MaxInternalBlockCount = Count;
}